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Abstract: The international roughness index (IRI) for roads is a crucial pavement design criterion in
the Mechanistic-Empirical Pavement Design Guide (MEPDG). However, studies have shown that the
IRI transfer function in the MEPDG is simply a linear combination of road parameters, so it cannot
provide accurate predictions. To solve this issue, this research developed an AdaBoost regression
(ABR) model to improve the prediction ability of IRI and compared it with the linear regression (LR)
in MEPDG. The development of the ABR model is based on the Python programming language,
using the 4265 records from the Long-Term Pavement Performance (LTPP) that include the pavement
thickness, service age, average annual daily truck traffic (AADTT), gator cracks, etc., which are
reliable data that are preserved after years of monitoring. The results reveal that the ABR model is
significantly better than the LR because the correlation coefficient (R2) between the measured and
predicted values in the testing set increased from 0.5118 to 0.9751, and the mean square error (MSE)
decreased from 0.0245 to 0.0088. By analyzing the importance of variables, there are many additional
crucial factors, such as raveling and bleeding, that affect IRI, which leads to the weak performance of
the LR model.

Keywords: MEPDG; LTPP; IRI prediction; decision tree; AdaBoost regression

1. Introduction

During the construction of asphalt concrete (AC) roads, the longitudinal profile of the
pavement often changes due to the influence of the construction conditions. Moreover,
in the long-term driving process, the outline shape will continue to change under heavy
vehicle loads and harsh environments, visually manifesting as the pavement becomes
rough. Vehicles running on uneven roads not only affect the safety and comfort of the
passengers or drivers, but also increase operating costs (such as increasing fuel consump-
tion, reducing driving speed, and extending the travel time) [1] and at the same time,
will accelerate the destruction of the pavement structure, affecting the service life and
maintenance cycle of the pavement [2]. Therefore, with the continuous improvement of
highway service quality requirements and the establishment of pavement management
systems, roughness has become one of the most critical indicators of current pavement
performance. Accurately assessing the condition of a gradually distressed road surface will
be a vital task of the Department of Transportation (DOT) to ensure the safe and durable
operation of the national road traffic network [3,4].

To better express and quantify the roughness of the pavement surface, researchers
have introduced a one-dimensional pavement longitudinal profile index called the inter-
national roughness index (IRI), which is widely used in the research on road and traffic
engineering [5–9]. In the Mechanistic-Empirical Pavement Design Guide (MEPDG), IRI
is also used as a robust design criterion that is critical to measuring the performance of
AC pavement. Whether it is accurately estimated or not directly affects the reliability of
pavement design. However, from the actual effect, the performance of the MEPDG model
is not optimistic because its transfer function cannot predict the IRI of AC pavement well.
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To solve this problem, researchers have been using data collected from sites in various
states to build new models or to optimize transfer functions for improving the accuracy of
IRI prediction, which is called local calibration [10–14].

The IRI transfer function in MEPDG combines road distress with pavement materials,
structure, and traffic conditions linearly through field measured data to predict the IRI
over time for AC pavement. However, factors affecting IRI are widespread, especially
nonlinear factors, so the linear model is too simple to provide a convincing prediction
result. Moreover, Thompson, Barenberg et al. pointed out that the statistics and practical
structural model constructed in this way cannot explain the change of IRI well, and that
further feeding into the transfer function will not produce an accurate prediction [15]. To
improve prediction performance, we need to establish a new model that can cover various
influencing factors (including nonlinearity) and build the relationship between IRI and
multiple parameters.

On this topic, relevant researchers worldwide have conducted many studies and
analyses, so this is not a new concept that being presented here [16–21]. The artificial
intelligence (AI) algorithm can introduce nonlinear calculations, which are suitable for
establishing AC road distress prediction models. For example, In 2003, Lin et al. found a
three-layer ANN model by using the collected data for deep learning, in which the number
of neurons of the input layer, hidden layer, and output layer was 14, 6, and 1, respectively,
and analyzed the correlation between variables [18]. To explore the superiority of the ANN
model compared to a single linear or nonlinear regression model, Chandra et al. designed
three models. The results of their work showed that the IRI prediction performance of
the ANN model is significantly better than the other two models regardless of whether
it is used on the training or testing set [22]. However, the ANN model may not always
perform well, especially in the face of deeper ANN structures and huge input data, where
overfitting (the model performed well on the training set, but poor on the testing set) is
more likely to occur, which leads to the decrease of the model’s prediction ability [23,24].

Besides ANN, Freund and Schapire [25] proposed the AdaBoost model based on
the boosting algorithm in 1997, which is one of the most widely used and researched
algorithms. In particular, through 300 rounds of boosting tests Schapire [26] indicated that
AdaBoost often did not find the overfitting phenomenon, apparently in direct contradiction
of what was predicted by the Vapnik–Chervonenkis [27,28] (VC) theory, which ensures
that the model has excellent and stable prediction performance. Thus, several recent
works have proposed AdaBoost in order to compensate for pavement engineering distress.
For example, In 2018, Wang, Yang, et al. used the AdaBoost algorithm to detect cracks
on cement pavement and AC pavement, and the results were able to cover more than
83% of the crack length [29]. Hoang and Nguyen proposed an alternative method to
automatically conduct periodic surveys of road conditions through image processing based
on AdaBoost and achieved a high crack classification accuracy of about 90% [30]. Raveling
is one of the most common forms of asphalt pavement distress on American highway
pavements. Based on AdaBoost, after large-scale verification and refinement, the loose
detection method developed by Tsai, Zhao, et al. had been successfully applied to the
entire Georgia interstate highway system [31]. Compared to the application of AdaBoost
in these aspects of road engineering, IRI predictions have higher similarities because the
unevenness of AC pavement is caused by factors, including cracks, ruts, and raveling, etc.,
which contain some linear or nonlinear relationships. AdaBoost can explain the existence
of these relationships through complex calculations, which provides the possibility of its
application in IRI prediction modeling.

This study develops an AdaBoost-based IRI estimation model that utilizes the 4265
records from the Long-Term Pavement Performance (LTPP), including the pavement thick-
ness, service age, average annual daily truck traffic (AADTT), gator crack, etc. Compared
to the LR model from the MEPDG, the novelty of this model is that it comprehensively
considers the input variables and introduces nonlinear factors. The results reveal that the
AdaBoost regression (ABR) model has better fitting performance and has a lower error rate
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than the LR model on both the training and testing sets. Therefore, the ABR model can
better predict IRI, and it is also easy to interpret. By analyzing the importance of variables,
there are many additional crucial factors, such as raveling and bleeding, that affect IRI,
leading to the LR model’s weak performance.

2. IRI Transfer Function
2.1. Definitions

To better perform local calibration, that is, to adapt the IRI transfer function to the
requirements of different regions, LTPP has been collecting research quality pavement
performance data from in-service test sections across the U.S. and Canada. The calibration
process is to choose different coefficients to obtain the equation that best represents the
actual situation. From the point of view of mathematical relationships, it is to select
appropriate coefficients to obtain specific IRI calculation equations. Equation (1) gives
the transfer function calculated by the IRI in the MEPDG. When calibrating locally, we
generally need to go through two processes. The first step is to determine the value of
C1,2,3,4, and the second step is linearly combining these coefficients with the road parameters
by substituting them into the transfer function.

IRI = IRIo + C1(RD) + C2(FCTotal) + C3(TC) + C4(SF)
SF = Age1.5{ln[(Precip + 1)(FI + 1)p02]}+ {ln[(Precip + 1)(PI + 1)p200]}

(1)

where IRI0 is the initial IRI after construction, SF is the site factor, FCTotal is the area of
fatigue cracking, TC is the length of transverse cracking, RD is the average rut depth, C1,2,3,4
are the calibration factors, Age is the pavement age, PI is the percent plasticity index of the
soli, FI is the average annual freezing index, Precip is the average annual precipitation or
rainfall, p02 is the percent passing the 0.02 mm sieve, and p200 is the percent passing the
0.0075 mm sieve.

2.2. IRI Local Calibration Efforts

Table 1 shows some fitting parameters of the IRI calibration results, where R2 and
MSE represent the correlation coefficient and the mean square error, respectively. R2 is also
called the coefficient of determination, which defines how many future samples may be
expected by the regression model. Moreover, it also means that the variance ratio of the
predicted response variable in the variable can be explored [32]. Its value ranges from 0 to
1.0, where 1.0 is the best. MSE is a measure that reflects the degree of difference between
the estimated and the actual value. Equation (2) gives the specific calculation method of
R2 and MSE. From the records listed in Table 1, it can be seen that the results of these
calibrations are not satisfactory. For regions such as New Mexico, Arkansas, Kansas, and
Ontario (Canada), the R2 is below 0.5, which means that these models cannot explain more
than half of the sample data. Specifically in New Mexico, the MSE is as high as 0.12. Even
if the R2 in some regions exceeds 0.5, such as in Arizona and Iowa, these indicators are
only based on training data. In practice, it cannot behave like this in the face of unknown
samples.

R2 = 1− ∑ (y−ŷ)2

∑ (y−y)2

MSE = 1
n ∑ (y− ŷ)2

(2)

where y is the measured value, ŷ is the predicted value, and n is the total number of samples,
R2 is the coefficient of determination, and MSE is the mean square error.
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Table 1. A summary of efforts in calibrating IRI prediction.

Literature Region R2 MSE Samples

AASHTO [33] National (U.S.) 0.5118 0.0249 244
Schram, Abdelrahman [34] National (U.S.) 0.621 0.0235 670

Tarefder, R.-R. [10] New Mexico (U.S.) 0.326 0.12 85
Xiao and Wang [35] Arkansas (U.S.) 0.476 0.063 193

Sufian [36] Kansas (U.S.) 0.22 0.052 90
Souliman, M. [37] Arizona (U.S.) 0.543 0.0355 178

Ceylan, K. [38] Iowa (U.S.) 0.685 0.0196 65
Gulfam, Y. 13] Ontario (Canada) 0.438 0.0775 90
Yuan, L. [39] Ontario (Canada) 0.578 0.03 15

3. Overviews of the AdaBoost Method
3.1. Decision Tree

The decision tree is a practical machine learning classifier that requires supervised
learning, which trains a given sample when the result is already known [40–42]. As shown
in Figure 1, the decision tree mainly consists of the root node, decision node, and leaf node.
The sample starts from the root node and is classified according to the rules of each layer
until it can no longer be divided. When using a decision tree, you first need to construct
the root node, which contains all of the training data. Second, an optimal feature needs to
be selected, and the training data need to be divided into subsets according to this feature
so that each subset can achieve the best classification under the current conditions. Next,
the leaf nodes need to be constructed for the subsets that have been correctly classified, and
these lead nodes needs to be assigned to the corresponding leaf nodes. If there are subsets
that cannot be correctly classified, then new optional features need to be selected for them.
These need to be continued to be divided, and corresponding tree nodes need to continue to
be built until all of the training subsets are correctly classified or until there are not suitable
features. Finally, each subset needs to be assigned to a lead node and needs to have a clear
class. Commonly used decision trees are ID3 [43,44], C4.5 [45,46] and the classification and
regression tree (CART) [47–50]. ID3 calculates the information gain of all of the possible
features and selects the maximum value as the feature of the node. Then, leaf nodes need
to be constructed from the different features in order to recursively generate decision trees
for the lead nodes until there are no features left to be chosen. However, such mechanical
recursive calculations will not continue until the tree generated is often very accurate in
the classification of the training data but not as accurate on the test set. That is, overfitting
will occur. C4.5 inherits the advantages of ID3 and has been improved. Pruning (cutting
some subtrees or leaf nodes from the tree that has been generated and uses the root node
or parent node as the new leaf node to simplify the classification tree model) is conducted
during the tree construction process, and the classification rules that are generated are easy
to understand and have a high accuracy rate. However, in constructing the tree, the data
set needs to be scanned and sorted multiple times, which leads to the inefficiency of the
algorithm. Regardless of ID3 or C4.5, the main solution is the classification problem, which
is the processing of discrete values. CART has made significant improvements based on
the C4.5 model and can handle continuous values in regression problems. In the pruning
process, the generated tree is pruned with the verification data set, and the optimal subtree
is selected, thereby effectively reducing the occurrence of overfitting. Moreover, CART is
suitable for large-scale data sets, especially considering that the more complex the sample
and the more variables that there are, the more significant its superiority is. Since CART
can solve two types of problems: classification and regression problems, it is used as a
weak classifier for IRI prediction.
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Figure 1. Decision tree.

3.2. AdaBoost

A single decision tree is called a weak learner because of its limited capabilities.
Researchers imagine whether a strong learner can be obtained if multiple weak learners
are combined. Schapire [51] proved this conjecture in 1990 and laid the foundation for
the boosting algorithm, which combines multiple weak learners in series. As shown in
Equation (3), each time it adds a new tree model to the whole, the general tree will be
eliminated, and only the strongest tree will be added. In this way, with the accumulation
of iterative calculations, the overall model performance will gradually improve. However,
there is a problem here. After the first basic tree model is obtained, some samples on the
data set are correctly classified, but some are wrong. The AdaBoost algorithm is a simple
weak classification algorithm improvement process, which improves data classification
ability through continuous training. The first weak classifier is obtained by learning the
training samples, and the wrong samples are combined with the untrained data to form
a new training sample. Furthermore, the second weak classifier is obtained by learning
this sample. The wrong sample is combined with the untrained data to form another new
training sample, which can be trained to obtain the third weak classifier. After repeating
this process many times, we can finally obtain the improved robust classifier. To increase
the number of correct classifications, the AdaBoost algorithm gives different weights to
the samples [52]. The correctly classified samples are provided relatively low weights,
and the wrong ones must be increased, which forces the model to pay more attention to
the misclassified samples [53]. Figure 2 describes the overall calculation process of the
AdaBoost algorithm. When training each basic tree model, the weight distribution of each
sample in the data set needs to be adjusted. Since each training data will change, the
training results will also be different, and finally, all of the results are summed [26].

Fn(x) = Fm−1(x) + argminh

n

∑
i=1

L(yi, Fm−1(xi) + h(xi)) (3)

where Fn(x) is the overall model, Fn-1(x) is the overall obtained in the previous round, yi is
the prediction result of the i-th tree, and h(xi) is the newly added tree.

3.3. Framework of the ABR Model
3.3.1. The Process of Building ABR Model

This section explains the overall establishment of the ABR model for estimating road
IRI by using sample data including 21 (20 features and 1 target) columns of data such as
the initial IRI (IRI0), time of service, the total thickness of the pavement, AADTT, etc. The
data used for training is the most original, and none of them have been modified by an
algorithm in order to prevent damage to the model’s practicality. As illustrated in Figure 3,
the ABR framework consists of four parts: (1) randomly splitting training instances into
training and testing subsets, (2) training an AdaBoost model on the training subsets, (3)
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making predictions on the testing subset, and (4) comparing the testing predictions to the
testing targets to assess accuracy.
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In the first step, the processed data are randomly divided into two data sets, employing
one of them as the training set (80%) for model building. The other part is used as the
testing set (20%) for model evaluation. The second step is to use the data in the training
set for model training, during which cross-validation methods will be used for validation.
In the third step, the build model is used to predict the samples on the testing set. In the
last step, the difference between the the predicted value and the actual value to judge the
performance of the model.

3.3.2. Real AdaBoost or Gentle AdaBoost

To solve the IRI prediction regression problem, as mentioned above, CART is selected
as the weak learner. On this basis, the commonly used AdaBoost models are the Real
and Gentle algorithms. Real AdaBoost [54,55] uses a logarithmic function to map to the
real number domain after each weak classifier outputs the probability that the sample
belongs to a specific class, and Gentle AdaBoost [56] performs a weighted regression based
on the least-squares in each iteration [57]. The difference between the two algorithms
is that Real is mainly used for classification problems, while Gentle is good at solving
regression problems. IRI prediction is a regression problem, so Gentle is more suitable for
modeling. To verify this judgment, we attempted to compare the MSE of the two models
by establishing 2000 estimators (trees), and the results are shown in Figure 4. Regardless of
whether it is used on the training set or the testing set, Gentle has a lower error rate, and
the data fluctuation range is small. After about 200 calculation interations, it can quickly
converge, and the error curve tends to be stable.
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3.3.3. Loss Function

In the model, the predicted value of the regression equation and the actual value
of the sample points are not one-to-one. There will be an error between each actual and
predicted value, which is usually called an error term. We hope that the difference between
the predicted formula and the actual value is as small as possible, so we define a way to
measure the quality of the model, that is, the loss function (used to express the degree of
difference between the prediction and the actual data). The loss function quantifies this
error, and whether its selection is appropriate can affect subsequent optimization work. In
the field of machine learning, common loss functions are linear, square, and exponential.
We tried to establish 50 estimators to determine the appropriate loss function, and the
results are shown in Figure 5, wherein the exponential score is better than the other two
functions. After about 20 iterations in the training set, the curve tends to be stable.
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4. Data Preparation
4.1. Data Acquisition from LTPP

Collecting comprehensive and accurately labeled data is necessary for model train-
ing. Hence, the data used comes from LTPP, which gathers research quality pavement
performance data from in-service test sections across the United States and Canada. This
study initially obtained more than 11,000 IRI records from 62 states in the United States
and Canada. However, due to the lack of average annual daily truck traffic (AADTT) data,
only 4265 samples with AADTT data were used in the end. Figure 6 depicts the source
distribution of these data.
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4.2. Predictor Variables Selection

The collected samples contain many variables, but not every variable can improve
the model’s performance, and unrelated variables reduce the accuracy and computational
efficiency of the model. Equation (4) gives the calculation method for the variable impor-
tance. First, the accuracy of the out of bag (OOB) data set that is part of the data set is
calculated, and the input variables are randomly arranged, and the OOB accuracy of the
decision tree is recalculated to obtain the difference between the two arrangements [58]. To
remove irrelevant variables, we selected relative importance to evaluate the importance
of variables and eliminated variables with values less than zero. The steps are as follows:
(1) calculate the importance values of all variables and sort them in descending order of
relative importance values, (2) divide the variables evenly into n groups and keep the last
set of variable rankings and values, (3) calculate the remaining variable importance values
and sort them in descending order of relative importance value, (4) repeat step (3) until
the calculation of these groups of variables is completed, and (5) repeat the simulation
100 times and take the mean value of relative importance of these 100 times as the variable
importance value.

VI =
1
N ∑

k

(
errOOBl

k − errOOB
)

(4)

where N is the number of trees, errOOBl
k is the error of predictorlon the permuted sample,

and errOOB is the error of a single tree in the OOB sample.
The above process results show that the variable importance values of average wind

velocity, average temperature, average cloud cover, and shortwave surface average are all
less than zero, so they are all eliminated. Moreover, to further optimize the input variables,
we introduced stepwise regression analysis to filter the variables. The basic idea of stepwise
regression is to introduce variables, test them one by one, and eliminate variables that are
no longer significant due to new variables. If neither significant variable is selected into the
equation, and if all insignificant independent variables are excluded from the regression
equation, the process ends. The specific process is shown in Figure 7. We can see that
after the execution of this process, by comparing the OOB values of the variables before
and after, the unimportant variables can be eliminated, and the minimum OOB can be
obtained. After testing, we successfully eliminated the pumping length, pavement width,
air voids, resilient modulus, aggregate percentage, and binder content of the four variables.
Therefore, the model ultimately leaves 20 relevant variables. Table 2 describes the specific
content of these variables in terms of structure, performance, traffic, and climate.
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Table 2. Explanation of input variables.

Category Variable Explanation Unit

Structure Thickness The total thickness of pavement mm

Performance

Gator Area of alligator (fatigue) cracking. m2

Block Area of block cracking. m2

Edge Length of low severity edge cracking. m

Long-wp Length longitudinal cracking in wheel path. m

Long-nwp Length non-wheel path longitudinal cracking. m

Transverse Length of transverse cracking. m

Patch Area of patching m2

Potholes Area of potholes m2

Shoving Area of shoving, localized longitudinal displacement of the pavement surface. m2

Bleeding Presence of excess asphalt on the pavement surface which may create a shiny,
glass-like reflective surface. m2

Polish Area of polished aggregate (binder worn away to expose coarse aggregate). m2

Raveling Wearing away of the pavement surface caused by the dislodging of aggregate
particles and loss of asphalt binder. m2

Rut Depth of rut mm

IRI0 The first IRI when the road is put into use m/Km

Age Road service time \

Traffic
AADTT Average annual daily truck traffic \

ESAL The annual average of equivalent single axle load in the LTPP lane. \
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Table 2. Cont.

Category Variable Explanation Unit

Climatic
Freeze Annual average freeze index \

Precipitation Annual average precipitation mm

4.3. Data Set Allocation

However, no matter how good the model is in all aspects of the training process, our
ultimate goal is to achieve accurate prediction results in practice. Usually, the error that we
produce when the model is applied to reality is called the generalization error, so we need
to reduce the generalization error to improve the environmental adaptability of the model.
Nevertheless, it is not realistic to understand the model’s generalization ability directly by
using the generalization error as a signal. This requires frequent interaction between the
model and the reality, which increases the difficulty and cost of modeling. A better way is
to split the data into two parts: the training set and the testing set. The data in the training
set are used for model training. Then, the error of the trained model on the testing set is
calculated as an approximation of the generalization error, so we only need to reduce the
model’s error on the testing set when optimizing the model. In this study, we randomly
divided the data into two parts, where 3412 (80%) samples are used for model training,
and the remaining 853 (20%) are used for testing.

5. ABR Model Construction

The transfer function given in MEPDG considers 10 factors as input variables when
predicting IRI. On the contrary, this ABR model also considers other essential factors for
comprehensive construction, listed in Table 1.

As mentioned above, this model training uses 4265 IRI samples from LTPP, and each
sample contains 20 variables and 1 measured value of IRI. To achieve better prediction re-
sults, selecting appropriate hyperparameters, including CART parameters and ABR frame
parameters, is necessary. The parameters that CART needs to determine mainly include
the Max depth, Min samples split, and Min samples leaf nodes. The frame parameters of
ABR include base estimator, loss, N estimators, and learning rate. Considering the limited
number of samples, it would be very wasteful to set the verification set separately. To solve
this problem, we used four-fold cross-validation, as shown in Figure 8. When verifying a
certain result, the whole process needs to be divided into four steps. In the first step, use
the first three iterations as the training set and the last interation as the validation set to
achieve a result. By analogy, each time uses a different three from the training set, and the
rest are used as the validation set. After completing the four steps using this method, four
results are obtained, each of which corresponds to each small part, and the combination
contains all of the data in the original training set. The final four results are then averaged
to obtain the final model evaluation result. Cross-validation can better evaluate the model
and make the results more accurate.

In theory, to find a suitable combination of hyperparameters, all possible values should
be listed in turn, but this will consume a lot of time for the traversal and reduce efficiency.
In response to this problem, a common strategy is a random search, which randomly
tests all of the possible values when optimizing hyperparameters to find a position that is
roughly close enough to the optimal solution. Although its results are not as accurate as a
comprehensive search, it dramatically improves the iterative efficiency, especially when
facing large-scale data sets. When considering the hyperparameters of CART, we limit
Max depth to between 4 and 16 and delineate the range of Min samples split from 2 to 10
because Max depth and Min samples split that are will also reduce modeling efficiency
and are not conducive to learning the characteristics of the sample. For the choice of Min
samples leaf, we considered a larger value in the early stage of modeling, but it caused a
severe overfitting problem, so it was finally determined to be between 2 and 5. Moreover, a
too large learning rate (step size) will cause the model to miss the minimum value when
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calculating the loss, so the learning rate of this model is set to be low (0.001). After defining
the range of these hyperparameters, the random search method (in the Python language,
using the RandomizedSearchCV function under the random forest class) is then used to
determine the specific value. Based on the fast convergence characteristics of the AdaBoost
algorithm, the model’s error stabilizes after 80 iterations. Table 3 lists the names and specific
values of these parameters.
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Figure 8. Cross-validation.

Table 3. Selection of model parameters.

Parameter Explanation Value

CART
Max depth maximum depth of decision tree 12

Min samples split minimum number of samples required for subdividing internal nodes 8
Min samples leaf minimum number of samples for leaf nodes 3

ABR frame

Base estimator weak regression learner CART
Loss loss function, there are three choices of linear, square and exponential exponential

N estimators maximum number of iterations of the weak learner 80

Learning rate the step size of the update parameter, too small will slow down the
iteration speed 0.001

6. Model Result and Analysis
6.1. Model Performance Evaluation

After going through the building steps of the above model, we need to evaluate the
model’s quality. This time, the selected metrics are the R2 and MSE. To better evaluate the
ABR model, the training results will be compared with the LR model in the MEPDG, and
the results are shown in Figure 9. The LR had an R2 of 0.5588 and a MSE of 0.087 in the
training set, versus 0.5118 and 0.0249, respectively, in the testing set. As the R2 and MSE
shown, this simple ABR model achieved a much better predictive performance than LR.
Compared to the LR, the training R2 of the ABR is improved by more than 78%, while the
MSE decreased by 98%. In contrast to the LR, the testing R2 of the ABR is also improved by
90%, while its MSE is reduced by 65%. Table 4 lists the more detailed results of the two
models. The results demonstrate that a simple ABR can be more predictive and capable of
handling the IRI than a LR model.



Sensors 2021, 21, 5682 12 of 16

Sensors 2020, 17, x FOR PEER REVIEW 12 of 17 
 

 

Loss 

loss function, there are three 

choices of linear, square and ex-

ponential 

exponential 

N estimators 
maximum number of iterations 

of the weak learner 
80 

Learning rate 

the step size of the update pa-

rameter, too small will slow 

down the iteration speed 

0.001 

6. Model Result and Analysis 

6.1. Model Performance Evaluation 

After going through the building steps of the above model, we need to evaluate the 

model's quality. This time, the selected metrics are the R2 and MSE. To better evaluate the 

ABR model, the training results will be compared with the LR model in the MEPDG, and 

the results are shown in Figure 9. The LR had an R2 of 0.5588 and a MSE of 0.087 in the 

training set, versus 0.5118 and 0.0249, respectively, in the testing set. As the R2 and MSE 

shown, this simple ABR model achieved a much better predictive performance than LR. 

Compared to the LR, the training R2 of the ABR is improved by more than 78%, while the 

MSE decreased by 98%. In contrast to the LR, the testing R2 of the ABR is also improved 

by 90%, while its MSE is reduced by 65%. Table 4 lists the more detailed results of the two 

models. The results demonstrate that a simple ABR can be more predictive and capable 

of handling the IRI than a LR model.  

 

Figure 9. IRI predicted and measured values: (a) LR model on the training set, (b) LR model on the 

testing set, (c) ABR model on the training set, and (d) ABR model on the testing set. 

 

(c)

(a) (b)

(d)

Measured IRI (m/Km)

P
re

d
ic

te
d

 I
R

I 
(m

/K
m

)

Figure 9. IRI predicted and measured values: (a) LR model on the training set, (b) LR model on the
testing set, (c) ABR model on the training set, and (d) ABR model on the testing set.

Table 4. Performance comparison of LR and ABR.

Model R2 MSE Fitting Equation

LR
Training set 0.5588 0.0870 y = 0.8037x + 0.3484
Testing set 0.5118 0.0249 y = 0.7037x + 0.3648

ABR
Training set 0.9967 0.0014 y = 1.0030x + 0.0041
Testing set 0.9751 0.0088 y = 1.0050x + 0.0011

6.2. Model Interpretation

Numerical analysis results show that ABR can accurately predict the IRI of asphalt
concrete pavement, and it performs well in the test set so that the model performs well
in preventing overfitting. However, the nature of it cannot be revealed well from the
numerical results. We need to implement the actual interpretation of this model. To this
end, we use the importance analysis method in the random forest module, which can help
us understand the relationship between the input variables and the actual IRI to assume
part of the interpretation of the model [59,60]. It can be seen from the descending order
graph of variable importance in Figure 10 that IRI0 is the most important factor affecting IRI,
which is reflected in the IRI transfer function of MEPDG. The influence of the transverse
cracks and AADTT is also very significant because the formation of transverse cracks will
increase the vertical vibration of the driving vehicle, and the number of repeated actions of
the vehicle will cause the permanent deformation of the road surface. Moreover, the traffic
(ESAL), temperature (freeze index), and service age were also highly correlated with the
IRI. Of course, some variables are easily overlooked, such as patches, which will cause a
drop on the pavement to become uneven.
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Further, Figure 11 draws a matrix scatter plot of the correlation between variables.
Because there are too many variables to display, we have selected the most representative
variables from each category for analysis. It can be seen that IRI0 has a solid linear
correlation with IRI, which is consistent with the conclusions we have previously obtained.
In addition, other variables do not obey such an apparent linear relationship, indicating
that nonlinear factors are widespread. This is also the key to the difference between ABR
and MLR and why ABR is highly predictive.
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7. Conclusions

In this paper, the authors have examined and analyzed an ABR model for IRI estima-
tion in AC pavements, aiming to optimize its configuration and some influencing factors
for maximizing the resulting quality and the estimation reliability. Further, several aspects
of adjusting the accuracy of the ABR have been considered, including weak learners and
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loss functions, etc., to arrive at recommendations for proper model optimization. The
considered model data comes from the LTPP large-scale pavement information database
and includes some parameters that affect the performance of the pavement structure, such
as structure, climate, traffic, and performance variables. After the iterative calculation of
4265 samples from the LTPP and the analysis of the correlation between the variables, the
following conclusions can be drawn:

• The R2 and MSE of the ABR model on the testing set are 0.9571 and 0.0088, respectively.
Hence, the ABR model has high accuracy and predictability, so the model’s overfitting
is well controlled;

• Compared to the LR, the testing R2 of the ABR is improved by 90%, while its MSE is
reduced by 65%. The results demonstrate that a simple ABR can be more predictive
and capable than a LR model;

• By analyzing the importance of the variables to the model, we can see the degree of
influence of each variable. IRI0 is the largest, followed by transverse and AADTT.
Moreover, there are many additional crucial factors such as raveling and bleeding that
affect IRI, leading to the LR model’s weak performance;

• One of the reasons for the low predictive ability of the LR model in MEPDG is that it
does not consider nonlinear influencing factors, which can be well improved by an
ABR model for future pavement design.

In addition, the numerical results prove that the IRI0 (initial IRI) is the most important
influencing factor, which is consistent with the transfer function in MEPDG so that the ABR
model can be explained by practice. The results and discussion are helpful in optimizing
the IRI prediction model to evaluate the performance of the pavement design structure. It
is recommended to conduct further research work, hoping to collect more accurate road
performance data through innovative high-performance testing equipment and expand
the data set (in order to make the data input to the model better and more comprehensive)
to further develop the potential of the model.
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