Skip to main content
. 2021 Aug 24;21(17):5682. doi: 10.3390/s21175682

Table 3.

Selection of model parameters.

Parameter Explanation Value
CART Max depth maximum depth of decision tree 12
Min samples split minimum number of samples required for subdividing internal nodes 8
Min samples leaf minimum number of samples for leaf nodes 3
ABR frame Base estimator weak regression learner CART
Loss loss function, there are three choices of linear, square and exponential exponential
N estimators maximum number of iterations of the weak learner 80
Learning rate the step size of the update parameter, too small will slow down the iteration speed 0.001