Skip to main content
. 2021 Aug 28;21(17):5797. doi: 10.3390/s21175797
Algorithm 1. STaSA
Input: p; Max_Loop; Ants_N; Q; β, γ, ρ; φ1; timej; vmemf,t, vcpuf,t en.
Output: Placement of pod i on node j
1: Initialize parameters {Max_Loop,Ants_N, Q, α, β, γ,ρ}
2: If (vcpuf,t+vmemf,t>R) then
  Instantiate new set of nodes using Equation (7)
//include check capacity condition of nodes states
3: End if
4: Initialize the pheromone trail using Equation (13)
5: Initialize the placement cost using Equation (9)
6: For nloop from 1 to Max_Loop do
7:   Random shuffle input pod queue
8:    For ant_k from 1 to Ants_N do
9:     For i from 1 to p do
10:      Calculate the time value based on (12)
11:      Calculate the probability of placement of pod i on each node j using
12:       Equation (13)
     //ant_k chooses node j for pod i according to the highest probability
     Add the selected node j to the schedule table as a placement of pod i for ant_k
13:     End for
14:     Calculate the cost of pod i for ant_k using Equation (10)
15:    End for
16:   Update the pheromone trail using Equation (15)
17:  End for
18: Repeat until the maximum number of iterations is reached or best placement found