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Abstract: Artificial intelligence and machine learning are employed in creating functions for the
prediction of self-compacting concrete (SCC) strength based on input variables proportion as cement
replacement. SCC incorporating waste material has been used in learning approaches. Artificial
neural network (ANN) support vector machine (SVM) and gene expression programming (GEP)
consisting of 300 datasets have been utilized in the model to foresee the mechanical property of
SCC. Data used in modeling consist of several input parameters such as cement, water–binder ratio,
coarse aggregate, fine aggregate, and fly ash (FA) in combination with the superplasticizer. The best
predictive models were selected based on the coefficient of determination (R2) results and model
validation. Empirical relation with mathematical expression has been proposed using ANN, SVM,
and GEP. The efficiency of the models is assessed by permutation features importance, statistical
analysis, and comparison between regression models. The results reveal that the proposed machine
learning models achieved adamant accuracy and has elucidated performance in the prediction aspect.

Keywords: self-compacting concrete; fly ash; machine learning; artificial neural network; gene
engineering programming

1. Introduction

In recent years, concrete technology has been improving due to the fact that it is the
most commonly used building material in the world. The knowledge of advance techniques
of designing concrete has also improved recently due to different type of concrete being
designed containing different admixtures [1]. One of the results of developing concrete
designing technology is self-compacting concrete (SCC) [2]. Self-compacting concrete
is defined as a cementitious material that can flow under its own weight and was first
developed in the late 1990s in Japan. SCC deforms efficiently and shows maximum
resistance to segregation and bleeding as per American Concrete Institute committee
237 R-07 [3]. Moreover, due to its workability, SCC is more often used where there is a
need of creating different shapes of the elements or there are some parts of elements hardly
reachable [4].
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SCC is an advanced material with similar strength and durability as compared with
traditional vibrated concrete; however, very often, due to self-venting, it is characterized by
better performance; thus, it is sometimes used in strengthening of reinforced concrete (RC)
beams [5,6]. Even though the SCC is commonly used in construction practice, designing
proper mixture of SCC is still a difficult task to solve. The main reason of this is the
fact that concrete itself is a quasi-brittle material [7]; the SCC requires relevant flow, and
more often, industrial wastes are added as by-products: fly ash (FA), silica fume (SF), and
ground granulated blast furnace slag (GGBFS) [8]. There are certain waste byproducts that,
when included in the cementitious system as a partial replacement of cement, substantially
reduce the desired energy and CO2 emission [9].

In light of sustainable development and waste management, investigating the in-
fluence of the addition of the aforementioned by-products on cementitious composites
properties should not be neglected. Fly ash is a fine-grained dust, consisting mainly
of spherical, vitrified grains obtained by burning pulverized coal with or without co-
incineration, showing pozzolanic properties and mainly containing Al2O3 and SiO2. Fly
ash may be used in the production of concrete if it meets the requirements included in the
standards [10]. The use of fly ash in concrete brings many benefits, such as: completing the
particle size distribution curve, increasing the final strength of concrete as a result of the
pozzolanic activity of fly ash, compacting the microstructure, and easier displacement of
aggregate grains in relation to each other, which is the essence of a fresh self-compacting
concrete mixture [11].

The SCC’s complex structure requires a rigorous mixed design process for achieving
its required properties. The SCC mixture can differ, when analyzing the literature, due to
variations in the quantity and quality of mineral admixtures, as well as design standards.
What is more, the general relationship between the binder ratio to mineral admixtures,
chemical admixtures, w/b ratio, and aggregate particle size seems to be ambiguous. Mean-
while, traditional methods were used by many researchers in achieving SCC properties,
but the modeling aspect and optimization of mineral admixture are still missing in most
aspects [12].

Computation methods as well as machine learning techniques have recently become
a powerful way of modeling and estimating an extensive series of problems, particularly
in modeling concrete properties [13–15]. Numerous studies have been conducted in the
prediction of mechanical properties of self-compacting concrete and some selected of the
latest, together with the name of the applied machine learning algorithm and used waste
material, are listed in Table 1.

Despite the fact that researchers are implementing machine learning algorithms in
concrete investigations, there is a lack of works focusing on models predicting the compres-
sive strength of SCC modified with FA using comparative analyses containing artificial
neural networks (ANN), support vector machine (SVM) and gene expression programming
(GEP) combined. Taking into account the information presented in the Table 1, there is lack
of comparative analysis of different machine learning algorithms used for self-compacting
concrete compressive strength prediction. Thus, the aim of this study is to perform such
analysis using ANN, SVM, and GEP and also to compare the obtained results with similar
scientific works presented in the literature.
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Table 1. The latest works in the subject of concrete compressive strength prediction.

S. No Algorithm
Name Notation Dataset Prediction

Properties Year
Waste

Material
Used

References

1
Artificial

neural
network

ANN 169 Compressive
strength 2016

FA
GGBFS

SF
RHA

[16]

2
Artificial

neural
network

ANN 205 Compressive
strength 2019

FA
GGBFS

SF
RHA

[17]

3
Artificial

neural
network

ANN 114 Compressive
strength 2017 FA [18]

4
Artificial

neural
network

ANN 80 Compressive
strength 2011 FA [19]

5
Artificial

neural
network

ANN 300 Compressive
strength 2009 FA [20]

6
Support
vector

machine
SVM - Compressive

strength 2020 FA [21]

7 Random
forest RF 131 Compressive

strength 2019
FA

GGBFS
SF

[22]

8

Biogeographical-
based

program-
ming

BBP 413 Elastic
modulus 2016

SF
FA

SLAG
[23]

9

Intelligent
rule-based
enhanced
multiclass
support
vector

machine and
fuzzy rules

IREMSVM-
FR with

RSM
114 Compressive

strength 2019 FA [24]

10
Support
vector

machine
SVM 115

Slump test
L-box test

V-funnel test
Compressive

strength

2020 FA [25]

11

Multivariate
adaptive

regression
spline

M5
MARS 114

Compressive
strength

Slump test
L-box test

V-funnel test

2018 FA [26]

2. Research Significance

The novelty of this research is the usage of the newest machine learning algorithms
in the comparative manner in order to evaluate the compressive strength of fly ash-based
self-compacting concrete. For this purpose, the artificial neural network, support vector
machine, and genetic expression programming were used. In particular, the novelty of this
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research is the usage of the genetic expression programming for this purpose. The best
model among those investigated was selected after optimization. Permutation features and
statistical analysis with in-depth error measures are conducted to compare the accuracy of
aforementioned models and comparing them with others in the scientific field.

3. Prediction Methods
3.1. Artificial Neural Network (ANNs)

Artificial neural networks are algorithms simulating the microstructure (neurons) of a
biological nervous system [27–29]. Their structure is similar to the biological connection
between neurons in the human brain. The ANNs consist of layers: input (consist of
variables used in order to forecast the investigated property), hidden (consist of nodes
connected with other layers using functions and weights) and output (which is consist of
predicted variables). It is possible to analyze data using ANN thanks to learning algorithms
such as: quasi-Newtons, Levenberg–Marquardt’s and conjugate gradients [8]. ANNs
are widely used in many applications and can therefore be a useful tool in engineering
applications [30].

In this study, a multi-layer perceptron (MLP) feed-forward with backpropagation
algorithm ANNs have been selected. One hidden layer and varying neuron numbers
are selected to find the optimum performance of the multilayer perceptron neuron net-
work (MLPNN) [31]. The learning algorithms used in ANNs modeling of SCC compres-
sive strength were the Broyden–Fletcher–Goldfarb–Shano algorithm and the Levenberg–
Marquardt algorithm. The data set division was fixed as: 70% of data was used in training
process and 30% of data was used in processes of testing and validation [32]. Moreover,
optimization of the training, validation set, and training set was obtained by changing the
number of neuron layers with iteration, and vice versa. The most accurate results were
obtained for the topology of six inputs, 13 hidden neurons, and one output. The topology
of this network is presented in Figure 1 and described in Table 2.
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Table 2. Neural network properties.

Parameter Neural Network
Properties

Input parameters Six (6)
Output parameters One (1)

Percentage of training set/testing and validation set 70/30
Number of epochs Hundred (100)
Performance limit 10−6

Training model Supervised
Training process Quasi-Newton

Activation function (HL) Logistic (sigmoid)
Activation function (OL) Logistic (linear)

3.2. Support Vector Machine (SVM)

The support vector machine is a supervised learning model used for analyzing classi-
fication and regression data, invented by Vapnik [33]. The data are represented as a map
of points in space and the solution is the hyperplane (lane in 2D, plane in 3D, etc.) with
the widest possible gap between two classes. Each point in this space is described with
support vectors; however, there are some situations wherein the division of the data set is
possible only after using kernel functions, presented in Figure 2.
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Figure 2. Graphical interpretation of support vector machine method.

The support vector machine has been successfully used in solving some engineering
problems, e.g., analyzing the durability of lightweight cement composites with hydropho-
bic coatings modified by nanocellulose [33]. In this work, the v-SVM was used, with linear
kernel function as the most accurate. The other kernel function tested: polynomial, RBF, or
sigmoid were not that significantly accurate.

3.3. Genetic Engineering Programming (GEP)

Genetic engineering programming is a versatile approach as it incorporates both gene
algorithms (GAs) and genetic programming (GP) [34]. This algorithm consisting of trees,
that are called expression trees (ETs), and the benefit of this solution is the fact of adamantly
simplified at the chromosome level operation of genetic work [35]. Another modification
in GEP, in comparison to GAs, is that the individual chromosomes that contain numerous
genes and are additionally classified into the model head and tail [36]. Each individual gene
of GEP, presented as a node of the ET, stores a number of variables with constant length,
function set, and terminal sets. Function set, terminal set, and variables are connected with
each other via a linear genetic code. It is worth mentioning here that these sets must have
closure property. A sample of the GEP gene can also be represented by an expression tree
(ETs) diagram. An example of ET diagram is shown in Figure 3.
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Figure 3. An example of tree expression (ETs).

It is expected that every gene (chromosome) contains the head, which executes the
algorithm by creating chromosomes. The individuals (gene) in GEP are selected and
represented as expression tree(s) with the execution of the analysis. After performing the
analysis, the fitness is estimated; based on this, the decision of dismissing or reiterating
is made. Dismissing the fitness finishes the algorithm, while, during reiteration, the
fitness is calculated and estimated once again in order to evaluate the suitability for
another expression of chromosomes as expression trees. The schematic diagram of the GEP
algorithm is shown in Figure 4.
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4. Data Presentation
4.1. Correlation Graph Python Programming Based

The collected SCC database taken from published literature [17,37–60] includes infor-
mation on the water–binder ratio, fly ash, fine and coarse aggregate, superplasticizer, and
cement content (see Appendix A). Each model performance is governed by the distribution
of its parameters [61]. It can be seen that machine learning and artificial intelligence are
hand full tools in the prediction of mechanical properties of SCCs. The distribution and
relationship (optimal quantities) of input parameters to its output can be seen in contour
form in Figure 5. It can be seen that with the increasing value of cement content, the
compressive strength value has also increased; however, it is the opposite in the case the of
water–binder ratio, wherein the increase of this ratio results in a decrease in compressive
strength. Moreover, using these variable concentrations in SCCs yield maximum com-
pressive strength output, thus eliminating its need for going in hit and trial methods to
obtain the target strength. Furthermore, the range and description of data is shown in
Tables 3 and 4. It may be concluded that machine learning and deep learning approaches
adamantly benefit in the prediction of the mechanical aspect of SCCs.
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Table 3. Range of input and output variables.

Parameters
Minimum Maximum

Input Variables

Cement (kg/m3) 83 540
Fly ash (kg/m3) 0 525

Coarse aggregate (kg/m3) 578 1125
Fine aggregate (kg/m3) 478 1180

Superplasticizer (%) 0 1.36
Water–binder ratio 0.22 0.9

Output Variable Minimum Maximum

Compressive strength (MPa) 8.54 78.4
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Table 4. The dataset from the latest works in the subject of concrete compressive strength prediction.

Statistical Measures of Input Parameters and Output Strength in Modeling Prediction

Dataset Parameters

Training Set Cement Fly Ash Water–Binder Fine Aggregate Coarse
Aggregate Superplasticizer

Mean 292.48 118.08 0.48 802.90 912.45 0.18
Standard Error 6.69 6.13 0.01 6.76 7.82 0.02

Median 290.00 120.68 0.46 793.46 900.00 0.05
Mode 250.00 0.00 0.55 742.00 837.00 0.00

Standard
Deviation 96.95 88.88 0.13 97.97 113.39 0.26

Sample
Variance 9399.46 7899.70 0.02 9598.18 12,857.39 0.07

Kurtosis −0.11 2.55 0.26 2.30 0.27 3.89
Skewness 0.51 0.87 0.76 0.57 −0.35 2.00

Range 457.00 525.00 0.67 693.00 547.00 1.36
Minimum 83.00 0.00 0.23 487.00 578.00 0.00
Maximum 540.00 525.00 0.90 1180.00 1125.00 1.36

Sum 61,421.24 24,796.10 100.81 168,608.70 191,614.79 37.16
Count 210.00 210.00 210.00 210.00 210.00 210.00

Validation Set Cement Fly Ash Water–Binder Fine Aggregate Coarse
Aggregate Superplasticizer

Mean 292.65 117.73 0.49 789.71 912.83 0.18
Standard Error 13.13 13.29 0.02 15.47 18.82 0.04

Median 295.90 107.25 0.50 784.50 879.00 0.04
Mode 250.00 0.00 0.55 774.00 837.00 0.00

Standard
Deviation 89.07 90.14 0.13 104.91 127.67 0.27

Sample
Variance 7933.73 8125.93 0.02 11,005.42 16,300.13 0.07

Kurtosis 1.04 −1.12 −0.41 3.03 −0.04 4.61
Skewness 0.65 0.09 0.03 −0.08 −0.22 2.07

Range 396.40 275.00 0.58 657.00 535.00 1.25
Minimum 143.60 0.00 0.22 478.00 590.00 0.00
Maximum 540.00 275.00 0.80 1135.00 1125.00 1.25

Sum 13,461.90 5415.63 22.52 36,326.78 41,989.96 8.22
Count 46.00 46.00 46.00 46.00 46.00 46.00

Test Set Cement Fly Ash Water–Binder Fine Aggregate Coarse
Aggregate Superplasticizer

Mean 292.76 101.57 0.49 837.83 912.01 0.15
Standard Error 12.53 11.32 0.02 13.30 20.65 0.03

Median 290.00 100.37 0.51 808.00 940.60 0.03
Mode 250.00 0.00 0.33 899.00 837.00 0.00

Standard
Deviation 84.02 75.94 0.13 89.20 138.54 0.22

Sample
Variance 7059.62 5767.29 0.02 7956.13 19,193.24 0.05

Kurtosis −0.76 −0.93 −1.03 2.35 −0.75 1.99
Skewness 0.09 0.03 0.02 1.21 −0.45 1.66

Range 340.30 263.00 0.46 473.00 490.00 0.80
Minimum 134.70 0.00 0.27 662.00 621.00 0.00
Maximum 475.00 263.00 0.73 1135.00 1111.00 0.80

Sum 13,174.34 4570.57 22.21 37,702.21 41,040.48 6.82
Count 45.00 45.00 45.00 45.00 45.00 45.00
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4.2. Sensitivity Analysis or Permutation Feature Importance

The influence of parameters on the compression strength of SCC was calculated by
using machine learning (python) based program. It can be seen in Figure 6 that cement
and fly ash play a vital role in SCC compressive strength prediction with 53% of their net
contribution, whereas the coarse aggregate and water–binder ratio have an influence of
27.27% on the compressive strength of SCC.
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Development of the SCCs model incorporating waste material is based on the selection
of input parameters. These variables have an intransigent impact on SCCs mechanical
properties. All parameters in the dataset were carefully studied, and only the influential
parameters for a generalized relationship were selected. The compressive strength response
( f ′c) of SCC depends upon the following factors as illustrated in Equation (1).

f ′c = f ((fly ash, SP), Fine aggregate, Coarse aggregate,
Water
Binder

) (1)

It must be noted that properly fitting parameters play an adamant part in the effec-
tiveness and simplification of the established model. The factors for the GEP algorithm
were calculated on the premise of research recommendations and numerous preliminary
runs [62]. It must be kept in mind that gene chromosomes (population size) and head sizes
are the key aspects in controlling program run time. Larger chromosome population and
head size result in a longer time of test. Due to the number of possible results and the
difficulty of the assessment model estimation, three best populations, i.e., 50, 100, or 150,
and one head size were taken into consideration. The parameters for the model used in the
GEP algorithm are listed in Table 5.

The correlation coefficient (R2) is a common mean degree of performance of any
machine learning model. Nevertheless, the inconsiderateness of R to divide and multiply
the productivity values into a constant implies that R (coefficient of relation) cannot be used
exclusively as the predictive precision of any model. Therefore, errors such as the relative
root mean square error (RMSE), mean absolute error (MAE), and relative mean square
error (RSE) were also calculated. An output index or performance index (ρ) is proposed to
measure model efficiency as a result of both R and RRMSE [63]. The calculated expressions
are given as equations for these error functions, which are listed below:

RMSE =

√
∑n

i=1 (exi −moi)
2

n
(2)

MAE =
∑n

i=1|exi − moi|
n

(3)
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R =
∑n

i=1(exi − exi)(moi −moi)√
∑n

i=1(exi − exi)
2 ∑n

i=1(moi −moi)
2

(4)

where exi, moi, exi, and moi are experimental values setup and model domain.

Table 5. Gene expression programming variables detail set.

Settings

General property f ′c
Chromosomes 30

Genes 3, 4, 5
Head size 8

Linking function Multiplication
Function set +, −, ×, ÷, exp

Numerical Constants

Constant per gene 10
Data type Floating number

Lower bound −10
Upper bound 10

Genetic Operators

Mutation rate 0.00138
Inversion rate 0.00546

Insertion Sequences transposition rate 0.00546
Root Insertion Sequence transposition rate 0.00546

One-point recombination rate 0.00277
Two-point recombination rate 0.00277

Gene recombination rate 0.00277
Gene transposition rate 0.00277

5. Results and Discussion
5.1. Artificial Neural Network

The influence of variables including regression coefficient R2 as well as statistical
characteristics of errors between actual targets and modeled outputs are measured for the
performance evaluation of the MLP-ANN model. The network output is assessed inde-
pendently for training, validation, and testing set. The correlation between experimental
values and prediction sets for training, validation, and testing set, respectively, are shown
in Figure 7. It shows that the obstinate relation between an experimental set with modeled
output for data exists. It can be seen that the training set, validation set, and test set give a
coefficient of correlation close to 1, as illustrated in Figure 7a,c,e. Moreover, the prediction
accuracy by ANN can also be evaluated by its error distribution. Figure 7b,d,f, present
the error distribution of the training set, validation set, and testing set with prediction to
output variables, showing satisfactory performance of the model. It can be seen that the
error distribution of training set data between the experimentally measured compressive
strength and predicted lies mostly below 10 MPa, showing that 93% of errors between
the measured values and the predicted values lie in the range of 0 MPa to 10 MPa with
error values between −7.65 MPa and 8.35 MPa, respectively, for training, as depicted
in Figure 7b. Similarly, validation demonstrates the same trend by showing lesser error
distribution in the same range of error values between −10.06 MPa and 8.27 MPa, as
illustrated in Figure 7d, and for the testing set, the range of error values was a little bit
higher and ranged between −12.54 MPa and 10.21 MPa, as depicted in Figure 7f. Thus,
the prediction model shows obstinate and adamant modeling in relation to prediction and
experimental results.
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5.2. Support Vector Machine

The influence of variables including regression coefficient R2 as well as statistical
characteristics of errors between actual targets and modeled outputs are measured for
the performance evaluation of the SVM model. The correlation between experimental
values and prediction sets for training, validation, and testing set, respectively, are shown
in Figure 8. It shows that the relation between an experimental set with modeled output for
data exists, but it is not as sufficient as in comparison to ANN. It can be seen that training
set, validation set, and test set give the coefficient of correlation are lower than for ANN
but are still very high, as illustrated in Figure 8a,c,e. Moreover, the prediction accuracy by
SVM is also illustrated by its error distribution, presented in Figure 8b,d,f). It can be seen
that error values ranges between −17.75 MPa and 17.00 MPa, respectively, for training, as
depicted in Figure 8b. Similarly, validation demonstrates the same trend by showing lesser
error distribution in the same range of error values between −11.33 MPa and 14.35 MPa,
as illustrated in Figure 8d, and for the testing set, the range of error values was a little bit
higher and ranges between −15.78 MPa and 21.82 MPa, as depicted in Figure 8f. Thus, the
prediction model shows less accuracy in comparison to ANN.

5.3. Gene Expression Programming

The output of the GEP algorithm for the SCC model is denoted as an expression
tree(s), as illustrated in Figure 9. The GEP algorithm solves nonlinear expressions as well
as linear ones by forming a tree-like structure, which can then be used to form an equation
used to predict the model outcome. These ETs were then decoded to give empirical
relationships. The ETs for compressive strength of SCC contains four basic mathematical
functions containing addition, multiplication, subtraction, and division. Moreover, it can
be seen that these expression trees contain parameters and constants to prepare empirical
equations, as shown in Table 6.
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Defined relationships between ETs and genes help in predicting the compressive
properties of self-compacting concrete ( f ′c). The response to predict the compressive
strength is then proposed with expression trees by using Equation (5).

f ′c = A× B× C (5)

where:

A = (d(2)−

 d(4)
d(2) + d(1)

d(4)−G1C2

)/G1C5 (6)

B = ((((d(1) + d(4)× (d(0)−G2C3))− ((G2C1×G2C5)× d(0))) + d[3]) (7)

C =


d(3)

G3C6−d(5)
d(2)

(G3C9− d(1))− (G3C7×G3C5)

 (8)

The evaluation of the model expectations against the actual results of SCC strength
is graphically shown in Figure 10. It depicts that all input variables to predict f ′c of
SCC are accurately taken into account by the model. The presented results are highly
correlated, as be seen in Figure 10a,c,e; it was also proved by the obtained values of linear
correlation coefficient, equal to 0.941, 0.935, and 0.947 for training and validation. The
proposed model’s efficiency is significantly affected by the number of datasets [63]. This
research consists of 300 datasets in the prediction of SCC; hence, high accuracy of the
model is expected. The response of predicted values with error distribution is presented in
Figure 10b,d,f. It can be seen that all sets for the GEP model show a minimum error with
the maximum range that lies below 10 MPa, as depicted in Figure 10b,d,f. It confirms the
accuracy of the desired model with respect to regression models and it is on the same level
of accuracy as for ANN.
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Table 6. Constant and notation used to prepare empirical equation.

Parameters Notation Parameters Constant Notations Constant Values

d0 Cement G1C5 −4.28835075
d1 Fly ash G1C2 37.75001621
d2 Water–powder G2C3 39.89209066
d3 Fine aggregate G2C1 9.967413128
d4 Coarse aggregate G2C5 26.22055325
d5 Superplasticizer G3C9 −20.52776364
- - G3C7 145.5520044
- - G3C5 −10.5395382
- - G3C6 544.4511609
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5.4. Comparison between the Proposed Models

The machine learning algorithms used in the article are accurate in prediction of the
compressive strength of self-compacting concrete modified by fly ash. It can be observed
based on the values of the parameters describing their accuracy, which were linear co-
efficient of correlation R, root mean square error RMSE, and mean average error MAE.
Among the artificial neural networks, the support vector machine and gene expression
programming, there is difficult to point the most accurate algorithm. The least accurate was
support vector machine due to the lowest values of the linear coefficient of correlation and
the highest values of errors in all processes. However, even though the neural network was
the most accurate during the training process, the gene expression programming algorithm
was more accurate in the testing and validation processes. Thus, for construction practice,
it might be beneficial to use this algorithm, which performs better in the testing and vali-
dation processes instead of training because of the threat of overfitting. In Figure 11, the
aforementioned algorithms were compared with other models presented in the literature.

It can be seen that all of the investigated models are predict the SCC compressive
strength well, according to the literature. However, due to the fact that none of the models
were perfectly accurate (linear correlation coefficient was equal to 1.0), it is still possible to
improve the algorithms by building other databases or using different algorithms.
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6. Conclusions

This research discusses the machine learning application of artificial intelligence,
in particular, artificial neural network, support vector machine, and gene expression
programming for the prediction of self-compacting concrete compressive strength. By
performing an extensive literature survey for obtaining the experimental results of the
SCCs compressive strength values and also by performing numerical analysis using ANN,
SVM, and GEP, the following conclusions can be drawn:

1. ANN-, SVM-, and GEP-based models predict the properties of SCC strength; however,
ANN and GEP are the most accurate for this purpose;

2. ANN, SVM, and GEP models were characterized by the very high values of linear
correlation coefficient equal to R = 0.9588, R = 0.9344 and R = 0.9353 for the testing
set, respectively. The test set of the ANN, SVM, and GEP models show average error
values of 5.428 MPa, 5.023 MPa, and 3.741 MPa, respectively. This indicates that the
GEP model was able to be performed better in terms of accuracy during this process
in comparison to the ANN and SVM models;

3. Permutation features show clear influential parameters for strength prediction. Vari-
able such as the ratio of cement and fly ash added to the mixture have a major effect
on strength with 53% out of total parameters. Thus, it is important to know their
ratio in the mixture in order to evaluate the SCC compressive strength; without this
variable, the modelling might be less accurate;

4. Statistical analysis and external checks give obstinate responses for all models.

These models were used for prediction rather than conducting experimental work;
thus, their utilization in the civil engineering field will lower the carbon footprint. Below, a
few recommendations for continuing similar research in the future are presented:



Materials 2021, 14, 4934 19 of 27

1. Hybrid models or advanced evolutionary algorithms can be developed, and the
results can be compared to the present study.

2. The techniques used in this study can be used to model other engineering properties
of concrete and structures.

As every study and technique has some limitations, some of the limitations of GEP
are as follows:

1. Sometimes, the GEP is trapped in a local region that does not contain the global
optimum. This phenomenon is called premature convergence and is one of the
serious problems in genetic algorithms.

2. The “best” fitness is in comparison to other fitness; i.e., the stop criterion is not clear
in every problem.

3. For specific optimization problems and problem instances, other optimization algo-
rithms may be more efficient than genetic algorithms in terms of speed of convergence.
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Appendix A

Table A1. Self-compacting concrete mixture components and compressive strength.

No. Cement Fly Ash Water–Powder
Ratio Sand Coarse

Aggregate Superplasticizer Strength

- kg/m3 kg/m3 - kg/m3 kg/m3 kg/m3 MPa

1 148 137 0.55 830 1002 0.11 17.95
2 393 0 0.49 758 940 0 39.58
3 325 60 0.65 900 850 0.12 31.4
4 374.3 0 0.51 730.4 1013.2 0.02 39.06
5 348 224 0.5 783 848 0.43 58.6
6 296 107 0.55 778 819 0.04 31.42
7 350 162 0.41 768 840 0.18 51.7
8 296 106.7 0.55 778.4 819.2 0.04 31.42
9 374 0 0.51 730 1013 0.02 39.05
10 148.1 136.6 0.56 830.1 1001.8 0.11 17.96
11 275 0 0.67 808 1088 0 24.5
12 231.75 121.62 0.49 778.45 1056.4 0.03 33.73
13 181.38 167.01 0.49 777.8 1055.6 0.04 27.77
14 194.68 100.52 0.56 905.9 1006.4 0.04 25.72
15 325 60 0.65 899 850 0.43 30.8
16 420 80 0.33 785 860 0.3 56
17 212.52 100.37 0.51 903.59 1007.8 0.04 31.64
18 290 100 0.33 913 837 0.01 42.7
19 333 0 0.58 842.6 931.2 0 31.97
20 250 160 0.55 742 837 0.5 28.5
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Table A1. Cont.

No. Cement Fly Ash Water–Powder
Ratio Sand Coarse

Aggregate Superplasticizer Strength

- kg/m3 kg/m3 - kg/m3 kg/m3 kg/m3 MPa

21 339 0 0.58 781 968 0 32.04
22 207 207 0.45 845 843 0.4 33.2
23 252 0 0.73 784 1111 0 19.69
24 360 240 0.28 853 698 0.3 63.5
25 417 153 0.32 828 759 0.31 61.82
26 163 245 0.4 851 851 0.2 26.2
27 310 0 0.62 850 970 0 27.92
28 350 133 0.38 815 883 0.34 55.3
29 190.34 125.18 0.51 802.59 1088.1 0.05 28.47
30 427 115 0.36 779 844 0.26 59.4
31 475 0 0.48 594 932 0 39.29
32 164.6 150.4 0.58 728.9 1023.3 0.07 18.03
33 165 150 0.58 729 1023 0.07 18.03
34 318 126 0.47 737 861 0.02 40.06
35 317.9 126.5 0.47 736.6 860.5 0.02 40.06
36 280 96 0.87 817 850 0.62 15.9
37 540 0 0.32 613 1125 0 67.31
38 183 160 0.55 891 837 0.5 22.1
39 238.05 94.11 0.56 847.01 949.91 0.03 30.23
40 307 0 0.63 812 968 0 27.53
41 480 96 0.38 819 699 0.94 53
42 144.8 133.6 0.65 811.5 979.5 0.08 13.2
43 145 134 0.65 812 979 0.08 13.2
44 151.6 111.9 0.7 815.9 992 0.05 12.18
45 325 60 0.85 722 850 0.43 13.3
46 370 24 0.69 772 850 0.25 26.4
47 152 112 0.7 816 992 0.05 12.18
48 331 0 0.58 825 978 0 31.45
49 252.5 0 0.74 784.3 1111.6 0 19.77
50 505 60 0.35 630 1030 0 64.02
51 134.7 165.7 0.6 804.9 961 0.07 13.29
52 325 60 0.65 899 850 0.43 32.6
53 135 166 0.6 805 961 0.07 13.29
54 475 0 0.34 662 1044 0.02 58.52
55 251.37 118.27 0.52 754.3 1043.6 0.02 33.27
56 166.09 163.27 0.54 780.09 1058.6 0.03 21.54
57 393 0 0.49 785.6 940.6 0 39.6
58 250 0 0.73 820 1100 0 20.87
59 210 100 0.65 910 837 0.8 19.1
60 190.68 125.4 0.51 804.01 1090 0.04 26.4
61 249 60 0.68 1079 850 0.43 24
62 405 0 0.43 695 1120 0 52.3
63 528 0 0.35 720 920 0.01 56.83
64 250 160 0.55 739 837 0 27.3
65 273 90 0.55 762 931 0.04 32.24
66 297.16 117.54 0.42 753.45 1022.8 0.03 47.4
67 169 254 0.45 853 853 0 30.2
68 272.6 89.6 0.55 762.2 931.3 0.04 32.25
69 190.34 125.18 0.53 798.9 1079 0.05 24.85
70 310 0 0.62 830 1012 0 27.83
71 298 107 0.52 744 880 0.04 31.87
72 298.2 107 0.52 744.2 879.6 0.04 31.88
73 251.37 118.27 0.51 757.73 1028.4 0.03 32.66
74 247 165 0.45 845 846 0.12 34.6
75 400 0 0.47 745 1025 0 43.7
76 170 200 0.43 930 900 0.2 31
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Table A1. Cont.

No. Cement Fly Ash Water–Powder
Ratio Sand Coarse

Aggregate Superplasticizer Strength

- kg/m3 kg/m3 - kg/m3 kg/m3 kg/m3 MPa

77 289 0 0.66 895.3 913.2 0 25.57
78 317 160 0.55 594 837 0.5 29.1
79 326 138 0.43 792 801 0.03 40.68
80 295 0 0.63 769 1069 0 25.18
81 520 0 0.33 855 855 0.01 60.28
82 225 275 0.35 908 652 0.7 41.42
83 222.36 96.67 0.59 870.32 967.08 0.02 24.89
84 165 143.57 0.53 900.9 1005.6 0 26.2
85 238 0 0.78 789 1119 0 17.54
86 238 0 0.78 789 1118 0 17.54
87 238.1 0 0.78 789.3 1118.8 0 17.58
88 238 159 0.4 844 844 0.29 37.8
89 522 0 0.28 896 896 0 74.99
90 148 182 0.55 884 839 0.1 15.52
91 290 100 0.65 709 837 0.2 26.6
92 148.1 182.1 0.55 884.3 838.9 0.1 15.53
93 154.8 142.8 0.65 696.7 1047.4 0.06 12.46
94 302 0 0.67 817 974 0 21.75
95 155 143 0.65 697 1047 0.06 12.46
96 280 120 0.39 946 900 0.35 45
97 255 0 0.75 945 889.8 0 18.75
98 250 160 0.55 746 837 1 26.7
99 400 60 0.63 718 850 0.43 30.4

100 322 0 0.63 800 974 0 25.18
101 250 160 0.55 742 837 0.5 26.4
102 220 180 0.45 850 900 0.35 38
103 350 90 0.48 852 923 0.14 46.5
104 290 100 0.45 913 837 0.8 42.7
105 213.74 174.74 0.4 776.35 1053.5 0.05 40.15
106 331 0 0.58 821 1025 0 31.74
107 427 115 0.45 779 844 0.12 59.4
108 295.8 0 0.63 769.3 1091.4 0 25.22
109 281 0 0.66 774 1104 0 22.44
110 281 0 0.66 774 1104 0 22.44
111 296 0 0.63 769 1090 0 25.18
112 325 60 0.65 898 850 0.43 34.3
113 250 160 0.55 742 837 0.5 26
114 275 275 0.37 796 937 0.74 63.32
115 300 0 0.61 795 1075 0 26.85
116 298.1 107 0.46 815.2 879 0.02 42.64
117 298 107 0.46 815 879 0.02 42.64
118 290 100 0.48 709 837 0 26.6
119 325 60 0.65 896 850 0.75 27.7
120 220 180 0.39 916 900 0.6 43
121 370 96 0.57 833 850 0.25 39.5
122 225 0 0.8 833 1113 0 17.34
123 200 200 0.4 842 843 0.17 34.9
124 143.6 174.9 0.5 844.5 942.7 0.12 15.42
125 250 95.69 0.54 861.17 956.86 0.02 29.22
126 144 175 0.5 844 943 0.13 15.42
127 322 138 0.35 693.81 1085.2 0 58
128 322.5 107.5 0.47 1135 630 0.01 43.98
129 325 60 0.65 898 850 0.43 35
130 250 160 0.55 742 837 0.5 25.3
131 212.07 121.62 0.54 779.32 1057.6 0.03 24.9
132 301 129 0.47 1135 630 0.01 44
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Table A1. Cont.

No. Cement Fly Ash Water–Powder
Ratio Sand Coarse

Aggregate Superplasticizer Strength

- kg/m3 kg/m3 - kg/m3 kg/m3 kg/m3 MPa

133 325 0 0.57 783 1063 0 30.57
134 218.85 124.13 0.46 794.91 1078.7 0.05 30.22
135 325 60 0.65 899 850 0.43 35.3
136 370 96 0.57 830 850 0.62 38.8
137 170 200 0.43 928 900 0.5 33
138 330 220 0.32 700 899 0.69 60.9
139 375 0 0.5 758 1038 0 38.21
140 275 250 0.35 775 840 0.2 54.5
141 399 100 0.35 814 882 0.15 55
142 339 0 0.55 754 1060 0 31.65
143 233.81 94.58 0.6 852.16 947.04 0.02 22.84
144 326.5 137.9 0.43 792.5 801.1 0.03 38.63
145 210 220 0.45 768 837 0.8 26.7
146 277 0 0.69 856 968 0 25.97
147 350 0 0.53 770 1050 0 34.29
148 339.2 0 0.55 754.3 1069.2 0 31.9
149 339 0 0.55 754 1069 0 31.84
150 220 180 0.39 916 900 0.1 44
151 280 96 0.87 820 850 0.25 19.6
152 350 150 0.35 900 600 1 37.18
153 229.68 118.16 0.56 757.63 1028.1 0.03 24.54
154 237 133 0.36 1034 900 0.2 49
155 258 172 0.47 1135 630 0.01 43.18
156 150.9 183.9 0.5 772.2 991.2 0.08 15.57
157 295.71 95.64 0.44 859.2 955.14 0.03 39.94
158 151 184 0.5 772 991 0.08 15.57
159 300 300 0.28 787 720 0.33 52.7
160 220 330 0.32 686 881 0.62 47.5
161 250 95.69 0.55 857.2 948.9 0.02 27.22
162 275 155 0.43 827 900 0.5 48
163 277.05 97.39 0.43 875.61 973.9 0.04 48.28
164 229.97 118.31 0.56 758.59 1029.4 0.02 24.48
165 165 385 0.34 656 834 1 34.9
166 145 179 0.62 869 824 0.06 10.54
167 327 173 0.35 902 803 0.41 61.6
168 279.5 150.5 0.47 1135 630 0.01 44.34
169 145.4 178.9 0.62 868.7 824 0.05 10.54
170 83 468 0.41 624 794 1 14.64
171 325 325 0.34 611 777 1.18 50.07
172 376 0 0.57 762.36 1003.5 0 31.97
173 251.37 118.27 0.51 757.73 1028.4 0.02 29.65
174 250 160 0.55 742 837 0.5 24.1
175 250 160 0.38 919 837 0.5 36.3
176 290 220 0.45 625 837 0.2 32.9
177 296 0 0.65 765 1085 0 21.65
178 428 257 0.27 788 736 0.02 74.5
179 250 257 0.38 787 853 0.23 51.5
180 350 0 0.58 775 974 0 27.34
181 200 0 0.9 845 1125 0 12.25
182 183 160 0.29 891 837 0.01 22.1
183 220 180 0.39 916 900 0.35 45
184 212 124.78 0.47 799.54 1085.4 0.04 38.5
185 250 160 0.34 742 837 0.01 28.5
186 500 0 0.28 853 966 0.01 67.57
187 325 120 0.75 755 850 0.43 32.2
188 154.8 142.8 0.65 867.7 877.2 0.06 9.74
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Table A1. Cont.

No. Cement Fly Ash Water–Powder
Ratio Sand Coarse

Aggregate Superplasticizer Strength

- kg/m3 kg/m3 - kg/m3 kg/m3 kg/m3 MPa

189 155 143 0.65 868 877 0.06 9.74
190 500 101 0.32 820 753 0.38 70.93
191 382 0 0.49 739 1047 0 37.42
192 150.7 185.3 0.5 678 1074.5 0.1 13.46
193 382.5 0 0.49 739.3 1047.8 0 37.44
194 151 185 0.5 678 1074 0.11 13.46
195 225 525 0.33 487 620 1.36 34.83
196 275.07 121.35 0.4 777.5 1053.6 0.04 51.33
197 349 0 0.55 809 1056 0 33.61
198 313 113 0.42 689 1002 0.03 36.8
199 313.3 113 0.42 688.7 1001.9 0.03 36.8
200 348 224 0.31 783 848 0.9 58.6
201 420 180 0.32 900 750 0.03 79.19
202 276 184 0.35 693.81 1085.2 0 56
203 385 136 0.3 768 903 0.05 55.55
204 382 0 0.48 739 1047 0 37.42
205 440 110 0.32 714 917 0.69 69.8
206 349 162 0.39 779 852 0.29 59.9
207 349 0 0.55 806 1047 0 32.72
208 477 53 0.45 768 668 0.09 32.19
209 212.57 100.39 0.51 903.79 1003.8 0.05 37.4
210 325 0 0.55 1042 850 0.43 41.2
211 397 0 0.47 734 1040 0 39.09
212 250 160 0.72 566 837 0.5 11
213 370 24 0.69 770 850 0.62 18.7
214 236 0 0.82 885 968 0 18.42
215 250 160 0.34 739 837 0 27.3
216 197 197 0.35 856 856 0.28 38.9
217 237 133 0.43 960 900 0.5 46
218 350 133 0.52 815 883 0.16 55.3
219 165 385 0.58 735 865 0.84 37.92
220 312.7 0 0.57 822.2 999.7 0.03 25.1
221 317 160 0.37 594 837 0.01 29.1
222 313 0 0.57 822 1000 0.03 25.1
223 350 90 0.39 852 923 0.3 46.5
224 313.8 112.6 0.4 782.9 925.3 0.03 38.46
225 380 20 0.38 1180 578 0.4 40.4
226 407 244 0.28 815 761 0.02 70.4
227 314 113 0.4 783 925 0.03 38.46
228 248 203 0.39 808 900 0.35 50
229 304.8 99.6 0.48 705.2 959.4 0.03 30.12
230 305 100 0.48 705 959 0.03 30.12
231 480 0 0.4 712.2 936.2 0 43.94
232 220 180 0.33 982 900 0.35 51
233 164 200 0.5 846 849 0.08 15.09
234 210 100 0.44 910 837 0.01 19.1
235 344 147 0.35 814 881 0.12 48.75
236 164.2 200.1 0.5 846 849.3 0.08 15.09
237 357 193 0.33 878 742 0.02 67.5
238 275 155 0.43 830 900 0.2 36
239 333 215 0.33 835 766 0.24 50.24
240 220 180 0.39 916 900 0.35 47
241 250 160 0.34 746 837 0.01 26.7
242 321 128 0.41 780 870 0.03 37.26
243 321.4 127.9 0.41 779.7 870.1 0.04 37.27
244 250 160 0.23 919 837 0.01 36.3
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Table A1. Cont.

No. Cement Fly Ash Water–Powder
Ratio Sand Coarse

Aggregate Superplasticizer Strength

- kg/m3 kg/m3 - kg/m3 kg/m3 kg/m3 MPa

245 250 160 0.34 742 837 0.01 26.4
246 355.9 141.6 0.39 778.4 801.4 0.03 40.87
247 356 142 0.39 778 801 0.03 40.87
248 460 0 0.35 693.81 1085.2 0 68
249 298 107 0.4 784 953 0.04 35.86
250 350 111 0.39 831 900 0.32 61
251 485 0 0.3 800 1120 0 71.99
252 298.1 107.5 0.4 784 953.2 0.04 35.87
253 480 0 0.4 721 936 0 43.89
254 198 232 0.34 874 900 0.2 46
255 158 195 0.62 713 898 0.07 8.54
256 350 162 0.59 768 840 0.09 51.7
257 158.4 194.9 0.62 712.9 897.7 0.07 8.54
258 251.81 99.94 0.42 899.76 1006 0.05 33.94
259 249.1 98.75 0.45 889.01 987.76 0.05 30.85
260 210 220 0.22 786 837 0.01 26.7
261 275 275 0.34 691 880 1.25 57.9
262 250 160 0.34 742 837 0.01 26
263 250 261 0.55 478 837 0.5 17
264 161 241 0.35 866 864 0.3 35.8
265 300 200 0.35 923 663 0.7 54.69
266 540 0 0.3 676 1055 0 61.89
267 290 220 0.26 625 837 0 32.9
268 525 0 0.36 613 1125 0 55.94
269 213.5 174.24 0.41 771.9 1043.6 0.05 44.64
270 465 85 0.41 910 590 0.02 35.19
271 250 275 0.34 842 772 0.23 39.62
272 210 220 0.65 562 837 0.2 10.2
273 397 0 0.47 734 1040 0 36.94
274 368 92 0.35 693.81 1085.2 0 66
275 465 85 0.41 910 590 0.97 35.19
276 250 160 0.34 742 837 0.01 25.3
277 520 0 0.34 805 870 0.01 51.02
278 213.5 174.24 0.4 775.48 1052.3 0.05 45.94
279 193 158 0.39 1024 900 0.35 44
280 437 80 0.34 743 924 0.43 69.7
281 500 0 0.3 655 1033 0.02 69.84
282 336.5 0 0.54 816.8 985.8 0.01 44.87
283 336 0 0.54 817 986 0.01 44.86
284 220 180 0.39 916 900 0.35 49
285 246.83 125.08 0.39 800.89 1086.8 0.05 52.5
286 220 180 0.39 916 900 0.12 49
287 385 0 0.48 763 966 0 31.35
288 540 60 0.33 900 750 0.02 78.05
289 322.2 115.6 0.45 813.4 817.9 0.03 31.18
290 322 116 0.45 813 818 0.03 31.18
291 250 160 0.34 742 837 0.01 24.1
292 290.35 96.18 0.43 865 961.18 0.03 34.74
293 252.31 98.75 0.42 889.01 987.76 0.06 50.6
294 380 145 0.35 988 659 0.28 65.5
295 344 86 0.47 1135 630 0.01 50.37
296 438 263 0.27 774 723 0.02 69.5
297 380 192 0.35 931 621 0.21 67.8
298 412 138 0.33 887 752 0.02 73.4
299 350 186 0.33 786 851 0.22 70.4
300 375 125 0.35 938 673 0.7 60.8
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