Skip to main content
. 2021 Aug 31;13(17):2971. doi: 10.3390/polym13172971

Table 2.

Highlights of ultrastructural changes on hemp stems and fibres associated with microbial activity during the retting process [29].

Retting Period 0 Days 7 Days 14–20 Days After 50 Days
Changes in the hemp stem’s and fibre’s ultrastructure (i) Stem with a well-preserved layered structure
(ii) Un-collapsed, unbroken cells with their original cell geometry
(iii) Living cells with cytoplasm
(iv) Cuticle and trichomes are unharmed on the clear surface.
(v) Chloroplasts in abundance in the upper epidermis
(i) The structure as a whole is in good condition.
(ii) Fungal growth on the outside of the stems and inside the stems
(iii) With damaged epidermis and parenchyma, cellular architecture is less stable.
(i) Cuticle has seriously deteriorated.
(ii) Changes in cellular anatomy, as well as significant loss of live cells
(iii) Fibre bundles were isolated from each other and the epidermis.
(iv) Thick-walled cells populate seldom; parenchyma degrades completely, although chlorenchyma suffers less harm.
(v) Bast fibres with sporadic moderate attacks
(vi) Fungi colonisation and decay morphology were both affected by fibre morphology.
(i) The structure of hemp was severely harmed and dissolved.
(ii) The epidermis and cambium were heavily invaded by dominating bacteria.
(iii) In the bast regions, the parenchyma cells have been destroyed, and the structural integrity has been lost.
(iv) All cell types, including fibre cells, have hyphae inside their lumina.
(v) BFIs are more intense inside the stem.
(vi) Anatomy and ultrastructure have been severely harmed.
(vii) Bast fibres with a thick wall and degradation properties
(viii) Effects on the ultrastructure of the fibre wall.
  • CML loosening/degradation, resulting in delamination and defibration

  • The S3 layer is loosening and decaying

  • Delamination within the S2 trans wall and intra wall cracks in the S2 layer have a noticeable effect

  • S2 materials have been removed directly (e.g., S2 thinning, broken S2, and disintegration into nanosized cellulose fibrillar structures)

The dynamics and activity of microbes Fungi
(i) Rarely seen Bacteria
(ii) Not observed Fungi
Fungi
(i) Mycelia with sparse growth
(ii) Less variety
(iii) Outside of the cortical layers, colonisation occurs largely in live cells.
(iv) Trichomes near to the surface trichomes have dense colonisation.
(v) Dependence on readily available food
(vi) Damage to cell walls is reduced.
Bacteria
(i) Less abundant
Fungi
(i) Extensive and plentiful
(ii) Mycelia densely covering the cuticle
(iii) diverse population
(iv) a large number of spores
(v) Interactions and activities that are intense
Bacteria
(i) Abundant
(ii) Diverse population
iii) Over the cuticle, colonies
(iv) Associated with hyphae and fungal spores
(v) After 20 days, there are more noticeable activity
(vi) Cuticle has severely deteriorated
Fungi
(i) Less abundant on the outside of the stem
(ii) Mycelia on the surface is dead, but there are active hyphae inside the stem
(iii) Mycelia, an invading bacteria’s sole source of nourishment, showed bacterial mycophagy (i.e., extracellular and endocellular biotrophic and extracellular necrotrophic activities).
Bacteria
(i) Highly abundant inside and outside the stems
(ii) Highly dominant and diverse role.
(iii) Visible as dense overlay representing
(a) Biofilms
(b) Morphologically different
colonies
(c) Randomly scattered cells
(iv) Showed strong BFIs
(v) Using fungal highways, bacterial movement occurs over and inside the hemp stem.
(vi) Cutinolytic and cellulolytic activities were improved.