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Abstract

Several persistent homology software libraries have been implemented in R. Specifically, the 

Dionysus, GUDHI, and Ripser libraries have been wrapped by the TDA and TDAstats CRAN 

packages. These software represent powerful analysis tools that are computationally expensive 

and, to our knowledge, have not been formally benchmarked. Here, we analyze runtime and 

memory growth for the 2 R packages and the 3 underlying libraries. We find that datasets with 

less than 3 dimensions can be evaluated with persistent homology fastest by the GUDHI library in 

the TDA package. For higher-dimensional datasets, the Ripser library in the TDAstats package is 

the fastest. Ripser and TDAstats are also the most memory-efficient tools to calculate persistent 

homology.

Introduction

Topological data analysis (TDA) is a broad set of methodologies that characterizes structural 

features of datasets inspired by topological principles. It has a broad range of usage, 

from viral evolution to physical chemistry (Chan et al., 2013; Offroy and Duponchel, 

2016). Within the umbrella of TDA, persistent homology represents an algebraic approach 

to understanding the number, characteristics, and persistence of structural features in an 

n-dimensional point cloud. In the basic workflow of persistent homology, a series of 

simplicial complexes are generated on point clouds to characterize topological features. 
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There are several methods to generate these complexes on point clouds. In this paper, 

we focus on persistent homology of the Vietoris-Rips and alpha complexes, which use 

simplicial complexes to approximate topologic relationships in point clouds. The exact 

method of constructing these complexes is described in the Mathematics section. Essentially, 

we measure features that are discovered by the algorithm at a particular stage and disappear 

at a later stage. The difference between these stages is persistence. Features with larger 

persistence more likely represent real geometric patterns rather than noise.

There are several C++ libraries available to researchers that calculate alpha and Vietoris­

Rips complexes, such as Dionysus, GUDHI, and Ripser (Morozov, 2018; Maria et al., 

2016; Bauer, 2019). These libraries have been wrapped in R by the TDA and TDAstats 
packages (Fasy et al., 2019; Wadhwa et al., 2018). Although useful, calculating persistent 

homology for large datasets is often limited due to computational complexity (Otter et al., 

2017). As a result, researchers often limit persistent homology analysis to lower dimensions. 

However, ignoring features in higher dimensions may cause significant information loss, 

underutilizing persistent homology’s capabilities. Here, we aim to benchmark two R 

packages - TDA and TDAstats - and enable researchers to most efficiently calculate 

persistent homology in R.

Mathematics of Persistent Homology

An n-dimensional simplex is the convex hull of n + 1 points in a Euclidean space. 

More intuitively, an n-dimensional simplex is the simplest n-dimensional object (e.g., a 

0-simplex is a point, a 1-simplex is a line, a 2-simplex is a triangle, 3-simplex is a 

tetrahedron). These simplices can be glued together on common sub-simplices to form a 

simplicial complex (e.g., two triangles sharing a common side). In a simplicial complex, 

topological features will arise that can be characterized by Betti numbers. Each Betti 

number, denoted by Bk, k counts the number of features in dimension k. B0 counts the 

number of connected components, B1 counts refer to loops, B2 counts the number of voids, 

and so on (Edelsbrunner and Harer, 2008).

There are several different methods to construct a simplicial complex on a given point 

cloud S, but this paper focuses on the Vietoris-Rips and alpha complexes. The Vietoris­

Rips complex is perhaps the most common method for constructing a simplicial complex 

to calculate persistent homology (Hausmann, 1996). In a point cloud of k points in 2 

dimensions, a distance parameter, δ > 0, can be used to draw a circle of diameter δ around 

every point in S. For point clouds in 3 dimensions, spheres of diameter δ are drawn around 

each point. For dimensions k greater than 3, a k-dimensional hypersphere is drawn around 

each point. The remainder of this explanation will focus on the 2-dimensional case. If δ 
is sufficiently large, then some of the resulting circles may intersect. In this case, a line is 

drawn to connect the points at the center of the intersecting circles. When a triple of points 

is connected, we add a triangle (2-simplex). When a quadruple of points are connected, 

we add a tetrahedron (3-simplex) and so forth. However, we only add simplices at most 

of the dimension of the space of the point clouds (e.g., only up to 3-simplices are added 

in a 3-dimensional point cloud). This group of points and lines form the skeleton of a 

simplicial complex. For each distance parameter, δ, there will be a single simplicial complex 
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associated with it. As δ increases, different topological features may appear, persist, and 

eventually disappear.

Once δ reaches the maximum Euclidean distance between any pair of points in the point 

cloud, a convex hull will form around all k points creating a (k – 1)-dimensional simplex. A 

3-column matrix can be created recording the dimension of each feature, the δ at which that 

feature appeared, and the δ at which it disappeared. This matrix characterizes the persistent 

homology of that point cloud.

Alpha complexes provide another method to generate simplicial complexes on the point 

cloud S. For alpha complexes, we partition the whole space in which the data resides into 

cells such that each cell contains exactly one data point x, and the cell of that data point 

is the set of all points closer to x than any other data points. Such a partition is also 

known as a Voronoi diagram. The nerve of a Voronoi diagram is equivalent to the Delaunay 

Triangulation (Edelsbrunner and Mücke, 1994). Alpha complexes are simplicial complexes 

that are subsets of the Delaunay Triangulation. The parameter, α, can describe the radius of 

a ball (dimension matches dimension of the space) of each point in the point cloud S much, 

like δ describes the diameter of a circle in the Vietoris-Rips complex. We first intersect the α 
radius balls with their own Voronoi cell and then search for intersections of these subsetted 

balls to form simplices. Once α is large enough, the full Delaunay Triangulation is formed. 

In between these stages, the birth and death of features at certain values of α can be captured 

in a 3-column persistent homology matrix much like the Vietoris-Rips complex. One key 

difference from the Vietoris-Rips complex is that edges can only form between neighboring 

points in the alpha complex.

In both methods, the boundary matrix records all simplicial complexes for each parameter 

value (δ for Vietoris-Rips complexes and α for alpha complexes). Calculating persistent 

homology is divided into two steps: (1) forming the boundary matrix and (2) reducing the 

boundary matrix to be able to read off the topological features of each dimension and their 

birth/death values of the parameter. The second step can be computed in at most O(kˆ3) 

steps, where k is the number of rows (and columns) of the boundary matrix. The size of 

the boundary matrix can describe the memory complexity on the random access memory 

(RAM) for persistent homology calculations. We compare memory complexity between 

alpha and Vietoris-Rips complexes in this paper.

Alpha complex calculations have a run time complexity of O(nd/2), and Vietoris-Rips 

complex calculations have a run time complexity of O(2n), where n is the number of points 

and d is the point cloud dimension (Otter et al., 2017). Vietoris-Rips’s run time and memory 

are exponential with regards to point number (but constant with data dimension) in contrast 

to alpha complexes where run time and memory are polynomial with point number (but 

exponential with data dimension). Therefore, we can predict that low dimensional point 

clouds favor alpha complexes, but fewer points in higher dimension favor Vietoris-Rips 

complexes.
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Methods

We use readr v1.3.1 to read rectangular data (Wickham et al., 2018), ggplot2 v3.2.1 

(Wickham, 2016), scatterplot3d v0.3–41 (Ligges and Mächler, 2003), recexcavAAR v0.3.0 

(Schmid and Serbe, 2017), deldir v0.1 (Turner, 2020), ggtda v0.1 (Brunson et al., 2020), 

and magick v2.2 (Ooms, 2019) to visualize data, bench v1.0.4 to collect benchmark data 

(Hester, 2019), TDA v1.6.9 (Fasy et al., 2019) and TDAstats v0.4.1 (Wadhwa et al., 2018) 

to calculate persistent homology of Vietoris-Rips and alpha simplicial complices, and pryr 
v0.1.4 for calculations involving R objects (Wickham, 2018). Median runtime calculations 

are shown along with the minimum and maximum of 10 iterations per benchmark. Datasets 

were generated by sampling functions in base R to generate points uniformly distributed 

over circles (dimension = 2), spheres (dimension = 3), filled squares (dimension = 2), 

filled cubes (dimension = 3, 4), and tori (dimension = 3). The number of points per point 

cloud varied from 25 to 500 along with intervals of 25 points, which were empirical 

limits chosen after considering available computational resources. For consistency between 

software libraries, the minimum and maximum simplicial complex radii were predetermined 

for each point cloud and provided as parameters to the TDA and TDAstats R packages. 

Within the TDA package, benchmark data was collected for the GUDHI (Maria et al., 

2016) and Dionysus (Morozov, 2018) libraries; within the TDAstats package, benchmark 

data was collected for the Ripser (Bauer, 2019) library. As alpha complex calculation was 

only implemented in GUDHI, alpha complex benchmark data was naturally only collected 

for the single library. Measuring memory usage proved challenging since all the libraries 

calculating persistent homology were implemented in either C++ or Java and then wrapped 

in R as part of a CRAN package. Thus, memory burden was indirectly measured by using 

boundary matrix size as a proxy. Given that Ripser optimizes computation of persistent 

homology by avoiding calculation of a boundary matrix, memory use benchmarks are not 

provided for Ripser and, consequently, TDAstats.

Benchmark data were collected twice - once on a local machine and once on a remote 

computing node, each of which featured 16 GB RAM. Both datasets were compared 

for consistency and are publicly available at the repository linked below. Data from the 

remote computing node is visualized in this report. The larger point clouds required more 

than 16 GB of RAM to calculate persistent homology using a subset of the libraries; 

attempts to compute results resulted in runtime errors, and the corresponding output is 

missing from the corresponding figures and tables. Fully reproducible code for all numerical 

results and figures can be found at https://github.com/eashwarsoma/TDA-benchmark. This 

GitHub repository also contains instructions for generating the Supplement referenced in 

this report’s results. Video explanations of TDA concepts and reproducing all results in this 

report can be found at https://tinyurl.com/TDABench.

Results

Computing persistent homology of a canonical torus grants quick insight into efficiency 

of each library (Figure 3). Dionysus exhibits the longest median runtime, and, although 

Ripser and GUDHI have similar runtimes for smaller point clouds, as the number of points 
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increases Ripser eventually has a significant lead. Next, we compare library performance 

with multiple canonical datasets to ensure that the noted pattern generalizes.

Tori do not trivially generalize to other dimensions, but circles do. Benchmarking on a 

circular point cloud permits confirmation of the pattern in Figure 3 while also revealing how 

the libraries compare as the dataset dimension increases. Figure 4 exhibits the resulting 

data for a 2-dimensional circle (left panel), 3-dimensional sphere (center panel), and 

4-dimensional hypersphere (right panel). When the dataset dimension equals 2, GUDHI 

practically matches Ripser’s performance in outpacing Dionysus. However, in the case of 

the 3-dimensional sphere, the pattern visualized in Figure 3 for the 3-dimensional torus 

is again present. By the 4th dimension, the gap between Ripser and GUDHI widens. Of 

note, missing points for larger datasets in Figure 4 are not plotted if and only if calculating 

persistent homology caused an error due to insufficient RAM. Thus, for the hypersphere, 

Ripser was able to calculate persistent homology for a dataset with approximately 3 times 

as many points as Dionysus and over 2 times as many as GUDHI. Interestingly, all curves 

plotted in Figure 4 grow polynomially with respect to the number of points (see Supplement 

for regression details).

Large data and feature dimensionality often restrict persistent homology calculations to 

small point clouds due to computational limits. When calculating persistent homology on 

a high-dimensional point cloud, as Vietoris-Rips feature dimension increases, there is a 

corresponding increase in runtime (Figure 5). Dionysus is clearly outmatched by GUDHI 

and Ripser as feature dimension increases, with the difference being clearest for larger point 

clouds; by feature dimension 5, Ripser outpaces GUDHI as well (Figure 5). It is unclear 

whether runtime for each library grows polynomially or exponentially (see Supplement for 

regression details).

Even with a constant feature dimension, the underlying data dimension could play a role 

in the runtime of persistent homology calculation. Figure 6 compares the handling of this 

issue by the Vietoris-Rips complex and the alpha complex. Since GUDHI is the only library 

implementing functionality with an alpha complex, we compare its implementations of the 

Vietoris-Rips and alpha complices. Due to computational limitations, an alpha complex 

could not be calculated for any point clouds with data dimensions exceeding 3. Two notable 

aspects of Figure 6 stand out. First, the alpha complex calculation clearly runs faster than the 

Vietoris-Rips complex calculation, a trend that becomes clearer as point cloud size increases. 

Second, although the Vietoris-Rips complex calculation runtime appears to be independent 

of the underlying data dimension, the alpha complex calculation is dependent on it. Figure 

6 shows a subtle difference between data dimensions 2 and 3 as point cloud size increases. 

Although unconcerning for a data dimension up to 3, failure to run any alpha complex 

calculations with a data dimension of 4 could be cause for concern.

In addition to runtime differences, the three Vietoris-Rips homology engines differ in 

memory use. All three engines appeared to follow power law growth, with a linear trend 

on log-log plots (Figure 7). However, for nearly all combinations of point cloud dimension 

and shape, TDAstats used the least memory, and Dionysus used the most, with TDAstats 

also growing with the smallest power law exponent as the number of points increased for 
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most point clouds. For most point clouds, runtime and memory complexity for TDAstats 

(Ripser) grew with a power function at least one degree less than the other engines (Figure 

8).

Discussion

As persistent homology calculations continue to become a more popular tool to analyze 

complex multidimensional data, it will be important to understand from a computational 

perspective which method to use. In this paper, we examined two forms of persistent 

homology complexes: Vietoris-Rips and alpha complexes. Both algorithms describe 

topological features through the generation of simplicial complexes. The advantage in 

saving computational time by choosing a particular algorithm depends on point cloud 

characteristics.

Figure 9 shows that at high point cloud sizes, GUDHI’s alpha complex outperforms Ripser. 

Theoretically, alpha complexes gain polynomial run time complexity as the number of points 

increases, whereas Vietoris-Rips complexes gain exponential run time complexity (Otter et 

al., 2017). Specifically, alpha complexes are O(nd/2), and Vietoris-Rips complexes are O(2n), 

where n is the number of points on a point cloud and d is the dimensions on the point cloud. 

For the conditions in our paper, Vietoris-Rips and alpha complexes both performed better 

than their theoretical maximums. Vietoris-Rips complex calculations consistently had a 

polynomial growth for both runtime and memory, while alpha complexes had linear runtime 

growth.

Based on the theoretical complexity and our results, alpha complexes are superior for point 

clouds with 3 or fewer dimensions. This advantage becomes especially clear at a high 

number of points. This difference in performance is clear in both runtime and memory use. 

Interestingly, while alpha complexes had overall less memory use, the memory use varied 

depending on the shape. Alpha complexes seem to require more memory for noisier data 

sets such as the annulus when compared to the sphere.

However, without sufficient computational resources, alpha complexes were not usable for 

point cloud dimensions greater than 3. If a point cloud has more than 3 dimensions, then 

it could undergo pre-processing with dimension reduction before using alpha complexes. 

Note, it is possible an algorithm will eventually be developed to enable alpha complex 

computation of higher-dimensional data. However, if data dimension cannot be reduced 

without significant information loss, then Vietoris-Rips complexes should be used. It should 

be stated that if a point cloud is compatible with both complexes, both analyses should be 

performed as there may be a variation in the persistent homology matrix. This is because 

alpha complexes satisfy the Nerve Theorem (Edelsbrunner and Mücke, 1994), which implies 

that they are topologically equivalent to the true underlying topology of the dataset; in 

contrast, Vietoris-Rips complexes only approximate the underlying topology (Hausmann, 

1996). Among the tested Vietoris-Rips engines, Ripser (wrapped by TDAstats) has the 

fastest calculation time. GUDHI and Dionysus (wrapped by TDA) significantly fall behind 

as feature dimension and number of points increase.
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On average, Ripser computed the persistent homology of a Vietoris-Rips complex with less 

memory than either GUDHI or Dionysus. Thus, when efficiency is critical, useRs would 

likely find TDAstats the appropriate library. However, TDA contains an entire library of 

features not available in TDAstats. Specifically, TDA allows kNN density estimation, kernel 

density estimation, density-based clustering, and dendrogram visualization, among other 

useful functionality. When computational resources are plenty, when point clouds are small 

and low-dimensional, or when the aforementioned functionality is required, TDA will likely 

be more appropriate than TDAstats. Both packages are hosted on CRAN.

While Vietoris-Rips complexes can handle high-dimensional data well, the calculation still 

significantly slows down when looking for higher dimension features. This is evidenced by 

the big-O polynomial growth for runtime and memory that have degree less than 4 for most 

2-dimensional point clouds, but degree between 4 and 6 for most 4-dimensional point clouds 

(Figure 8); even higher degree complexities should be expected as point cloud dimension 

increases. Thus, finding high-dimensional topological features in high-dimensional point 

clouds remains a challenge. Methods to calculate persistent homology do exist for other 

simplicial complexes, such as the Delaunay complex and the Witness complex, but, to 

our knowledge, they are not currently implemented in CRAN packages. Future challenges 

would be creating and implementing algorithms that reduce the computational complexity of 

higher-dimensional topological feature calculations for R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Basic Visualization of the Vietoris-Rips Complex.
For a given parameter, δ, δ-diameter circles are drawn around each point. If two circles 

intersect, a point is drawn between their centers. As δ continues to grow, more circles 

intersect, filling out the simplicial complex. Features on the simplicial complex appear and 

die as δ increases. These features’ dimensions, birth, and death are recorded in an nx3 

matrix. Eventually, the full convex hull is drawn, ending the “filtration” process.
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Figure 2: Basic visualization of the Alpha complex.
For a given α, α-radius balls are drawn around each point, and the union of the balls is 

taken. Then, an intersection between this union of α-balls and the Vornoi diagram is taken. 

A connecting segment is drawn between points in adjacent Voronoi cells once the α-ball fills 

out the Voronoi diagram. As α grows, more circles fill out the Voronoi cells. Once α is large 

enough, the Delaunay Triangulation is formed.
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Figure 3: Calculating persistent homology of a torus with three TDA libraries.
Median runtime (min to max, n = 10 iterations per data point) for each TDA library (denoted 

by color) is plotted against point cloud size. Homological features of up to 2 dimensions 

were calculated. Time complexity follows a power law for all three libraries (see GitHub 

repo for regression details). Although the libraries have similar runtimes for smaller point 

clouds, Dionysus has a clear disadvantage when the number of points exceeds 100. When 

the number of points exceeds 200, Ripser has a clear advantage over GUDHI, which 

maintains its advantage over Dionysus.
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Figure 4: Calculating persistent homology of round point clouds of varying dimensions with 
three TDA libraries.
Median runtime (min to max, n = 10 iterations per data point) for each TDA library 

(denoted by color) is plotted against point cloud size and faceted by data dimension. The 

left panel compares library performance for a 2-dimensional circular point cloud, the center 

panel for a 3-dimensional spherical point cloud, and the right panel for a 4-dimensional 

hyperspherical point cloud. Maximum feature dimensions (one less than the data dimension) 

were calculated in each case.
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Figure 5: Comparison of Vietoris-Rips complex persistent homology calculation as a function of 
feature dimension.
Median runtime (min to max, n = 10 iterations per data point) for various point cloud 

sizes (denoted by color) is plotted against the calculated feature dimension and faceted 

by TDA library. Persistent homology was calculated on a uniformly distributed random 

sample of points contained within a 1 unit, 8-dimensional cube. Computational limitations 

of calculating persistent homology for a large number of feature dimensions restricted point 

clouds to relatively small sizes.
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Figure 6: Comparing persistent homology calculation between Vietoris-Rips and alpha 
complices.
Median runtime (min to max, n = 10 iterations per data point) for various data dimensions 

(denoted by color) are plotted against point cloud size and faceted by type of simplicial 

complex. Maximum of feature dimension was kept constant at 1. Alpha complex runtimes 

are linear, in contrast to polynomial Vietoris-Rips runtimes (see Supplement for regression 

details).
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Figure 7: Comparing memory use of Vietoris-Rips persistent homology engines.
Each column title corresponds to point cloud dimension; each row title lists point cloud 

shape; each persistent homology engine is represented by points of a distinct shape and 

color. For point clouds containing more than 50 points, there appears to be a linear trend 

on the log-log axes. Data for 2- and 4-dimensional tori were not collected because a torus 

does not trivially generalize to dimensions other than 3. Missing points for GUDHI and 

Dionysus in the 4-dim plots indicate that persistent homology calculation was terminated 

since memory requirement exceeded available RAM (32 GB).
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Figure 8: Big-O exponents for runtime and memory complexity as point cloud size varies.
In the majority of cases, Ripser (and consequently, TDAstats) has the lowest exponent, 

indicating the slowest growth in complexity as point cloud size increases. Due to shape 

constraints, torus only has data available in the third dimension.
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Figure 9: Runtime comparison of persistent homology calculation between Ripser’s Vietoris­
Rips and GUDHI’s alpha complex functionality.
Median runtime (min to max n = 10 iterations per data point) for various 3-dimensional 

point cloud structures (facet) plotted against point cloud size for each library (color). 

Benchmarking was conducted on an annulus (top-left), a sphere (top-right), a torus (bottom­

left), and a cube (bottom-right). Data was not collected for data dimensions greater than 3 

due to computational limitations of calculating alpha complices.
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