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A B S T R A C T   

The outbreak of news and opinions during the COVID-19 pandemic is unprecedented in this age of rapid 
dissemination of information. The ensuing uncertainty has led to the emergence of heightened volatility in prices 
of crude oil futures. Whether such news has predictive value for the volatility of crude oil futures during the 
COVID-19 pandemic is examined in this research. We proposed a modeling framework, genetic algorithm reg-
ularization online extreme learning machine with forgetting factor (GA-RFOS-ELM), to estimate the effects of 
news during the COVID-19 pandemic on the volatility of crude oil futures. GA-RFOS-ELM could learn block-by- 
block with fixed or varying block size when considering the block own valid period. The experimental results 
illustrate that news during the COVID-19 pandemic has more predictive information, which is crucial for short- 
term volatility forecasting of crude oil futures. The novel approach illustrates that online update learning ability 
is needed during the COVID-19 pandemic, which could be effective and efficient in volatility forecasting of crude 
oil futures. The contributions of our study are significant for investors and administrators to predict and un-
derstand the behavior of volatility during the COVID-19 pandemic.   

1. Introduction 

As information technology is upgraded substantially, flows of news 
and opinions are essentially instantaneous. Currently, the use of mobile 
devices to interact and make financial decisions based on the news and 
opinions has become a feasible and conventional trading strategy 
(Groß-Klußmann and ). More recently, the outbreak of coronavirus 
(COVID-19) attracted widespread attention from media worldwide, 
which was heavily inclined towards emphasizing the severity (Blendon 
et al., 2004; Mairal, 2011; Young et al., 2013). The news and opinions 
related to coronavirus can cause public panic and influence investors’ 
sentiments (Tetlock, 2007). In particular, the crude oil future market 
suffered huge losses due to the COVID-19 pandemic and overwhelming 
related news. For example, West Texas Intermediate (WTI) crude oil 
futures were trading at $25.16 per barrel, with Brent at $27.91 on March 
19, 2020, a historic low since 2002. Even more shockingly, an 

unprecedented event occurred in which the crude oil prices plunged to 
zero for the first time and then to negative values at -$37.63. This was a 
rare occurrence in the global crude oil trading market and highlighted 
the acute imbalance between supply and demand and the imminent 
collapse of inventories, which exert enormous impacts on each partici-
pant in the market. 

The impact of news reports on the crude oil market has attracted 
increasing attention of scholars in the last few years. The consensus is 
that news has predictive power and cannot be ignored when predicting 
crude oil future market dynamics, especially in times of economic un-
certainty (Narayan, 2019). In fact, the price pressure hypothesis pointed 
out that individual investors do not have enough time, knowledge, 
experience, or energy to examine all crude oil futures, and that they 
generally buy oil futures that attracting their attention or are being 
widely discussed (Nofsinger and Sias, 1999; Barber and Odean, 2008). It 
can be reasonably concluded that news could attract investors’ attention 
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and tend to generate abnormal returns (Takeda and Wakao, 2014). 
Furthermore, the rationale behind network analysis emphasized that 
individual investors rely primarily on news feedback strategies to judge 
the future prospects of stock (Bange, 2000). 

Considerable news is generally related to major events, and the news 
caused by major events can break out in an instant. On the one hand, 
major events could affect the crude oil future market. Previous studies 
have identified crude oil market responses to disasters, political events 
and so on (Kowalewski and ́Spiewanowski, 2020; Bash and Alsaifi, 2019; 
Shanaev and Ghimire, 2019). Furthermore, research on the effects of 
pandemic diseases on the crude oil future market is scant, especially 
with respect to the more recent COVID-19 contagious infectious disease. 
The COVID-19 pandemic has endured for a long time, and the invest-
ment and business environments are bombarded with a mass of public 
news related to the COVID-19 pandemic. A growing body of empirical 
and theoretical studies has proven that news during the COVID-19 
pandemic was valuable in volatility forecasting of crude oil futures. 
However, to the best of our knowledge, the more challenging question of 
how much predictive power news exhibits is not yet satisfactorily 
answered. 

For example, some scholars attempted to examine the relationship 
between the stock market returns and COVID-19 related news (Albu-
lescu, 2020; Baker et al., 2020; Lopatta et al., 2020; Onali, 2020). 
Additionally, COVID-19 related news is associated with volatility in the 
stock markets (Haroon and Rizvi, 2020). (Cepoi, 2020) argued that the 
stock markets exhibited asymmetric dependencies with COVID-19 
related news. However, earlier literature concentrated predominantly 
on the role of news during the COVID-19 pandemic with respect to the 
stock markets, the prediction ability and application of which remain to 
be further explored: especially the crude oil futures. This study works 
hard to close the gap by focusing on volatility forecasting of crude oil 
futures, which acts as a barometer of stress, financial risk, or uncertainty 
of financial investments. This study is profound for all stakeholders 
surrounding the crude oil market to understand the behavior of the 
crude oil market during the COVID-19 pandemic. 

Various classic econometric and statistical models have been adop-
ted to forecasting volatility in crude oil market, such as the GARCH 
model (Herrera et al., 2018), the heterogeneous autoregressive (HAR) 
model (Luo et al., 2019), the vector autoregression (VAR) model (Salisu 
and Oloko, 2015) and the Markov models (Zhang and Wang, 2015). 
Taking into account the non-linear and non-stationary patterns implicit 
in the crude oil price series, artificial intelligence models are used to 
predict crude oil volatility. For example (Huang et al., 2004), proposed 
the extreme learning machine (ELM) method, which performs well in 
predicting the non-linear and non-stationary time series. And it has been 
widely used in the study of short-term price fluctuations in the oil 
market (Wang et al., 2018). Then (Huang et al., 2006) proposed an 
online sequential extreme learning machine (OS-ELM), which is effec-
tive in non-linear and non-stationary time series forecasting (Pan and 
Zhao, 2013). However, the parameters in the two hidden-layers are 
randomly set (Zhang et al., 2020b), combines OS-ELM and genetic al-
gorithm (GA) to search for the optimal parameters of the hidden layer, 
called genetic algorithm online sequential extreme learning machine 
(GA-OS-ELM). Afterwards, GA-OS-EM has been widely used to identify 
the crack behavior in concrete dam (Dai et al., 2019), fault diagnosis 
(Zhang et al., 2020b) and gold price forecasting (Weng et al., 2020). 

Based on the analysis, we proposed a prediction modeling framework 
for forecasting the volatility of the crude oil futures market by using 
news during the COVID-19 pandemic. News during the COVID-19 
pandemic comes from real-time media analytics, which capture panic, 
media hype, fake news and national sentiment. The timeliness aspect of 
news during the COVID-19 pandemic is considered: that is, each datum 
has its own valid period, and the proposed online sequential extreme 
learning machine (OS-ELM) could learn block-by-block with fixed or 
varying block size (Liang et al., 2006). Additionally, with the ongoing 
coronavirus outbreak, the nonlinear and nonstationary phenomenon of 

crude oil price exhibits critical features, as determined from Fig. 2. 
Therefore, the new data should increasingly contribute to representing 
the impact on recent investor behavior, and the old data should 
contribute less. In such cases, the validity of the outdated training datum 
used is lost after several units of time, and the datum should be aban-
doned in the following learning. Therefore, the forgetting factor is 
introduced in this work to gradually eliminate the outdated datum that 
could become potentially misleading news, which is more suitable for 
the timeliness aspect (Paleologu et al., 2008). Furthermore, according to 
the huge changes in the parameters of different data in different periods, 
there are some problems such as output instability and output matrix 
singularity (Man et al., 2011). In this research, the OS-ELM algorithm is 
added by a regularization factor, which could ensure and improve the 
stability and generalization ability of the OS-ELM algorithm (Huynh and 
Won, 2011; Weng et al., 2020; Chen et al., 2020). Therefore, the 
structural and empirical risk could be lessened and balanced. In order to 
confront these challenges, this paper proposes the novel genetic algo-
rithm regularization online extreme learning machine with forgetting 
factor (GA-RFOS-ELM). In detail, in the initial stage, this algorithm 
could select the optimal weight matrix and hidden neuron threshold by 
adding the genetic algorithm. In the next stage, this algorithm improves 
the stability and generalization ability by using a regularization factor. 

In order to investigate the effects and predictive power of news 
during the COVID-19 pandemic on the volatility of crude oil futures, this 
paper uses the COVID-19 news related variables of real-time media 
analytics about announcements describing essential coronavirus issues, 
such as the panic index (PI), the Media Hype Index (HY), the Fake News 
Index (FNI), and the Country Sentiment Index (CSI), which come from 
StockTwits, Dow Jones Newswire or The Wallstreet Journal, among 
others (Blitz et al., 2019). With illustration and verification, the 
empirical results indicate that the proposed GA-RFOS-ELM model sta-
tistically outperforms all considered benchmark models considered in 
terms of forecasting accuracy. The empirical findings indicate that news 
is valuable for volatility forecasting of crude oil futures, which is 
consistent with the existing literature (Haroon and Rizvi, 2020). In 
particular, the forgetting mechanism is appropriate and necessary for 
volatility forecasting of crude oil futures by using news during the 
COVID-19 pandemic. 

In general, the main contributions of this research are as follows. 
First, we propose a novel OS-ELM model integrating regularization and 
genetic algorithm with forgetting factor by including news during the 
COVID-19 pandemic to further improve the accuracy of prediction for 
the future volatility. Offline learning ability was taken into consider-
ation for some existing studies using the ELM model. However, news 
during the COVID-19 pandemic is seldom considered in the time-variant 
system due to the limited period of validity of each datum of news 
during the COVID-19 pandemic. Moreover, news during the COVID-19 
pandemic may vary considerably on a daily basis. It is almost impos-
sible to exactly predict the volatility when the model considers responses 
of time-varying nature. Furthermore, existing studies about OS-ELM 
models rarely consider other additional variables (i.e., news during 
the COVID-19 pandemic). Second, we evaluate the role of news during 
the COVID-19 pandemic on volatility forecasting of crude oil futures by 
respectively comparing the forecasting performances of the various 
models with those of different benchmarking prediction models, which 
highlights the superiority and robustness of the proposed GA-RFOS-ELM 
model. This study offers novel insight into the impact of news during 
COVID-19 pandemic volatility forecasting of the crude oil market and 
enlarges our understanding, which is in fact consistent with the finding 
of (Cepoi, 2020). Third, we extend the research about the responses of 
stock market returns to major unconventional emergencies, especially 
the interaction of the pandemic diseases with stock returns. The primary 
measure of the COVID-19 pandemic is the number of infected cases 
(Al-Awadhi et al., 2020). However, we suggest that COVID-19 related 
news would be a good measurement of the COVID-19 pandemic to es-
timate the effect on crude oil future market returns, because it may 
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affect the expectations of individual investors regarding future crude oil 
futures. 

The remainder of this research is organized as follows. Section 2 
presents the existing OS-ELM model and develops the GA-RFOS-ELM 
model. Section 3 provides the data of the measures of various vari-
ables, such as crude oil futures volatility and COVID-19 related news. 
Section 4 describes the empirical results and interpretive analysis about 
the forecasting performance of the GA-RFOS-ELM model. Section 5 
discusses the conclusion, limitations, and future work. 

2. Method 

2.1. Genetic algorithm 

GA is a search heuristic approach motivated by natural evolution 
theory, an operational model of global search based on probability 
conversion Holland et al. (1992). The notion of a natural selection 
process can be used for a search problem: that is, selecting the best one 
from a series of solutions for a problem Mitchell (1998). There are 
several phases in a genetic algorithm, including coding, initial popula-
tion, fitness function, and genetic operator. 

The chromosome, composed of gene arrangement, is the starting 
material for biological genetics research. The first step of a genetic al-
gorithm is coding, which abstracts the issues into a string of specific 
symbols through some certain mechanism. The binary system is a 
common coding method for the genetic algorithm, where the corre-
sponding real value in the problem interval is converted into a binary 
string (bibi− 1…b0), where i denotes the number of binary encoding bits. 

After coding, a genetic algorithm usually uses a random method to 
generate a set of individuals as the initial population. The quality of the 
genetic algorithm is estimated by the fitness function for the individual 
(solution). A larger fitness function value indicates a better solution 
quality. The fitness function is the driving force of the genetic algorithm 
evolution process, which is generally determined by combination with 
the requirements of solving, and can be set as the error function. 

The genetic operator is adopted to select some individuals from the 
parent population and inherit them to the next-generation population. 
This operator utilizes the roulette selection approach, known as the 
proportional selection operator, which makes the probability of each 
individual being selected as the positive value of its fitness function. 
Supposing that the population size is n and Fi denotes the fitness func-
tion of individual i, then the probability Pi of individual i which will be 
selected to the next-generation population is: 

Pi =Fi /
∑n

i=1
Fi (1) 

Specifically, reproduction, crossover, and mutation are the basic 
operations of a genetic algorithm. The replication operation can select 
the best chromosome from the previous population, and it cannot be 
creative. The crossover operation is able to produce new excellent va-
rieties through chromosome exchange. In addition, mutation simulates 
gene mutation caused by various accidental factors in natural genetics 
and randomly changes the value of the genetic gene with a certain 
probability. In the binary coding of chromosomes, mutation randomly 
transforms genes from 1 to 0, or from 0 to 1. Mutation can prevent the 
model from falling into the local optimum and terminating the course in 
the early stage of the operation process. Furthermore, it can obtain the 
optimal solution with high quality in the largest possible solution space. 

2.2. Online sequential extreme learning machine 

The online sequential extreme learning machine (OS-ELM) is a fast 
and effective algorithm which can update network parameters through 
an online learning mechanism (Liang et al., 2006). This algorithm pri-
marily contains two parts. The first part is the initial stage, that is, to 

obtain the output weight β of the model using a small-scale dataset. The 
output weight β of the model learned in the initial part will be updated 
through a fixed or varying chunk size learning mechanism in the online 
learning stage. 

Suppose that there are N random training datasets (Xi, ti), Xi =

[xi1, xi2,⋯, xin]
T and ti = [ti1, ti2,⋯, tim]T . Thus, the OS-ELM model can be 

described as the following processes:  

(1) Initialization stage.  
Step 1 Determine the initial input weights ai and hidden layer 

threshold bi, i = 1,⋯, L randomly based on an initial 
training sample set S0 = {(xi, ti)}N0

i=1.  
Step 2 Obtain the initial matrix between the hidden and output 

layer H0. 

H0 =

⎡

⎣
(a1, b1,X1) ⋯ g(aL, bL,X1)

⋮ ⋮(
a1, b1,XN0

)
⋯ g

(
aL, bL,XN0

)

⎤

⎦

N0×L

(2)    

Step 3 Calculate output weight β(0). 

β(0) = P0HT
0 T0 (3)  

where P0 = (HT
0H0)

− 1, T0 = [t1,⋯, tN0 ]
T.  

(2) Sequential update stage.  
Step 4 Calculate the output matrix of hidden layer H0 based on 

Equ.2  
Step 5 Calculate the output of the model: ̂tk = hkβk− 1.  
Step 6 Update the output weight β(k). 

⋅ Chuck-by-chuck learning mechanism: 

Pk+1 = Pk − PkHT
k+1(I + Hk+1PkHk+1T )

− 1Hk+1Pk

β(k+1) = β(k) + Pk+1HT
k+1

(
Tk+1 − Hk+1β(k)) (4) 

⋅ One-by-one learning mechanism: 

Pk+1 = Pk −
Pkhk+1hT

k+1Pk

1 + hT
k+1Pkhk+1

β(k+1) = β(k) + Pk+1hk+1
(
tT

k+1 − hT
k+1β(k))

(5)    

Step 7 Return to step 5. 

2.3. GA-RFOS-ELM method for predicting the volatility of crude oil prices 

The OS-ELM model involves the calculation of inversion in the up-
date process, for which it has been proven that its generalization ability 
will be seriously reduced once a singular or ill-conditioned hidden layer 
matrix appears (Huynh and Won, 2011). To overcome this challenge, we 
develop a novel hybrid approach (GA-RFOS-ELM) to forecast the vola-
tility of crude oil prices. 

Previous researchers have shown that the stability of the extreme 
learning machine (ELM) can be effectively improved by obtaining a 
high-quality feature map in the first stage (Huang et al., 2015): the same 
is true for the OS-ELM model. Therefore, we introduce the genetic al-
gorithm to determine optimal input weight and the threshold of the 
hidden layer in the initial stage of online learning. 

In the beginning, the optimal input weight and threshold of the 
hidden layer are obtained through the genetic algorithm. In detail, the 
solution of crude oil futures volatility can be considered as a population 
in the genetic algorithm. We regard the input weight and hidden layer 
bias as the gene of the chromosome. In addition, we use the sum of 
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absolute errors to measure the fitness function. 

F =
∑N0

i=1

⃒
⃒
⃒Xi − X̂ i

⃒
⃒
⃒ (6)  

where N0 is the number of an initial sample set in OS-ELM, and Xi and X̂i 
express the actual values and output of the model, respectively. 

Therefore, the optimal solution of the input weight and hidden layer 
bias problem can be converted into the objective of reducing the fitness 
function and selecting the best chromosome. That is, we obtain the 
weights of input layer ai and hidden layer bias bi by genetic algorithm, 
not randomly. 

More importantly, after adding the forgetting factor and regulari-
zation mechanism, the loss function of the model is as follows (Celaya 
and Agostini, 2015; Guo et al., 2018): 

J(βk)=
∑k

i=1
λk− i

⃒
⃒
⃒
⃒
⃒
ti − hiβk|

2

+ δλk‖βk‖
2 (7)  

where l is the forgetting factor parameter, and δ denotes the regulari-
zation coefficient. 

According to literature (Guo et al., 2018), βk in the sequential update 
stage of the GA-RFOS-ELM algorithm can be deduced. 

P∗
k =

1
λ
Pk− 1 −

δ(1 − λ)
λ2 Pk− 1

(

I −
δ(1 − λ)

λ
Pk− 1

)

Pk− 1

Pk = P∗
k −

p∗
khT

k hkP∗
k

1 + hkP∗hI
k

βk = βk− 1 + PkhT
k (tk − hkβk− 1) − δ(1 − λ)Pkβk− 1

(8) 

Thus, suppose that there are N random training samples (Xi, ti), 
where Xi = [xi1, xi2,⋯, xin]

T and ti = [ti1, ti2,⋯, tim]T. The GA-RFOS-ELM 
algorithm can be described as the following steps:  

(1) Initialization stage. 

Given an initial training subset Sk− 1 = {(xj, tj)}Nk− 1
j=1 , with the number 

of L hidden layer neurons.  

Step 1 Using the genetic algorithm to calculate the input weights ai and 
hidden layer threshold bi based on an initial training dataset.  

Step 2 Determine the output matrix of hidden layer Hk− 1. 

Hk− 1 =
[
hT

1 hT
2 ⋯hT

k− 1

]T (9)    

Step 3 Obtain the output weight βk− 1. 

βk− 1 =Pk− 1HT
k− 1Tk− 1 (10)  

while P0 = (HT
0H0 + λI)− 1, Tk− 1 = [t1t2⋯tk− 1]

T .  

(2) Sequential update stage.  
Step 4 Calculate the output matrix Hk of the hidden layer. 

Hk =

⎡

⎣
(a1, b1,X1) ⋯ g(aL, bL,X1)

⋮ ⋮
(a1, b1,Xk) ⋯ g(aL, bL,Xk)

⎤

⎦

k×L

(11)    

Step 5 Calculate the predicted crude oil volatility output of the model: 
t̂ k = hkβk− 1.  

Step 6 Update the output weights βk according to Equ.8.  
Step 7 Return to step 5. 

The forecasting framework of GA-RFOS-ELM is represented in Fig. 1. 
Previous price volatility and several indices that quantify the influence 
of the COVID-19 pandemic are considered as input variables to predict 
future crude oil price volatility. After correlation analysis, the ultimate 
input variables are determined. In the initialization stage, the genetic 
algorithm is exploited to optimize initial parameters and calculate initial 
output weight, and therefore the initial network could be determined. In 
the sequential update stage, the mechanism of the GA-RFOS-ELM model 
is to used predict while actually learning. Once the price volatility at 
time k is predicted, the variables and actual values before time k + 1 are 
used to update the network until all forecasts of price volatility are 
output. 

2.4. Evaluation criteria for prediction accuracy 

It is not certain which criteria are more appropriate to evaluate the 
predictions of volatility models (Lopez, 2001). We choose four different 
functions, including the root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE) (Wang et al., 
2018), and median error (MdE). 

RMSE=
1
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
ri − r̂ i

)2

√
√
√
√ (12)  

MAE=
1
N

∑N

i=1

⃒
⃒
⃒ri − r̂ i

⃒
⃒
⃒ (13)  

MAPE=
1
N

∑N

i=1

⃒
⃒
⃒ri − r̂ i

⃒
⃒
⃒

ri
(14)  

MdE=median
({

ri − r̂ i

}N

t=1

)

(15)  

3. Data descriptions and variable analysis 

The effectiveness of the proposed forecasting model is validated with 
respect to the volatility forecasting of the crude oil dataset from WTI. We 
use the daily crude close prices from January 3, 2006, to July 24, 2020, 
which were obtained from the Wind website. The absolute returns of 
crude price rt are employed as the volatility: that is, rt = 100×

[ln(Pt /Pt− 1)], where Pt indicates the close price on day t (Wang et al., 
2018). Fig. 2 illustrates the volatility of crude oil prices during 
2006–2020, and the red line denotes the node of the COVID-19 
pandemic, which shows that huge fluctuations in the markets occur 
during the novel coronavirus pandemic. 

It is obvious that some events would exert fluctuations in crude oil 
exchange, especially with respect to the impact of the novel coronavirus 
epidemic on crude oil volatility. Moreover, four 19-nCoV news-related 
variables from January 1, 2020, to July 24, 2020, are introduced to 
forecast the crude oil price volatility for the first time. All of the data can 
be obtained from RavenPack (https://coronavirus.ravenpack.com/). 

Table 1 indicates the descriptive statistics for these four variables and 
crude oil volatility during the novel coronavirus, and these indices 
versus the future crude oil price volatility are represented in Fig. 3. 

The panic index (PI) estimates the degree of discussions in the media 
that reference terror and coronavirus disease. A higher quota value in-
dicates more news related to panic occurring in the news. Fig. 3(a) 
compares the crude oil futures price volatility and PI, which shows that 
the fluctuations of price volatility are coincident with PI. These findings 
demonstrate that the PI index is correlated with the future volatility of 
crude oil prices. 

The extent of news discussing coronavirus disease is evaluated by the 
Media Hype Index (HY). The index values range between 0 and 100. A 
value of 5 means that 5 percent of news is discussing the novel virus. 
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Fig. 3(b) represents the HY index versus the crude oil futures price 
volatility, which expresses greater coincidence between HY and the 
future oil price volatility during the middle and later periods. 

The Fake News Index (FNI) estimates the extent of discussion in the 
media about COVID-19 that refers to 19-nCoV disinformation. Values 
are also defined between 0 and 100. The higher index indicates that 
more fake news appears. The FNI index is multiplied by 10 to make 
observation easier and enable comparison with the volatility of future 
crude oil prices. The high correlation between FNI and future crude oil 
price volatility is displayed in Fig. 3(c). 

The degree of sentiment about substances referred to in the media 

alongside COVID-19 is estimated by the Country Sentiment Index (CSI). 
Values range between 0 and 100, which indicates the extent of senti-
ment. Different from the previous three indices, the CSI index appears to 
exhibit a significantly consistent negative correlation with the future 
volatility (see Fig. 3(d)). 

4. Simulation experiment 

4.1. Implementation details 

In this study, we removed abnormal data, such as the crude oil price 
on April 20, 2020, the day on which the crude oil price fell off a cliff. To 
make the result more reliable, the obtained dataset is divided into two 
parts. One part is from January 3, 2006 to December 31, 2019, which 
represents the dataset before the novel coronavirus, and the other in-
dicates the epidemic period from January 1, 2020, to July 24, 2020. 

Market participants generally care more about how well they can do 
in the future through the volatility forecasting approaches. Thus, the 
crude oil price volatility of the previous five days is regarded as the input 
variable to predict future volatility before January 1, 2020. During the 
2019-nCoV, four quantitative indicators (PI, HY, FNI, and CSI) related to 
novel coronavirus pandemic news are appended to the input variables to 

Fig. 1. Forecasting framework of GA-RFOS-ELM.  

Fig. 2. Volatility of crude oil prices.  

Table 1 
Descriptive statistical analysis on the variables during COVID-19 turmoil.   

PI HY FNI CSI Volatility 

Minimum 0 0.020 0 − 70 0.069 
First quantile 1.685 12.550 0.42 − 52.365 0.958 
Median 2.920 38.830 0.62 − 52.365 0.958 
Third quartile 4.085 50.505 0.93 − 11.62 5.247 
Maximum 9.240 69.270 1.76 12.98 31.821 
Mean 3.099 35.154 0.67 − 31.01 4.705 
Standard deviation 1.912 19.585 0.41 23.82 5.923  
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verify their roles in the future crude oil volatility forecast. To make the 
results more reliable, we split these datasets into two groups, with 70% 
forming the training set, and the rest used as the test set. It is common to 
divide the training and testing datasets as 7:3 (Alpaydin, 2020). 

The input datasets are normalized to speed up the convergence, and 
the Sigmoid (Equ.16) is chosen as the activation function in our models. 

S(x) =
1

1 + e− x (16) 

GA is introduced to obtain the optimal initial weights of input layer 
and hidden layer bias in the GA-RFOS-ELM model, the relevant pa-
rameters of which are illustrated in Table 2. Actually, there is no exact 
method to determine the parameters of the genetic algorithm. All pa-
rameters are determined through related literature (Leardi et al., 2002; 
Chung and Shin, 2020; Zhou et al., 2020) and experiments. We adopt 
binary encoding and set the size of the population as 20. Crossover and 
mutation probability are the most important parameters of the genetic 
algorithm, determined as 0.9 and 0.1, respectively. The terminal con-
dition is the maximum iteration: that is, the optimization will be stopped 
when reaching the maximum iteration. 

The number of hidden layer neurons is significant for the SLFN model 
and for the GA-RFOS-ELM crude oil forecasting model. Through cross- 

validation, this value is ultimately determined as 30. The forgetting 
factor parameter is set to 0.95 according to (Soares and Araújo, 2016). 

In this paper, the GA-RFOS-ELM method proposed above is 
compared with several econometric models and machine learning al-
gorithms, including autoregressive (AR), regression trees (RT), Bayesian 
regression (Bayes), support vector regression (SVR), extreme learning 
machine (ELM), online sequential extreme learning machine (OS-ELM) 
and genetic algorithm online sequential extreme learning machine (GA- 
OS-ELM). Among which, as an econometric model, AR is usually 
employed to solve time series problems. RT, Bayes, SVR are classic 
machine learning models based on different theories, which are 
commonly used as benchmark methods of machine learning. In addi-
tion, we consider ELM and OS-ELM, two significant algorithms in the 
development of the ELM algorithm family, which are also the basic 
methods of our proposed model in this paper. At the same time, GA-OS- 
ELM is introduced as a benchmark approach to compare the model we 
proposed. All of the above models are executed on a Dell server with 16 
GB RAM and implemented in Python. 

4.2. Results and analysis 

To sum up, to verify the validity of models and the effect of COVID- 
19 news on crude oil price volatility, simulation experiments are 
implemented through three different datasets. Dataset 1 represents 
crude oil volatility from January 3, 2006, to December 31, 2019, which 
considers the crude oil price volatility of the previous 5 day as the input 
variables. Dataset 2 includes the crude oil volatility from January 1, 
2020, to July 24, 2020, during coronavirus disease, which also regards 
the crude oil price volatility of the previous 5 day as input variables. 
Different from dataset 2, four quantitative indicators, PI, HY, FNI and 
CSI from January 1, 2020, to July 24, 2020, are considered in prediction 

Fig. 3. Crude oil futures price volatility versus the indices regarding the novel coronavirus.  

Table 2 
Parameters of genetic algorithm.  

Name of parameters Value 

Size of population 20 
Crossover probability 0.9 
Mutation probability 0.1 
Maximum number of iterations 100 
Terminal condition 100  
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models. Therefore, a total of nine indicators are considered as input 
variables for dataset 3. 

Figs. 4–6 show the evolution curves of the genetic algorithm for these 
three datasets. Error has been convergent within 100 iterations for the 
three different datasets through the genetic algorithm, which indicates 
that the optimal parameters are obtained. We consider the sum of L2 
error as the fitness function; therefore, the error of dataset 1 is relatively 
larger than the other two due to its larger sample size (see Fig. 4). 
Actually, the genetic algorithm is used to obtain a better parameter 
instead of random determination, which mainly focuses on whether its 
error converges. 

AR, RT, Bayes, SVR, ELM, OS-ELM and GA-OS-ELM are considered as 
benchmark models to compare with our proposed GA-RFOS-ELM model. 
The order of the AR model is determined by minimizing the Akaike in-
formation criterion (AIC) (Akaike, 1974). The minimal cost-complexity 
pruning algorithm Loh (2011) is used to prune a tree to avoid fitting for 
RT. Four hyperparameters α1, α2, λ1 and λ2 of the gamma prior distri-
butions in the Bayes model are usually chosen to be noninformative. We 
select the RBF kernel in the SVR model, where the proper choice of c and 
γ is critical to its performance. The best pair of parameters are obtained 
by means of a grid search. As for ELM and OS-ELM methods, the number 
of hidden layers is selected as 30, which is the same as that for 
GA-OS-ELM and GA-RFOS-ELM. Moreover, the prediction accuracy of 
these three models, ELM, OS-ELM, GA-OS-ELM and our proposed 
GA-RFOS-ELM model, is obtained by running the models 200 times on 
average. 

Table 3 illustrates the performances of the loss functions, such as 
RMSE, MAE, and MdE test, for predictive accuracy between the pro-
posed GA-RFOS-ELM model with seven other benchmark models on the 
test samples of dataset 1. It is obvious that the proposed GA-RFOS-ELM 
algorithm performs better than the other six benchmark models in terms 
of the performance measurements of the RMSE, MAE, MAPE and MdE 
scores, yielding values of 1.1693, 0.8924, 2.1639 and 0.6414, respec-
tively. In terms of RMSE scoring performance, GA-OS-ELM and Bayes 
models are second only to GA-RFOS-ELM, with scores of 1.3533 and 
1.4262, respectively. As for MAE and MdE scores, the SVR model is 
actually better than the other six. If time-consuming is not taken into 
account, this model is generally considered to be a good choice for 
solving various problems. 

It is observed that the GA-RFOS-ELM model also produces more ac-
curate forecasts than the other seven comparison models for dataset 2 
(see Table 4). Compared with AR, RT, Bayes, SVR and ELM models, the 
results of OS-ELM, GA-OS-ELM and GA-RFOS-ELM are relatively similar. 
As mentioned above, dataset 1 and dataset 2 have the same input-output 
structure, both of which used the crude oil price volatility of the pre-
vious 5 day as input variables to predict the future volatility. However, 

Fig. 4. Evolution curve of genetic algorithm for dataset 1.  

Fig. 5. Evolution curve of genetic algorithm for dataset 2.  

Fig. 6. Evolution curve of genetic algorithm for dataset 3.  

Table 3 
Predicting results of crude oil price volatility for dataset 1.  

Model RMSE MAE MAPE MdE 

AR 1.4898 1.1189 3.2019 1.0013 
RT 2.0871 1.4887 3.2453 1.0486 
Bayes 1.4262 1.0765 2.9336 0.9059 
SVR 1.4657 1.0178 2.5039 0.7375 
ELM 1.5734 1.1948 3.3247 0.9650 
OS-ELM 1.4378 1.0857 2.6872 0.8157 
GA-OS-ELM 1.3533 1.0324 2.3469 0.7846 
GA-RFOS-ELM 1.1693 0.8924 2.1639 0.6414  

Table 4 
Predicting results of crude oil price volatility for dataset 2.  

Model RMSE MAE MAPE MdE 

AR 3.1155 2.8651 4.0479 3.0376 
RT 4.2159 2.7427 2.8124 1.6067 
Bayes 2.9548 2.6771 3.7840 2.7598 
SVR 2.0675 1.5708 1.7722 1.3139 
ELM 4.3781 3.4024 2.5649 3.0802 
OS-ELM 1.8894 1.4244 1.6960 1.1707 
GA-OS-ELM 1.6163 1.2806 1.4468 1.1304 
GA-RFOS-ELM 1.4485 1.1759 1.3028 1.0560  
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dataset 2 is a small sample dataset as compared with dataset 1, and the 
crude oil price fluctuated more sharply during the epidemic period. 

Nononline learning machine learning (ML) algorithms, like RT, 
Bayes, SVR and ELM, may benefit from large data sets and consider 
global information to obtain relatively high prediction accuracy. 
Nevertheless, they are usually unable to capture the potential change of 
crude price volatility with time. They must retrain the models when the 
potential distribution of the data changes dramatically. However, the 
crude oil price fluctuated more sharply during the COVID-19 pandemic. 
At the same time, global learning may not be suitable in comparison 
with local learning. These may be the primary reasons why the online 
models, OS-ELM, GA-OS-ELM and GA-RFOS-ELM, perform better than 
the other models for dataset 2. 

Table 5 demonstrates the forecasting and comparison results of the 
proposed GA-RFOS-ELM model and compared benchmark models, such 
as RT, Bayes, SVR, ELM, OS-ELM and GA-OS-ELM, for dataset 3. In terms 
of RMSE, MAE, MAPE and MdE scores, GA-RFOS-ELM yields the best 
performance for this task. In addition, OS-ELM, GA-OS-ELM and GA- 
RFOS-ELM are also better than four other nononline models. The AR 
model is more suitable for univariate prediction problems, and thus we 
did not consider it in this case. 

Different from dataset 2, four indices about the news during the 
COVID-19 pandemic are combined with the input variable to predict the 
future price volatility of crude oil. The mark * in Table 5 denotes that the 
values of the loss function combined with news during the COVID-19 
pandemic as input variables would achieve better performance. Obvi-
ously, combining novel coronavirus pneumonia data with the news, we 
confirm that models primarily outperform the basic models based on 
these four evaluation measures. This demonstrates that news about 
COVID-19 data could draw the attention and expectations of the crude 
oil futures market, thus serving an integral role in oil price volatility 
analysis and forecasting. 

Table 6 displays the p values of the Diebold-Mariano (DM) testing of 
GA-RFOS-ELM and seven other methods based on different loss func-
tions, like RMSE, MAE, MAPE and MdE. The DM test here is imple-
mented by (DIEBOLD and MARIANO, 1995) with modification 
suggested by (Harvey et al., 1997). A small p value (usually less than 
0.05) indicates that the proposed GA-RFOS-ELM model significantly 
outperforms the models named in the head-column. 

The p values of DM testing of GA-RFOS-ELM and AR, RT, Bayes, SVR, 
ELM, OS-ELM and GA-OS-ELM are all below the significance level, 
which proves that the proposed GA-RFOS-ELM model outperforms other 
models in predicting the future price volatility of crude oil. These ex-
periences show the superiority of the proposed model. Meanwhile, they 
prove the role of news during the COVID-19 pandemic. 

To summarize, the 19-nCoV related news, which consists of a 
growing body of empirical and theoretical studies about public news 
sentiment, is more crucial for the volatility prediction of crude oil fu-
tures and was valuable with respect to stock returns. On the other hand, 
compared with the global learning, the prediction accuracy is lower 
when confronted with time-varying variables, which is more suitable for 

local learning with long and short term memory. These empirical results 
show that news during the COVID-19 pandemic affects individual in-
vestors’ decisions, but news exhibits timeliness due to information ex-
plosion, which is also consistent with the basic cognition of human 
beings. 

5. Conclusion and future work 

The influence of public news on the crude oil future market has 
attracted increasing attention over the last several years. There is a 
growing body of theoretical and empirical research on the relationship 
between social, economic or politically-driven news and changes in 
financial markets (Smales, 2014; Broadstock and Zhang, 2019; Shi and 
Ho, 2020). This paper further studies how news generated by 
coronavirus-related events is associated with the volatility of crude oil 
futures. While the current COVID-19 pandemic was related with great 
losses by investors all over the word, the existing studies about crude oil 
future market and the COVID-19 pandemic are limited. Therefore, 
weighting the predictive power of the COVID-19 pandemic becomes a 
profound and urgent issue. 

This paper establishes a novel model and offers empirical evidence 
about volatility forecasting of crude oil futures by COVID-19 related 
news. Employing the GA-RFOS-ELM model shows that the crude oil 
futures present dependencies with contagion, media coverage, fake 
news and other information related to the COVID-19 pandemic. This 
result suggests that COVID-19 related news affects the price of crude oil 
futures, which has a certain explanatory power for the volatility of crude 
oil futures. Additionally, these results also are parallel to the dependence 
between news during COVID-19 financial turmoil and stock market 
returns (Cepoi, 2020). This is consistent with the study sentiment that 
COVID-19 related news is associated with volatility in the equity mar-
kets (Haroon and Rizvi, 2020). Therefore, we suggest a need for gov-
ernments and social media to more intensively utilize positive 
information and applicable interactive communication platforms to 
mitigate ongoing coronavirus outbreak related financial market turmoil. 

This paper offers two primary aspects of contribution. On the one 
hand, extending the rich literature of volatility forecasting, we introduce 
a novel GA-RFOS-ELM model. News during the COVID-19 pandemic 
exhibits timeliness, where new data attract more emphasis, while older 
data are gradually being forgotten. Considering the timeliness of COVID- 
19 related news, the GA-RFOS-ELM model strengthens the optimal 
search ability of the genetic algorithm. It may be effective and efficient 
to utilize a chunk-by-chunk learning mechanism with fixed or varying 
chunk size, which illustrates that online update learning ability is 
needed. Additionally, the crude oil price is nonlinear and nonstationary. 
Faced with these questions, this paper investigates the impact of the 
COVID-19 pandemic on volatility forecasting of crude oil futures by 
using the GA-RFOS-ELM model of news during the COVID-19 pandemic. 
These empirical results suggest that the forecasting performances of the 
model are superior to those of basic forecasting techniques. We 
demonstrate the power of news during the COVID-19 pandemic to 
improve the forecasting performance, which suggests that news during 

Table 5 
Predicting results of crude oil price volatility for dataset 3.  

Model RMSE MAE MAPE MdE 

RT 5.5843 2.7119∗ 2.5532∗ 1.3566∗

Bayes 2.4563∗ 2.1265∗ 3.0967∗ 2.1248∗

SVR 1.8648∗ 1.4205∗ 1.6362∗ 1.2858∗

ELM 3.3186∗ 2.6460∗ 3.1073 2.3150∗

OS-ELM 1.6958∗ 1.3527∗ 1.2472∗ 1.1727∗

GA-OS-ELM 1.2831∗ 1.0356∗ 1.0290∗ 0.8768∗

GA-RFOS-ELM 0.9767∗ 0.7260∗ 0.8477∗ 0.5418∗

* denotes that the values of the loss function which consider news during the 
COVID-19 pandemic achieve better performance. 

Table 6 
DM statistic for different loss functions between GA-RFOS-ELM with benchmark 
models.  

Model RMSE MAE MAPE MdE 

AR 1.43e− 10  1.55e− 12  1.56e− 5  5.52e− 8  

RT 9.51e− 3  2.77e− 4  3.20e− 2  2.20e− 2  

Bayes 8.06e− 9  3.28e− 11  1.47e− 5  1.54e− 6  

SVR 1.38e− 2  2.02e− 4  3.13e− 3  4.24e− 3  

ELM 1.73e− 3  8.96e− 8  8.87e− 5  7.81e− 4  

OS-ELM 1.48e− 2  1.44e− 4  7.68e− 3  3.11e− 3  

GA-OS-ELM 3.54e− 2  2.64e− 3  5.44e− 3  1.74e− 2   
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the COVID-19 pandemic is a practical way to assist the prediction of 
volatility in the crude oil market and quantify investor emotion. 

On the other hand, this paper adds to the research on commodity 
futures market response to the COVID-19 pandemic. There is plenty of 
evidence to suggest that news of major events generally contains 
important incremental predictive information on future market return 
(Albulescu, 2020; Zhang et al., 2020a; Al-Awadhi et al., 2020). This 
paper concludes that COVID-19 related news provides vital clues about 
the volatility of crude oil futures. The research has significant implica-
tions. With respect to policy insight, the regulator must consider the 
impact of news during the COVID-19 pandemic in formulating policy 
measures to mitigate the turbulence and instability of the crude oil 
market. Regarding market insight, investors should be conscious of the 
degree of news during COVID-19 and analyze the potency of the future 
crude oil futures market return. 

Generally, this study is valuable and helpful for establishing more 
accurate forecasting models for crude oil futures with internet infor-
mation. In addition, the GA-RFOS-ELM model could be applied to pre-
dictions of other temporal variables or other markets, such as corn, 
copper and gold, thus providing other more accurate models for vola-
tility forecasting in future research, especially considering other vari-
ables. Additionally, constructing other indices by text mining of COVID- 
19 related news would be of particular interest. 
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