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Abstract

Objective: The authors explored the development and validation of machine-learning models for 

augmenting the echocardiographic grading of aortic stenosis (AS) severity.

Background: In AS, symptoms and adverse events develop secondarily to valvular obstruction 

and left ventricular decompensation. The current echocardiographic grading of AS severity 

focuses on the valve and are limited by diagnostic uncertainty.

Methods: Using echocardiography (ECHO) measurements (ECHO cohort, n=1,052), we 

performed patient similarity analysis to derive high-severity and low-severity phenogroups of AS. 

We subsequently developed a supervised machine-learning classifier and validated its performance 

with independent markers of disease severity obtained using computed tomography (CT) (CT 
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cohort, n=752) and cardiovascular magnetic resonance (CMR) imaging (CMR cohort, n=160). 

The classifier’s prognostic value was further validated using clinical outcomes (aortic valve 

replacement [AVR] and death) observed in the ECHO and CMR cohorts.

Results: In 1,964 patients from the 3 multi-institutional cohorts, 1,346 (68%) subjects had 

either nonsevere or discordant AS severity. Machine learning identified 1,117 (57%) patients 

as having high-severity and 847 (43%) as having low-severity of AS. High-severity patients in 

CT and CMR cohorts had higher valve calcium scores and left ventricular mass and fibrosis, 

respectively than the low-severity group. In the Echo cohort, progression to AVR and progression 

to death in patients who did not receive AVR was faster in the high-severity group. Compared with 

the conventional classification of disease severity, machine learning based severity classification 

improved discrimination (integrated discrimination improvement 0.07; 95% confidence interval: 

0.02 to 0.12) and reclassification (net reclassification improvement 0.17; 95% confidence interval: 

0.11 to 0.23) for the outcome of AVR at 5 years. For both ECHO and CMR cohorts, we observed 

prognostic value of the machine-learning classifications for subgroups with asymptomatic, non

severe or discordant AS.

Conclusions: Machine-learning can integrate ECHO measurements to augment the 

classification of disease severity in most patients with AS, with major potential to optimize the 

timing of AVR.
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INTRODUCTION

Aortic stenosis is characterized both by progressive valve narrowing and the remodeling 

response of the myocardium. It remains the most prevalent valvular heart disease in 

developed countries, a burden that is only set to expand with an ageing population (1). 

Assessment of disease severity is important for patient risk stratification and optimization 

of aortic valve replacement (AVR) surgery (2,3). This is currently performed using 

echocardiography (ECHO) which grades the severity of valve narrowing on the basis of 

the aortic valve area, the transvalvular mean gradient, and the peak aortic jet velocity (4,5). 

However, this approach does not consider the myocardial remodeling response, provides 

only modest risk stratification, and is frequently limited by discordant results regarding 

disease severity, leading to diagnostic uncertainty.

Interest has increased in alternative methods for risk stratifying patients with AS, including 

computed tomography (CT) assessments of the valve (the aortic valve CT calcium score) 

and cardiovascular magnetic resonance (CMR) assessments of the myocardium (myocardial 

fibrosis and left ventricular (LV) remodeling), both of which appear to provide improved 

prognostic information (6–8). However, these imaging modalities are expensive, not widely 

available and involve either radiation exposure or the administration of intravenous contrast 

agents. There is therefore a need for accurate, yet simple methods to improve risk 

assessment in AS.
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Novel machine-learning approaches can disentangle hidden relationships between standard 

echocardiographic variables and improve our understanding of complex cardiovascular 

disease states (9–11). In this study, we aimed to use machine-learning to identify 

pathophysiologically and prognostically informative patient groups based on standard 

echocardiographic measurements acquired in routine clinical practice. We then sought to 

validate these machine-learning groups against CT and CMR assessments of AS severity 

and against future clinical outcomes. We hypothesized that our machine-learning approach 

would improve the classification of disease severity in AS and the prediction of adverse 

patient outcomes compared with standard approaches.

METHODS

In this multi-modality imaging study, we used routinely measured echocardiographic 

variables acquired in a prospective Canadian study to develop our novel machine-learning 

approach for identifying unique patient groups (phenogroups) with AS (ECHO cohort n 

= 1,052) (Central Illustration). The echocardiographic data were visually verified and re

analyzed centrally in echo corelab (Québec Heart and Lung Institute). Severe aortic stenosis 

was defined as aortic valve area <1 cm2 and mean gradient ≥40 mm Hg. Discordant AS was 

defined as aortic valve area <1 cm2 and mean gradient <40 mm Hg and further included 

three previously defined phenotypes of low-flow low gradient AS with reduced ejection 

fraction (stroke volume index ≤35 ml/m2, EF <50%) or preserved ejection fraction (stroke 

volume index >35 ml/m2, EF <50%), and normal flow, low gradient (stroke volume index 

>35 ml/m2 ejection fraction ≥50%) (4). Next, to identify these phenogroups in external 

cohorts, we developed a supervised machine-learning classifier, which when provided 

with the echocardiographic features, would provide disease severity group labels for new 

individuals. This classifier was used for performing external validation in two cohorts: 

an international multicenter CT cohort that included 752 patients who underwent both 

echocardiography and CT calcium scoring and a United Kingdom CMR cohort of 160 

patients who underwent both ECHO and CMR. Phenogroup validation was then performed 

in two steps: 1) Validation of disease biolomarkers: the potential ability of machine-learning 

phenogroups to discriminate AS severity was assessed by comparison with independent CT 

and CMR disease severity assessments; and 2) Clinical Validation: The phenogroups were 

compared for their association with future clinical outcomes (not used in development of 

the model), in particular, follow up data for death and AVR in both the ECHO (internal 

clinical validation) and CMR cohorts (external clinical validation). The detailed clinical 

characteristics including symptomatic status of the patients enrolled in the ECHO, CT 

and CMR cohorts have been published previously and summarized in the Supplementary 

Materials (8,12,13). All 3 cohorts used for this study received the proper ethical oversight 

and institutional review board/ethics committee approval as previously published (8,12,13).

Generation of phenogroups

First, we used topological data analysis (TDA), an unsupervised machine-learning 

framework that distributes patients along a visualized network (Supplementary Appendix), 

to generate low- and high-severity disease groups based only on echocardiographic data 

from the ECHO cohort. In particular we used 5 routinely acquired echocardiographic 
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features (see supplementary methods section for details of echocardiography measurements) 

as inputs to generate a network: aortic valve area indexed to body surface area, LV ejection 

fraction, aortic valve mean gradient, stroke volume indexed to body surface area and aortic 

valve peak velocity. The addition of more clinical and echocardiographic features did 

not offer additional model enrichment to delineate the topological model (Supplementary 

Figure 1). We also verified other unsupervised techniques (i.e., Hierarchical cluster analysis, 

K-means and t-Distributed Stochastic Neighbor Embedding) and ascertained the inherent 

groupings of TDA were superior than the traditional clustering methods.

To extend these patient-specific phenogroup labels to an external cohort, we developed a 

supervised machine-learning model that would predict the phenogroup label for any new 

patient. The technical details of the model generation and performance of the supervised 

machine learning classifier is presented in the Supplemental Appendix. The machine

learning classifier developed in the ECHO cohort was highly accurate and so it was then 

applied to the CT and CMR cohorts and used to categorize these patients into the relevant 

machine-learning phenogroups. We have made this classifier publicly available on https://

as-gps.herokuapp.com/.

Biological and Clinical Validation

We tested the validity of the machine-learning phenogroups by assessing their association 

with independent markers of biological disease severity in AS. These methods included 

CT assessment of AS (aortic valve calcium score), CMR markers of myocardial damage 

(myocardial fibrosis - late gadolinium enhancement [LGE] and the indexed extracellular 

volume on T1 mapping; LV remodeling - LV mass indexed to body surface area, LV end 

diastolic volume, longitudinal systolic function) as well as biomarkers (B-type natriuretic 

peptide and high-sensitivity troponin I). Finally, we validated these machine-learning 

phenogroups against hard clinical outcomes, investigating their association with future AVR 

and death in both the ECHO and CMR cohorts.

Statistical analysis

Throughout this paper, we used nonparametric methods for statistical inference. Continuous 

variables were summarized as median and interquartile range (first to third interquartile 

ranges), whereas categorical variables were summarized as using counts and percentages. 

Accuracy of the ensemble machine-learning model to predict phenogroups was tested using 

area under the receiver operating characteristic curve. Association of phenogroups with CT 

and CMR based disease features was tested with Mann-Whitney U test and Fisher’s exact 

test, as appropriate. Association of the phenogroups with time to events was examined using 

Kaplan-Meier survival plots and tested using the Wilcoxon test. In all the time-to-event 

analyses, time zero represented the day of cohort enrollment. By definition, AVR preceded 

death and thus time to AVR was right censored at the point of AVR placement or the longest 

follow up available. Predictive performance of the Phenogroups was compared with that of 

the currently used AS risk-stratification (3) using the integrated discrimination improvement 

(IDI) and continuous net reclassification index (NRI) adapted to time to event data (14). 

Following software programs were used for analyses: Ayasdi platform version 7.9 (Ayasdi, 

Inc., Menlo Park, California) for disease severity label generation; (OptiML, BigML.com, 
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Corvallis, Oregon, http://bigml.com) for generation of machine-learning-based ensemble 

classifier; Stata 14.2 (Stata Corp, College Station, TX) for statistical analyses; and the R 

package survIDINRI for estimation of IDI and NRI. Statistical significance was tested at a 

type I error rate of 0.05 and Bonferroni correction was applied to correct for multiple testing.

RESULTS

Overall, the three cohorts evaluated in this study included a total of 1,964 (75 [67 to 82] 

years of age, 41.2% female) aortic stenosis patients of whom 1,117 (57%) were categorized 

into the high-severity phenogroup. The median aortic valve area was 0.89 (0.70 to 1.18) 

cm2 with aortic valve peak velocity of 3.56 (2.79 to 4.27) m/s. A total of 598 (30.4%) 

patients had discordant echocardiographic parameters. A low ejection fraction (EF < 50%) 

was present in 18%, 6% and 16% from the Echo, CT and CMR groups respectively. On 

examining the 3 cohorts separately, the ECHO cohort included 1,052 patients, 18% of whom 

had severe AS based on concordant echocardiographic features (Table 1). In comparison, 

both the CMR (n = 160) and CT (n = 752) cohorts had higher proportion of patients with 

severe AS (29% and 51% respectively). In total, 23%, 30% and 45% of the cases from the 

Echo, CT and CMR cohorts were asymptomatic at the time of enrollment (Table 1)

Generation of phenogroups

First, severity labels were generated in an unsupervised fashion on the ECHO dataset. The 

degree of AS severity was different in the high and low-severity groups (Supplementary 

table 1); the distribution of the echocardiographic features used in the network across the 

phenogroup labels is shown in Figure 1. Each echocardiographic feature demonstrated a 

smooth gradient across the networks, with preserved values consistently segregating to 

the left and impaired values segregating to the right sides of the respective graphs. The 

performance of the supervised classifier for application in external cohorts is shown in 

Figure 2.

Comparison of the phenogroups with current severity stratification

We first examined the potential reclassification provided by the machine-learning 

phenogroups as compared with conventional standard-of-care severity stratification (Table 

2). In the ECHO cohort, almost all (~99%) of the patients classified traditionally as 

“concordant severe” on echocardiography were included in the high-severity group. 

However, important reclassification by the Machine-learning method was observed 

in the remaining patients who had both concordant non-severe AS and discordant 

echocardiographic measures. In particular 9% of patients with concordant non-severe AS 

based on standard classification were captured into the high-severity machine-learning 

group, while 64% of the “inconclusive” patients with discordant echocardiographic findings 

were deemed as having high severity based on machine learning.

Biomarker Validation of AS Phenogroups

Table 3 shows the association of the machine-learning phenogroups with the CT and 

CMR assessments of AS severity. The median aortic valve calcium score was >2 times 

higher (p <0.0001) in the high-severity group as compared with the low-severity group - a 
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finding that was replicated separately in both males and females (Figure 3). This resulted 

in a higher proportion of patients in the high-severity group with calcium scores in the 

severe range, using cutoffs of 2000 AU for men and 1200 AU in women, compared with 

low-severity patients (73% vs. 30%; p<0.0001) (3). With respect to CMR assessments of 

the myocardium, late gadolinium enhancement (replacement fibrosis) was twice as common 

in high-severity compared with low-severity patients (43.6% versus 20.0%, p = 0.004); the 

LV mass index and indexed extracellular volume (diffuse myocardial fibrosis) were also 

higher in the high-severity patients while longitudinal function was significantly reduced. 

Furthermore, cardiac biomarkers of heart failure (B-type natriuretic peptide) and myocardial 

injury (high-sensitivity troponin) were significantly increased in the high-severity patients. 

All these findings were consistently replicated in the subset of patients with non-severe/

discordant AS suggesting appropriate reclassification by the machine-learning approach in 

this group (Table 3).

Clinical Validation of AS Phenogroups

In the ECHO cohort, during a median follow-up of 5.6 years (interquartile range: 1.9 

to 8.4 years), 571 (54%) patients underwent AVR and 506 (48%) died. Whereas in 

the CMR cohort, during a median follow up of 5.8 years (interquartile range: 5 to 6.2 

years), 92 (57%) patients underwent AVR and 27 (17%) died. In the ECHO cohort, the 

high-severity machine-learning group progressed more rapidly to AVR compared to the low

severity group (Figure 4) (annual incidence rates >5 times that in the low-severity group, 

p <0.0001). In the CMR cohort this difference was even more stark (Figure 4) (annual 

incidence >20 times that in low-severity patients, p <0.0001). Even when the dataset was 

restricted to the non-severe/discordant AS patients, the high-severity group still progressed 

>3 times and >15 times faster to AVR than the low-severity group in the ECHO and CMR 

cohorts, respectively (Figure 4). This prognostic ability was retained when the patients with 

concordant non-severe and discordant AS grading were analyzed independently (Figure 5). 

Further, we found (Figure 6) that the TDA-based phenogroups continued to further stratify 

severity within each category of single echocardiographic features (e.g. peak velocity, mean 

gradient and aortic valve area) thereby indicating that the TDA groups proffered a superior 

prognostication as compared with any of the individual echocardiographic features that were 

used to generate the TDA-based severity groups.

We compared the prognostic ability of the machine-learning phenogroups compared with 

conventional standard-of-care AS grading. In the ECHO cohort, the estimated IDI and NRI 

gained by the machine-learning phenogroups for the outcome of AVR at 5 years were 0.07 

(95% CI 0.02 – 0.12) and 0.17 (95% CI 0.11 – 0.23) vs. the standard-of-care classification, 

indicating that the machine-learning phenogroups have better predictive ability. This finding 

appeared even stronger in the CMR cohort with corresponding values of 0.35 (95% CI 

0.18 – 0.49) and 0.36 (95% CI 0.22 – 0.49), respectively. As an additional substantiation 

of the prognostic value of the machine-learning phenogroups, we compared the prognostic 

performance of these groups with CMR assessments of myocardial fibrosis. Once again, 

the machine-learning phenogroups provided better discrimination (IDI 0.22, 95% CI 0.11 – 

0.33) and reclassification (NRI 0.48, 95% CI 0.08 – 0.60) for the outcome of AVR at 2 years 

compared with the presence of CMR LGE.
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The association of phenogroups with time to death revealed consistent and interesting 

patterns across study cohorts. In the ECHO cohort, those who received an AVR progressed 

to death slower than those who did not - both in the high-severity group (Figure 4) (compare 

the orange and brown curves) and in the low-severity group (Figure 4) (compare the green 

and blue curves). High-severity patients who did not receive AVR progressed to death much 

faster as compared to all other patient groups. Furthermore, high-severity patients who 

received AVR progressed to death ~2 times faster than all low-severity patients regardless of 

whether they received an AVR or not (Figure 4) (compare red and green/blue curves). This 

pattern of association was retained in the non-severe/discordant aortic stenosis patients as 

well. In the CMR cohort, the high-severity patients who did not receive AVR continued to 

show the fastest progression to death - in all patients as well as non-severe/discordant AS 

patients (Figure 4) (lower right panel). Because the receipt of AVR modified time to death 

event and because the sample size was substantially limited for patients who did not receive 

AVR, we did not conduct the IDI and NRI analyses for this outcome.

We also explored the prognostic value of the machine-learning classifier for patients with 

asymptomatic AS. In the ECHO cohort, total 205 asymptomatic patients were followed 

for a median interval of 8.1 years (interquartile range: 5.3 to 9.8 years). Total 136 (66%) 

patients had AVR and 59 (37%) patients died. In the CMR cohort, total 72 asymptomatic 

patients were followed for a median interval of 6.1 years (interquartile range: 5.7 to 6.5 

years). Total 32 (44%) patients had AVR and 10 (14%) patients died. The high-severity 

machine-learning phenogroup continued to show significantly higher rates of AVR and 

Death than the low-severity phenogroup for the ECHO cohort and a similar trend was also 

noted in the CMR cohort (Figure 7).

DISCUSSION

The traditional focus of AS assessments has been on the valve. However, the left 

ventricular myocardial response to pressure overload is equally important. This study used 

3 multicenter prospective cohorts of patients with AS to develop and then validate a novel 

machine-learning pipeline that integrates standard echocardiographic features to simplify 

the risk stratification of patients with AS. Nearly one third of patients had definitive 

echocardiographic features of severe AS and the machine-learning model correctly classified 

~99% in the high-severity phenogroup. More importantly, the machine-learning model 

effectively reclassified the remaining two thirds of patients with either non-severe (mild/ 

moderate) AS or inconclusive discordant echocardiographic findings, without the need 

for any additional tests. The classification of low and high-severity phenogroups showed 

consistency with other known pathophysiological markers of disease severity as identified 

on CT and CMR imaging. Furthermore, the phenogroups showed incremental prognostic 

value, which was replicable across the study cohorts, and within the non-severe (mild/ 

moderate) and discordant subgroups in whom this reclassification is most likely to be of 

use. Together our study findings demonstrate that our open access machine-learning model 

can integrate echocardiographic features readily and meaningfully with robust performance 

across diverse international patient populations and provide powerful prediction of clinical 

events. This approach holds major promise in optimizing the timing of AVR, particularly for 

patient groups where traditional echocardiographic assessments are inconclusive.
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The pathology and clinical presentations of AS are complex (15–17). The present 

machine-learning analysis identified meaningful AS risk subgroups and confirms our 

previous observations in animal models that first hinted at the value of machine-learning 

in understanding diverse phenotypic presentations in AS (9). Moreover, this analysis 

potentially addresses the existing debate whether classifying AS severity as mild, moderate 

or severe may have limitations in accurately risk stratifying many patients. For example, 

a recent study indicated high mortality even in patients determined to have moderate 

AS using current ECHO guidelines definitions (4,5,18). Moreover, in >30% patients not 

all echocardiographic features concur linearly with each other in a clinically consistent 

fashion (2,3,19). These patients with discordant echocardiographic assessments cause 

clinical uncertainty, (20–22) resulting in substantial cognitive burden, delays in clinical 

decision making, and the need for additional testing. Our results show that the machine

learning based phenogroups specifically add prognostic information to both these important 

categories of patient (non-severe and discordant AS) which cumulatively comprised nearly 

two thirds of the patients in our study. Although all the patients classified conventionally 

as severe were captured by our high-severity group, an important subset of the non-severe 

AS patients (8.6% to 14.6%, Table 2) were accurately identified to be high-severity by 

our classifier. Furthermore, the high-severity TDA phenogroup underwent AVR earlier than 

the low risk group. Whether these data support the application of AVR in high-severity 

patients without traditional criteria for intervention is now open to debate and requires 

future investigation. Further, the fact that high-severity patients who had an AVR were 

prognostically worse than low-severity patients who did not have AVR points towards the 

need for alternative and adjunct interventions for the high-severity patients. In totality, these 

findings demonstrate the additive and independent prognostic information embedded in our 

novel classifier which is being made freely available for future clinical trials.

Study Limitations:

The present investigation is observational in nature and thus has all the limitations implicit 

in all such studies. We did not directly assess the potential clinical and cost benefits that can 

be reaped by the machine-learning-based risk stratification in a controlled manner, but we 

provide a basis for conducting such studies in the future. The use of AVR as an end-point 

needs further considerations. The echocardiography parameters could have worsened and 

thus precipitated a decision to conduct surgery, however the IDI and NRI estimates were 

based on the echo parameters at enrollment and not prior to surgery. In effect, therefore 

the IDI and NRI estimates are likely to be an underestimate of the true influence of echo 

parameters on time to AVR. Moreover, we also used death as an end-point which was 

observed in 51.9% patients of the Echo cohort during follow-up. Because we wished to 

eliminate the potential confounding influence of AVR on death, we also restricted the 

analyses to those in whom AVR was not performed. This subset of no-AVR patients (n = 

481) also had a high incidence of death (345, 71.7%). In this subset, the median time to 

death for the high-risk and low-risk patients (based on phenogroups) was 2.68 and 4.90 

years, respectively. This data translates to a relative hazard of 2.01 and yields a post hoc 

power estimate of almost 100%. Moreover, the cardiac magnetic resonance cohort, though 

small provided an additional external validation of this observation. The replicability of the 

observations across diverse patient cohorts with data collected in real-world scenario and the 

Sengupta et al. Page 8

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant associations observed with a range of independent disease severity indicators as 

well as adverse clinical outcomes strongly support the potential clinical utility of machine

learning phenogrouping.

Future Directions:

Future prospective work would need to address the potential role of this classifier 

for guiding the timing of surgical and transcatheter AVR, specifically in patients with 

asymptomatic AS or discordant AS. In addition, the phenotyping of patients with moderate 

AS who are phenogrouped as high-severity AS by the classifier is worthy of further 

exploration in lieu of the recent interest in evaluating the role of transcatheter AVR in 

heat failure patients with moderate AS (23). Future work would need to also investigate 

the incremental value of additional ECHO parameters of LV muscle and fluid mechanics 

that has been shown to improve the prognostic performance of machine learning models 

in heart failure patients (24). Specifically, the incorporation of biomarkers like LV global 

longitudinal strain and left atrial strain could improve the prognostic performance of the 

classifier for predicting AS severity and the timing of intervention. Finally, the concept 

of ‘Grading’ and ‘Staging’ as two distinct steps commonly used in cancer prognosis and 

therapy may be relevant even for AS patients. The current work focuses on augmenting the 

grading the AS severity using machine learning. However further staging by delineating the 

cardiac and extracardiac involvement beyond simply the aortic valve and the LV may be 

important. For example, a staging classification where assessment of left atrial, mitral valve, 

pulmonary vasculature, tricuspid valve and right-ventricular dysfunction has been recently 

illustrated to provide incremental prognostic value beyond simply assessing the aortic valve 

and the LV (25). Similarly, machine learning models that integrate both the grading of AS 

severity with additional cardiac and extracardiac involvement may be prognostically relevant 

and requires further considerations.

Conclusions—In conclusion, we demonstrate the superiority of a novel machine-learning 

approach for grading the severity of AS patients with advantages in terms of accuracy, 

biological plausibility and prognostic capability, compared to the conventional standard-of

care approach. This effect was most notable in the two thirds of patients with non-severe or 

discordant AS in whom clinical decision making is currently challenging and who require 

improved risk stratification to optimize the timing of AVR. Future studies are required to 

evaluate how these machine-learning phenogroups can be exploited to answer the continuing 

clinical conundrum of early versus late intervention for patients with AS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TDA Topological data analysis

IDI the integrated discrimination improvement

NRI net reclassification index

HS high severity
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AS aortic stenosis

LGE late gadolinium enhancement

LV left ventricular
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COMPETENCY IN MEDICAL KNOWLEDGE

We demonstrate the superiority of a novel machine-learning risk stratification approach 

for patients with AS with advantages in terms of accuracy, biological plausibility, and 

prognostic capability, compared to the conventional standard-of-care approach.
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TRANSLATIONAL OUTLOOK

We have made our classifier publicly available on https://asgps.herokuapp.com/ Future 

studies are required to evaluate how these machine-learning phenogroups can be 

exploited to answer the continuing clinical conundrum of early versus late intervention 

for patients with AS.
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Figures 1. Distribution of echo parameters across the TDA network.
(A) Distribution of the aortic valve area index across the topological data analysis (TDA) 

network. The color scales for nodes are adjusted to identify the distribution of aortic valve 

area < 1 cm2 and > 1.5 cm2 in the same shade of blue and red respectively. (B) Distribution 

of the left ventricular ejection fraction across the TDA network. The color scales for nodes 

are adjusted to identify the distribution of ejection fraction < 50% using the same shade 

of blue. (C) Distribution of the aortic valve mean gradient across the TDA network. (D) 

Distribution of the stroke volume index across the TDA network. The color scales for nodes 

are adjusted to identify the distribution of stroke volume indexed to body surface area< 30 

ml/m2 and over 50 ml/m2 in the same blue and red, respectively. ECHO = echocardiography.
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Figure 2. Accuracy of the machine learning ensemble classifier to predict the TDA cluster 
membership in the test set.
(A) Confusion matrix (B) Receiver operating characteristic curve (C) Estimated metrics of 

accuracy. (n=210). AUC = area under the curve; other abbreviation as in Figure 1.
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Figure 3. Box plots displaying the distribution of aortic valve calcium score.
(A) Distribution of aortic valve calcium score by computed tomography, and (B) myocardial 

and fibrosis volume by cardiovascular magnetic resonance (CMR) in the high and low 

severity groups.
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Figure 4. Association of the phenogroups with time to aortic valve replacement and death in the 
ECHO and CMR cohorts.
All the analyses were done in all patients and in the subset of non-severe/discordant aortic 

stenosis patients. Panels show Kaplan-Meier plots for the color-coded subsets of patients. 

Appended to each curve is a color-coded number that indicates the annual incidence rate of 

the event in question for that specific subset of patients. Wilcoxon test was used to test the 

significance for difference between the curves, the results are shown at the lower-left corner 

of each Kaplan-Meier plot. HS, high severity; LS, low severity; AVR+, received aortic valve 

replacement; AVR- = did not receive aortic valve replacement; HS = high severity; LS = low 

severity; all other abbreviations as in Figures 1 and 3.
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Figure 5. TDA-based phenogrouping demonstrated significant risk discrimination in all degrees 
of AS severity.
Left, middle, and right panels indicate patients with severe, discordant, and mild/moderate 

AS. (Top) Time to AVR in each TDA phenogroup is shown, whereas time to death in 

patients subdivided by TDA phenogroups and treatment (AVR) is depicted. There were only 

2 (not shown in the graph) patients who were classified as low-risk in patients with severe 

AS. AS = aortic stenosis; all other abbreviations as in Figures 1 and 4.

Sengupta et al. Page 20

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Severity stratification with machine-learning-based groups within prognostic categories 
of component variables.
Figure shows Kaplan Meier plots for time to AVR (top row) and time to death in no-AVR 

patients (bottom row). Column-wise, the plots are for categorization based on aortic valve 

area (A, B), mean gradient (C, D) and peak velocity (E, F). Each of these variables was 

first trichotomized into mild, moderate and severe categories based on recommended cutoffs 

(>1.5, 1.0-<1.5 and <1.0 cm2 for aortic valve area; <20, 20-<40 and ≥40 mmHg for mean 

gradient; and <3, 3-<4 and ≥4 m/s for peak velocity). TDA-based phenogroups were the 

used to stratify within each of these categories. In all panels, the mild category is represented 

by blue color (stratified as light blue for low-severity and dark blue for high-severity), 

moderate category is indicated by green color (stratified as light green for low-severity 

and dark green for high-severity) and the severe category is represented by orange color 

(stratified as light orange for low-severity and dark orange for high-severity). As can 

be seen, TDA-based phenogroups continued to stratify patients within the prognostically 

defined categories of the component variables. Abbreviations as in Figures 1 and 4.
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Figure 7. Association of the phenogroups with time to aortic valve replacement and death in the 
ECHO and CMR cohort.
(Left and right) Survival curves in asymptomatic AS patients in the ECHO and CMR 

cohorts. (Top) Time to AVR in each TDA phenogroup is shown. (Lower) Time to death in 

patients subdivided by TDA phenogroups and treatment (AVR) is depicted. Abbreviations as 

in Figures 1, 3, 4, and 5.
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Central Illustration: Overall analytical approach.
Topological data analysis related risk labels were first generated in the ECHO cohort using 

standard echocardiographic parameters. A machine-learning-based ensemble classifier was 

then trained to identify patients belonging to the high-severity (HS) and low-severity (LS) 

groups. The accuracy of this classifier was established in a split sample within the ECHO 

cohort. Time-to-event analyses for two clinical l endpoints (aortic valve replacement [AVR] 

and death) was undertaken for patients in the ECHO cohort as an internal validation. Two 

other cohorts (the cardiovascular magnetic resonance [CMR] cohort and the computed 

tomography [CT] cohort) were used for external validation by testing the association of 

phenogroups with CT and CMR-based features of disease severity. Clinical data from the 

CMR cohort was used to conduct external validation of the prognostic information provided 

by the machine-learning phenogroups.
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Table 1.

Clinical and echocardiographic characteristics of the study cohorts

ECHO Cohort CMR Cohort CT Cohort

Number of Patients 1052 160 752

Age, y 73 [64 – 79] 70 [64 – 75] 79 [72 – 85]

Gender, Male, n (%) 603 (57.3) 111 (69.4) 441 (58.6)

Body Mass Index, kg/m2 26.9 [24.1 – 30.1] 28.0 [25.6 – 31.2] 27.4 [24.6 – 30.9]

Body Surface Area, m2 1.81 [1.65 – 1.94] 1.86 [1.74 – 1.99] 1.83 [1.69 – 1.97]

Heart Rate, bpm 66 [60 – 75] 64 [57 – 71] 67 [60 – 76]

Systolic Blood Pressure, mmHg 130 [117 – 145] 148 [134 – 163] 132 [120 – 147]

Diastolic Blood Pressure, mmHg 72 [64 – 80] 83 [77 – 92] 71 [65 – 80]

Comorbidities

Hypertension, n (%) 751 (71.4) 108 (67.5) 583 (77.6)

Diabetes Mellitus, n (%) 286 (27.2) 25 (15.6) 221 (29.4)

Dyslipidemia, n (%) 608 (57.8) 71 (44.4) 498 (66.3)

Obesity, n (%) 277 (26.3) 53 (33.1) 230 (30.6)

Coronary Artery Disease, n (%) 608 (57.8) 60 (37.5) 360 (47.9)

Echocardiography

 LV Ejection Fraction, % 63 [55 – 70] 57 [52 – 62] 63 [58 – 65]

 Stroke Volume Index, mL 38 [33 – 44] 44 [37 – 49] 41 [35 – 48]

 AV Peak Velocity, m/s 3.2 [2.6 – 3.9] 3.9 [3.3 – 4.4] 4.1 [3.3 – 4.6]

 AV Mean Gradient, mmHg 23 [15 – 35] 34 [22 – 43] 41 [26 – 52]

 Aortic Valve Area, cm2 0.99 [0.76 – 1.23] 0.87 [0.73 – 1.10] 0.79 [0.62 – 1.01]

 Aortic Valve Area Index, cm2/m2 0.55 [0.42 – 0.68] 0.46 [0.39 – 0.58] 0.43 [0.35 – 0.55]

AS Severity Grading, n (%)

 Mild/Moderate AS 349 (33.2) 66 (41.2) 183 (24.3)

 Discordant Grading 514 (48.9) 48 (30.0) 186 (24.7)

 Severe AS 189 (18.0) 46 (28.7) 383 (50.9)

Values are median (interquartile range) or n (%). AS = aortic stenosis; AV -= aortic valve; CMR = cardiovascular magnetic resonance; CT = 
computed tomography; ECHO = echocardiography; LV = left ventricular.
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Table 2.

Comparison of risk-stratification with the machine-learning and current standard-of-care approaches in all 

study cohorts

Phenogroups
Standard-of-care AS Severity Grading

Total
Mild/Moderate Discordant Severe

ECHO Cohort

 Low Severity 470 (91.4) 125 (35.8) 2 (1.1) 597 (56.8)

 High Severity 44 (8.6) 224 (64.2) 187 (98.9) 455 (43.3)

 Total 514 (100) 349 (100) 189 (100) 1,052 (100)

CMR Cohort

 Low Severity 41 (85.4) 9 (13.6) 0 (0.0) 50 (31.2)

 High Severity 7 (14.6) 57 (86.4) 46 (100) 110 (68.8)

 Total 48 (100) 66 (100) 46 (100) 160 (100)

CT Cohort

 Low Severity 169 (90.9) 30 (16.4) 1 (0.3) 200 (26.6)

 High Severity 17 (9.1) 153 (83.6) 382 (99.7) 552 (73.4)

 Total 186 (100) 183 (100) 383 (100) 752 (100)

Values are n (%). Abbreviations as in Table 1.
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