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Abstract

Background: Socioeconomic data may improve predictions of clinical events. However, due 

to structural racism, algorithms may not perform equitably across racial subgroups. Therefore, 

we sought to compare the predictive performance overall, and by racial subgroup, of commonly 

used predictor variables for heart failure readmission with and without the Area Deprivation Index 

(ADI), a neighborhood-level socioeconomic measure.

Methods: We conducted a retrospective cohort study of 1,316 Philadelphia residents discharged 

with a primary diagnosis of congestive heart failure from the University of Pennsylvania Health 

System between April 1, 2015 and March 31, 2017. We trained a regression model to predict the 

probability of a 30-day readmission using clinical and demographic variables. A second model 

also included the ADI as a predictor variable. We measured predictive performance with the Brier 

Score (BS) in a held-out test set.

Results: The baseline model had moderate performance overall (BS 0.13, 95% CI 0.13 to 0.14), 

and among white (BS 0.12, 95% CI 0.12 to 0.13) and non-white (BS 0.13, 95% CI 0.13 to 0.14) 

patients. Neither performance nor algorithmic equity were significantly changed with the addition 

of the ADI.
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Conclusions: The inclusion of neighborhood-level data may not reliably improve performance 

or algorithmic equity.
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Introduction

Social determinants of health (SDoH) are a major contributor to health care processes 

and outcomes.1 This is especially true for patients with congestive heart failure (CHF), 

whose clinical course is determined by a complex interplay between physiologic and 

social parameters.2–5 Recognizing this interdependence, the American Heart Association has 

recently recommended a more thorough approach to assessment and management of SDoH.6 

This directive may represent an opportunity to improve the development of risk prediction 

models that account for SDoH to guide clinical care.7 Although detailed patient-level data 

on SDoH might provide the most information, such data as education, employment, income, 

and other factors may not be readily available to health systems. But neighborhood-level 

data based solely on an individual’s address such as the Area Deprivation Index (ADI), for 

example, a composite measure of social, economic, and educational indicators derived from 

the American Community Survey, has been associated with increased 30-day readmissions 

across a range of clinical and geographic contexts.8–10

However, prediction models have been shown to exhibit disparate performance across 

demographic groups. For example, commonly used scores to predict the future risk of 

cardiovascular disease have varying performance by patient race.11–13 These performance 

differences are likely explained by inadequate capture of indicators of both interpersonal 

and structural racism in the data generation and collection processes. Measuring only the 

population average performance may mask a scenario in which a model may perform well 

for one group but not for another. This consideration of inequalities in prediction model 

performance is known as algorithmic equity or algorithmic fairness, and reflects the goal 

of equal predictive performance across patient subgroups.14,15 In Philadelphia, a city with a 

long history of segregation, institutionalized racism, and notable health disparities in a large 

Black population, it is unknown how the addition of the ADI would affect the predictive 

performance or algorithmic equity of a clinical prediction model.

Therefore, we sought to determine how the addition of ADI to a heart failure readmission 

prediction model might affect predictive performance within an urban academic medical 

center in Philadelphia. Secondarily, we sought to measure algorithmic equity – the 

difference in performance across racial groups – and to understand how that difference 

was affected by the inclusion of the ADI. We hypothesized that the inclusion of the ADI, 

by capturing SDoH not typically available in the EHR, would improve both predictive 

performance and algorithmic equity.
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Methods

We conducted a retrospective cohort study of patients hospitalized with CHF. We trained 

and tested several clinical prediction models to evaluate their performance overall and by 

race. These comparisons were made using a model trained on commonly available data in 

the EHR and another that also included neighborhood-level socioeconomic data in the ADI 

(Figure 1).

Population

We identified all hospital discharges with a primary diagnosis of CHF among Philadelphia 

residents at least 18 years old from hospitals in the University of Pennsylvania Health 

System between April 1, 2015 and March 31, 2017. Diagnostic codes used to determine 

inclusion in the study have been used in prior studies identifying cohorts of patients with 

CHF and are found in Supplemental Table 1.16

Baseline predictor variables

We included clinical variables available from the first 24 hours of the first hospitalization 

for each patient during the study period to emulate a scenario in which a hospital might use 

a prediction model to make referrals for additional clinical or social support resources. 

This approach to modeling heart failure readmissions parallels that of Tabak et al.17 

Input variables included the worst value of serum creatinine, serum albumin, troponin, 

international normalized ratio (INR), total bilirubin, creatine phosphokinase (CPK), serum 

sodium, serum blood urea nitrogen (BUN), arterial partial pressure of carbon dioxide 

(PaCO2), white blood cell count, serum glucose, pro-brain natrurietic peptide, temperature, 

and systolic blood pressure. We excluded the diastolic blood pressure and pH from the 

prediction models because they were nearly perfectly collinear with the systolic blood 

pressure and PaCO2, respectively.

Following reported improvements to predictive performance with the inclusion of additional 

utilization and laboratory studies proposed by Amarasingham et al.16, we also included 

the number of hospitalizations, visits to the emergency room, outpatient clinic visits, any 

positive drug screens for THC or cocaine, and any encounters that included a diagnostic 

code for depression (Supplemental Table 2) in the preceding six months.18,19 We also 

included an indicator variable for the presence of any Medicaid plan associated with the 

patient’s record during the hospitalization.

We also included each patient’s age, gender, self-reported race, and self-reported ethnicity. 

This approach is consonant with previously published prediction models that seek to 

improve risk prediction through capture of risk differences associated with race regardless of 

the underlying causal relationships.16,20 Because the vast majority of patients self-identified 

as either Black or white, and the experience of racism most preferentially advantages those 

who identify as white, we modeled race as a binary variable (white or not white) in the 

primary analysis.
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Neighborhood-level data

The ADI has been strongly associated with 30-day readmission risk8 and improved risk 

adjustment for penalties in the Hospital Readmissions Reduction Program (HRRP)21 in 

a nationally representative Medicare population. The ADI is also associated with 30-day 

all-cause9 and sepsis-specific10 readmission risk in some urban medical centers. However, 

statistically significant associations in an inferential model are not equivalent to performance 

improvements in a predictive model.22,23

Therefore, we hypothesized that the addition of the ADI to the above baseline variables 

would improve predictive performance in a 30-day hospital readmission model. Because 

the ADI captures many social, economic, and educational indicators not found in typical 

clinical and administrative databases, we also hypothesized that its inclusion would improve 

algorithmic equity between white and non-white patients. Specifically, the ADI includes 

data on the census-block level age distribution, employment, income, housing, poverty, and 

vehicle ownership, among other factors.8 Therefore, a second model was built that also 

included the census-block level state ranking of the ADI based on each patient’s home 

address. The ADI state rank ranges from 1 to 10, representing the lowest and highest levels 

of disadvantage, respectively.

Outcome

The primary outcome for all models was a binary variable indicating readmission to any 

hospital within the University of Pennsylvania Health System within 30 days of discharge 

from the index hospitalization.

Missing data

Missing predictor variables were imputed using the missForest package using 500 

trees.24,25 We chose this approach because of its ability to handle both continuous and 

categorical predictors that may have non-linear or complex interactions and are recorded on 

different scales. Imputation was performed separately in the training and testing sets.

Model training, selection, and assessment

All models were trained using hospital discharges that occurred during the first year of 

the cohort, between April 1, 2015 and March 31, 2016. First, using the baseline predictor 

variables, we fit a logistic regression model with L1 and L2 penalties (elastic net; EN) and 

determined parameters for mixing and regularization using 5-times repeated, 10-fold cross­

validation and a tuning-grid search (Supplemental Table 3).26 Then we fit an additional 

EN model that used the same baseline predictors and also included the ADI. All predictor 

variables were included as linear terms. Tuning parameters that provided the lowest Brier 

Score (BS) were selected for the final models which were refit on all of the training data.27 

The BS is equivalent to the mean-squared error between a model’s predicted probability and 

the observed binary outcome of zero or one.28 Using a temporal external validation approach 

to assess the generalizability of the models using data from the same sites,29 all model 

performance characteristics were reported using a held-out test set comprised of hospital 

discharges that occurred during the second year of the cohort, between April 1, 2016 and 
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March 31, 2017. No patients appeared in both training and testing cohorts. We assessed the 

BS as a composite measure of discrimination and calibration for the primary outcome and 

the C-statistic and positive predictive value as secondary outcomes.

Performance comparisons

We calculated 95% confidence intervals around model performance metrics by 

bootstrapping the training data and entire model training process, including a grid search 

with 5-times-repeated 10-fold cross-validation, using 100 bootstrap replicates. We compared 

performance between models by estimating the bootstrap p-value and confidence interval 

around the performance difference between replicates.30,31

Algorithmic equity

Algorithmic equity, sometimes described as algorithmic fairness, reflects how well a 

predictive model performs across different groups of interest. For example, if a model had 

perfect algorithmic equity, it would perform just as well for both Black and white patients, 

and exhibit the same error pattern across both groups. Clinical prediction models that do 

not exhibit algorithmic equity may lead to racial differences in referral patterns and/or 

prognosis, potentially exacerbating existing healthcare inequities.32,33

We chose to focus on three measures of algorithmic equity that are both easily measurable 

and have clear policy remedies.34–36 We examined error due to statistical bias, error due to 

variance, and classification parity. Detailed descriptions of these measures are found in the 

Supplemental Methods.

Sensitivity analysis

We conducted several sensitivity analyses to better understand the implications of our 

analytic approach. First, we fit a gradient boosting machine (GBM) model using the same 

approach as the EN model to understand how model specification might affect performance 

and algorithmic equity (Supplemental Table 4).37 Second, given prior evidence that 

suboptimal representation in data collection can lead to suboptimal model performance,38 

we repeated the original EN model but reweighted each observation to reflect the actual 

local population demographics by race at the census block level. Third, we completely 

removed race as a predictor variable, a strategy known as anti-classification, and then refit 

the EN and GBM models while still including the ADI.

Feature importance

We used model-specific approaches to identify feature importance. Using the built-in 

variable importance method in the caret package for the R statistical programming 

language, importance was measured in the EN model using the absolute value of the 

coefficients for each variable using normalized values. For the GBM model, we calculated 

the reduction in loss at each split in each tree attributable to each variable. This is then 

summed over each boosting iteration. Additionally, we measured correlations across input 

variables using Pearson’s to determine their relative independence.
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Results

We analyzed data from 786 patients in the training set and 531 patients in the testing set, of 

whom 134 (17%) and 84 (16%) were readmitted within 30 days of discharge, respectively 

(Table 1). In total, 340 (26%) of the patients identified as white and 977 (74%) as non-white, 

of whom 923 (94%) identified as Black or African-American. Both the EN (BS 0.13, 95% 

CI 0.13 to 0.14) and GBM (BS 0.13, 95% CI 0.11 to 0.16) models had only moderate 

overall performance. Neither the EN nor the GBM model exhibited any difference in overall 

performance with the addition of the ADI (Figure 2). The performance of the EN (BS 

difference <0.001, bootstrap P = 0.79) and GBM (BS difference <0.001, bootstrap P = 

0.72) models were unchanged with the addition of the ADI (Supplemental Table 5). A 

similar pattern was observed when model performance was measured with the C-statistic 

(Supplemental Table 6).

Rates of missingness of predictors varied widely (Supplemental Table 7). Additionally, 

testing rates varied by race for some variables. For example, a total of 198 patients in the 

entire dataset received a drug test during the study period, representing testing rates of 9% 

(31/340) and 17% (167/977) among white and non-white patients, respectively.

Algorithmic equity

Performance among white patients was better than among non-white patients (BS difference 

−0.011, 95% CI −0.021 to −0.002) using the EN model, and equivalent (BS difference 

−0.009, 95% CI −0.039 to 0.022) using the GBM model. The performance difference 

between white and non-white patients was unchanged with the addition of the ADI (Figure 

2).

Among modeling approaches and performance measures, only the EN model performance 

showed very small improvements with increases in the number of predictor variables (Figure 

3). When increasing the size of the training data, small improvements in performance were 

observed up until a sample size of 300 with relatively stable performance beyond that 

(Figure 4).

At low classification thresholds we observed large and divergent classification parity by race 

using predictions from the EN model (Figure 5). Differences in classification parity for the 

GBM were present and comparatively smaller.

Sensitivity analyses

After reweighting the EN model to account for the demographic distribution of race 

according to US Census data, the model performance did not change (Supplemental Figure 

6). When removing race entirely from model training, neither performance nor algorithmic 

equity were meaningfully changed (Supplemental Table 8).

Feature importance

A urine drug screen positive for cocaine use was the most predictive feature in the EN 

models while neither race nor ADI were among the ten most predictive variables for any 
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model (Supplemental Figure 7). Across all available data, white race was strongly correlated 

with a better ADI (r = 0.49, 95% CI 0.45 to 0.53; Supplemental Figure 8).

Discussion

We found that using commonly available EHR data to predict 30-day readmissions for 

patients with heart failure at an urban, academic medical center did not exhibit improved 

performance with the addition of neighborhood-level data using the ADI. At the same time, 

predictive performance was equivalent in models using the ADI instead of race. Further, no 

improvements were observed by any measure in algorithmic equity by race after adding ADI 

to the models. Predictive performance for patients who identified as non-white was slightly 

worse than for those who identified as white, even though there were fewer observations 

of white patients in the dataset. These findings have several potential interpretations with 

implications for researchers, data scientists, and policymakers.39

First, the paradoxically worse performance, albeit by a small margin, for non-white patients 

despite more observations is likely explained by structural properties of the data generating 

process. For example, our sample was limited to hospitalizations and readmissions that 

occurred within UPHS. Based on CMS claims data, UPHS maintains a publicly reported 

30-day CHF readmission rate around 22%, which is consistent with the national average, 

though much higher than the rate captured in this study using EHR data alone and that 

includes patients with all insurance types.40 Additionally, different-hospital readmissions 

following discharge for CHF are common.41 And Black and other racial minority patients 

are more likely to experience fragmented care, and so it is possible that our input variables 

and labels were biased in undercounting readmissions and identifying other relevant risk 

factors among non-white patients receiving care in other health systems. This limitation 

in the data is consonant with prior research identifying recapitulation of bias through 

biased training labels.33 Neither of these types of missingness, in the predictor or outcome 

variables, could be known without data from outside of the health system. Additionally, the 

types of data sources available in the EHR and in the US Census data are not accidental, 

and reflect historical political, operational, and technical choices made by mostly white 

decision makers. For example, the importance of the positive urine drug screen variable 

in this analysis may also reflect biased choices by clinicians to preferentially test Black 

patients42 and thus may be correlated with biased patterns of care. Such biased practices 

would both reinforce racial disparities and introduce noise into prediction models.

Second, the lack of improvement in model performance or performance inequity associated 

with the addition of the ADI to prediction models may be explained by the high correlation 

between ADI and race in a city like Philadelphia. Alternatively, neither variable may carry 

much predictive information relative to the others in this scenario. Although the ADI has 

improved performance in other statistical models in both national and regional datasets, 

local segregation in Philadelphia,43 a consequence of historically racist housing policies, 

may differ from patterns in other regions. In urban areas, for example, individual- and 

neighborhood-level measures of socioeconomic status are more correlated compared to 

more rural regions.44 Thus, new data sources that better capture experiences relevant to 

readmission risk among Black and other non-white patients — experiences likely associated 
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with both individual and structural influences of racism45 — are needed to achieve 

algorithmic equity. This point is further underscored by the fact that the GBM model, 

better able to capture potential complex interactions between input variables, consistently 

performed worse than the EN model. Thus, better data sources and not more complex 

models that are more likely to overfit are needed.

Third, interrogations of algorithmic equity must include assessments over a full range of 

classification thresholds when using performance metrics like the positive predictive value. 

While thresholds are typically chosen based on operational concerns such as tolerability of 

a given alert burden,46,47 these findings suggest that algorithmic equity also varies across 

thresholds. For the models presented here, for example, choosing a threshold that yields 

lower sensitivity and higher specificity — which would be appropriate for a costly care 

management intervention that was intended to be deployed to patients only with high 

probability of 30-day readmission — would produce a relatively high false positive error rate 

among non-white patients, potentially leading to misallocation of resources.

Finally, to detect algorithmic inequity and take action to correct it, every hospital should 

audit its own algorithms prior to deployment. This audit step would provide an opportunity 

to adjust or collect different data if disparities in performance are identified. These 

considerations should even precede any steps routinely considered a part of development 

of clinical prediction models as the result of an audit may lead to the conclusion that a model 

should not be developed or deployed in the first place if equity cannot be ensured. This audit 

step is critical because history, policy, and structural racism influence the data generating 

process in ways that may reinforce existing disparities. Although the ADI may capture some 

of these features on average, local differences may emerge, especially in severely segregated 

populations where race and geography are so highly correlated. In situations where an 

anti-classification approach has been taken, including ADI may allow for a “back door” in 

highly segregated populations where race is a primary driver of geographic variation in the 

components of ADI. Thus, soley removing race from prediction models is not a guarantee 

of algorithmic equity. This is corroborated by existing research that demonstrates how such 

approaches can fail to improve predictive performance equity. This is especially important 

to consider when prediction models are used for risk-adjustment purposes to guide the 

deployment of scarce resources,48 further highlighting the need for robust algorithmic audits 

and early stakeholder involvement to ensure analytic approaches align with local values 

for fairness and transparency. Therefore, researchers, data scientists, and hospital operations 

experts who build clinical prediction models to serve racially diverse populations need to 

consider these historical and structural factors that might influence data generation, model 

development, and ultimately clinical care.

These findings should be interpreted in light of several limitations. First, our sample size 

was relatively small compared to the number of predictor variables in the prediction models 

and it is possible that our models were underfit. However, these sample sizes are typical of 

a large, urban academic medical center and reflect the reality of hospital systems that seek 

to train their own hospital readmission models. Additionally, we noticed negligible increases 

in performance when bootstrapping larger sample sizes beyond 200 to 300 observations, 

suggesting the sample size was probably sufficient for the specified models. Second, we 
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did not explore other approaches to account for performance equality such as those that 

reflect social welfare or the causal impact of an algorithm’s predictions.49 While there is 

not yet a strong consensus on the optimal metrics for this assessment, other strategies may 

be preferred in different clinical and operational contexts. Third, this analysis explored only 

the in silico performance of a predictive algorithm and was not able to account for how 

human decision makers may interact with predictive information, another important step in 

the use of predictive algorithms that may reinforce inequities in clinical care.50 Fourth, racial 

categories in the EHR are subject to inaccuracies51 and our approach did not account for 

potential interactions with designations of patient ethnicity. Fifth, we did not distinguish 

between heart failure with or without preserved ejection fraction,52 or consider other data 

sources such as the text of clinical notes, prescribed medications, presence of implantable 

devices, or echocardiography.53,54 Sixth, our dataset may reflect selection bias in which 

patients in Philadelphia come to UPHS for their care, and thus may not generalize to safety­

net hospitals that often see a larger proportion of non-white and uninsured patients. Finally, 

our study findings may not generalize to communities without histories of segregation in 

which race and ADI may not be correlated.

In summary, data generating processes used to train clinical prediction models are 

influenced by historically oppressive and racist systems. Therefore, models that are fit on 

such data and deployed in practice may inadvertently recapitulate and reinforce historically 

unjust care practices. A first step to avoid replicating such harm is to interrogate all clinical 

prediction models to ensure algorithmic equity. A second, and perhaps more important step, 

is to engage local stakeholders in the framing of the research or operational question. This 

would improve understanding of the data generating and collection processes before model 

training even begins to ensure models are not introducing various forms of selection or 

ascertainment bias founded in historically oppressive institutions. In some cases, new data 

collection procedures and even new data sources may be needed to adequately account 

for patient risk due to the experiences of structural racism and other forms of oppression. 

This process is unlikely to occur without necessary input from Black and other non-white 

patients, community members, researchers, and hospital operations leaders. Research teams, 

data scientists, and hospital operations groups should routinely interrogate their own models 

for performance equality and ensure adequate representation for and accountability to 

groups that may be disparately represented and impacted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Neighborhood-level data did not improve performance of heart failure 

readmission predictions.

• Neighborhood-level data did not change performance differences by patient 

race.

• Predictive performance varied by patient races across difference classification 

thresholds.

• Hospitals should audit clinical predictions for performance and equity prior to 

deployment.
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Figure 1: 
Overview of the study design and methods.
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Figure 2: 
Model performance in aggregate and by race for each model type. Abbreviations: BS = Brier 

score.
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Figure 3: 
Model performance with an increasing number of input variables. Each model was trained 

50 times with each number of variables. A different set of variables was randomly drawn for 

each iteration within the same number of variables.
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Figure 4: 
Model performance with an increasing the number of observations. Each model was trained 

50 times with each number of observations.
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Figure 5: 
The positive predictive value for the elastic net (top) and gradient boosting machine (bottom) 

models varies by race across different predictive thresholds. The absence of an estimate at a 

particular threshold indicates there were no predictions for that group above that threshold 

and thus the positive predictive value could not be calculated. Abbreviations: ADI = Area 

Deprivation Index.
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Table 1:

Characteristics of the study cohort in aggregate, and separately in the training and testing samples.

Variable (n, %) Total Train (Year 1) Test (Year 2)

Patients 1317 786 531

White 340 (26) 189 (24) 151 (28)

Age, median years (IQR) 68.7 (58 to 79.8) 68.4 (58.1 to 79.7) 69.2 (57.7 to 80.1)

Female 709 (54) 419 (53) 290 (55)

Hispanic 30 (2.3) 15 (1.9) 15 (2.8)

Depression 111 (8.4) 73 (9.3) 38 (7.2)

THC 13 (0.1) 11 (1.4) 2 (0.4)

Cocaine 14 (1.1) 11 (1.4) 3 (0.6)

Medicaid 249 (19) 147 (19) 102 (19)

Outpatient Visits, median (IQR) 3 (0 to 10) 3 (0 to 10.75) 3 (0 to 10)

Emergency Department Visits, median (IQR) 0 (0 to 1) 0 (0 to 1) 0 (0 to 1)

Hospitalizations, median (IQR) 0 (0 to 1) 0 (0 to 1) 0 (0 to 1)

Systolic blood pressure (mmHg) 117 (104 to 129) 117 (103 to 130) 117 (105 to 127)

Temperature (F) 98.4 (98.1 to 98.7) 98.4 (98.1 to 98.7) 98.4569 (98.2 to 98.7)

Pro-BNP, median (IQR) 4971 (2320 to 9416) 5216 (2328 to 9317) 4819 (2306 to 9814)

Glucose (mg/dL) 98 (87 to 120) 98 (86 to 120) 99 (88 to 119.5)

White blood cell count (x103/μL) 7.9 (6.0 to 10.0) 7.7 (6.0 to 9.8) 8.0 (6.3 to 10.0)

pCO2 (mmHg) 47.8 (44.4 to 52.9) 45.4 (43.1 to 48.3) 52.8 (49.0 to 55.0)

Blood urea nitrogen (mg/dL; BUN), median (IQR) 23 (17 to 35) 23 (17 to 34) 24 (17 to 35)

Sodium (mEq/L) 138 (135 to 140) 137 (135 to 139) 138 (135 to 140)

Creatine phosphokinase (units/L; CPK), median (IQR) 224 (155 to 380) 217 (152 to 327) 234 (160 to 464)

Total bilirubin (mg/dL) 0.9 (0.7 to 1.1) 0.8 (0.6 to 1.0) 0.9 (0.7 to 1.2)

International normalized ratio (INR) 1.4 (1.2 to 1.7) 1.3 (1.2 to 1.7) 1.4 (1.2 to 1.9)

Troponin (ng/mL) 0.03 (0.01 to 0.08) 0.03 (0.01 to 0.09) 0.03 (0.01 to 0.07)

Albumin (g/dL) 3.5 (3.4 to 3.7) 3.5 (3.4 to 3.7) 3.6 (3.3 to 3.7)

Creatinine (mg/dL) 1.29 (1 to 1.8) 1.31 (1.01 to 1.8375) 1.24 (1 to 1.77)

ADI State Rank 8 (5 to 10) 9 (5 to 10) 8 (5 to 10)

30-day hospital readmissions 218 (17) 134 (17) 84 (16)

Abbreviations: IQR = Interquartile range.
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