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Abstract

In this review, we examine the role of microRNAs in the development of the prefrontal cortex 

(PFC) in adolescence and in individual differences in vulnerability to mental illness. We describe 

results from clinical and preclinical research indicating that adolescence coincides with drastic 

changes in local microRNA expression, including microRNAs that control gene networks involved 

in PFC and cognitive refinement. We highlight that altered levels of microRNAs in the PFC are 

associated with psychopathologies of adolescent onset, notably depression and schizophrenia. We 

show that microRNAs can be measured non-invasively in peripheral samples and could serve as 

longitudinal physiological readouts of brain expression and psychiatric risk in youth.
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1. Introduction

Adolescence is a developmental period marked by sexual maturation, novel-experience 

seeking, and transition in cognitive skills. This malleable window is sensitive to 

perturbations including drugs of abuse and stress, which can render individuals at risk 

for mental illness. Enhanced psychiatric vulnerability in adolescence has been attributed 

to substantial changes occurring in the maturing prefrontal cortex (PFC) during this time. 

Dysfunction of the PFC is linked to changes in personality, emotional response, memory, 

attention, and social behavior [1–7], and is observed in psychopathologies that emerge in 

adolescence [8–11]. The molecular mechanisms and the timeline underlying susceptibility 

or resilience to PFC dysfunction remain elusive. MicroRNAs are essential coordinators 

of developmental programing, and mediators between environmental factors and changes 

in gene expression. In this review we propose that microRNA-mediated shaping of PFC 
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circuitry maturation in adolescence may be an important determinant of lifetime mental 

health.

1.1. MicroRNAs: functional complexity

Microribonucleic acids, or microRNAs, are small RNA molecules that serve as key 

regulators of large-scale gene expression. MicroRNAs are non-coding RNA 19–25 

nucleotides long and are single-stranded. They can match and bind seed regions of several 

different messenger RNAs (mRNAs). This property allows a single microRNA to control 

and coordinate activity of entire gene networks and cellular pathways [12]. MicroRNA 

biogenesis is a multi-step process. Briefly, the more common canonical biogenesis starts 

with the transcription of primary microRNAs, which are double-stranded long hairpin-like 

structures with a polyA tail. The polyA tail is then cleaved by the microprocessor complex 

(Drosha/DGCR8), generating a double-stranded precursor microRNA, which is exported 

from the nucleus to the cytoplasm by the Exportin-5 protein. Once in the cytoplasm, 

Dicer endoribonuclease cleaves the precursor microRNA, to produce a single-stranded and 

functional mature microRNA, either the forward 5’ (5p) or the reverse 3’ direction (3p) of 

the original strand. The mature microRNA is then loaded into an Argonaute family protein 

(AGO 1–4 in humans) to form a microRNA-induced silencing complex (miRISC) that 

interacts with the 3’-untranslated region (UTR) of the mRNA target (for detailed reviews see 

[13,14]).

The binding of microRNAs to perfectly complementary mRNA sequences (2–7 nucleotides) 

of target genes usually induces transcript degradation and/or prevention of mRNA 

translation [13]. However, increased mRNA translation upon microRNA binding to mRNAs 

targets has also been described [15,16]. Mature functional microRNAs can be found in 

the cell’s cytoplasm and in the nucleus, and their distribution can change in response to 

environmental factors [17,18]. MicroRNAs localized to the cytoplasm and those in the 

nucleus seem to be involved in different processes. Nuclear microRNAs can trigger gene 

transcription by binding and activating enhancer regions [19] or by directly binding to 

promoter regions [20]. The variety of mechanisms involved in microRNA control over gene 

expression indicates the complexity of the system and that much remains to be uncovered.

1.2. Contribution of microRNAs to early cortical development

The majority of microRNAs are evolutionary conserved and play analogous biological 

functions across species, including in neurodevelopment. In this review we focus on the 

role of microRNAs in the development of the cerebral cortex, the most superficial sheet of 

the mammalian brain, which is involved in higher-order cognitive function and sensory 

processing. MicroRNAs are proving to be essential regulators of cortical development 

[21], playing critical roles in the production of progenitor cells [22–25] and in the 

survival, differentiation and spatiotemporal organization of cortical neurons [26–29]. A 

microRNA network appears to have evolved to specifically shape the developmental fate 

of corticospinal and callosal projection neurons, which are at the root of mammalian 

(more specifically eutherian) brain anatomy and function [30]. Obstruction of microRNA 

function or of enzymes involved in microRNA synthesis (e.g. Dicer, DGCR8) induces 

dramatic disruption of cortical development, from cell viability and premature progenitor 
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differentiation during corticogenesis to cortical malformations [29,31,32]. MicroRNA 

control over cortical development extends to adolescence [33], when the prefrontal portion 

of the cortex continues to undergo substantial maturation [34–42], remaining particularly 

vulnerable to environmental factors.

2. Adolescence is a critical period for PFC development, microRNA 

expression, and psychiatric vulnerability

The PFC is often characterized as the “executive” center where information is processed 

and integrated to carry out complex functions, including planning, decision-making and 

goal-directed behavior. One third of the cerebral cortex in primates is the anterior region 

of the frontal lobe [43], although in rodents the PFC takes smaller percentage of the total 

cortical area. As reviewed elsewhere, differences in PFC cytoarchitecture between primates 

and rodents are important limitations to the translation of findings across species [8,44,45]. 

However, both anatomically and functionally, the PFC is believed to be homologous 

between primates and rodents, with some disagreement remaining as to the specific 

correspondences between PFC subregions between primates and rodents [45].

A common feature of the PFC in rodents and primates is that it continues to sustain 

significant structural and functional maturation across the adolescent period and into 

early adulthood [34–38,42]. This protracted development is accompanied by corresponding 

transitions in behaviors and cognitive function, including the gradual stabilization of 

emotional reactivity, novelty seeking, cognitive control, and decision-making [36,46]. 

During adolescence, the PFC undergoes gray matter volume reduction, white matter content 

increase, and refinement in circuitry cytoarchitecture, including axonal myelinization, 

dendritic morphology and synaptic density [34,38,47]. The pari passu unfolding of 

structural and behavioral correlates indicates that proper PFC development is critical for 

the maturation of cognition and behavior. Adolescence is in fact a sensitive developmental 

time that sets the stage for lifelong mental health (see [48]).

Here we review evidence implicating microRNAs in adolescent maturation of the PFC 

and in the increased vulnerability to psychiatric disorders during this age. Nevertheless, 

changes in microRNA expression in the cortex at any point of the developmental continuum 

can affect the function of gene networks controlling ongoing homeostatic processes [49]. 

Emerging results from rodent studies supports the notion that microRNAs are key epigenetic 

mediators of early environmental programing on neurocircuitry, cognitive development and 

function throughout the lifespan [33,50,51], even lasting across generations [52, 53].

Human postmortem brain studies have shown that microRNA expression in the PFC is 

highly influenced by age with some microRNAs being differentially expressed between 

infancy, early and late childhood, and adolescence [54]. Remarkably, the adolescent period 

coincides with a shift in the pattern of global microRNA expression. A study analyzing 

average expression of microRNAs in the PFC from neonates to older adults found that 

precisely in adolescence the pattern of microRNA expression splits into two diverging 

directions: while some microRNAs begin to be upregulated, others are downregulated, 

with the new pattern of expression maintained for the rest of life [55]. To probe possible 
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biological implications of the age-associated microRNA expression split, the authors 

performed gene target, pathway and function analyses. They found that gene targets of the 

“split” microRNAs are involved in nervous system development and function, cell-to-cell 

signaling and interactions (e.g. synaptic transmission and axon and neurite morphology) 

and have been associated with schizophrenia, bipolar and other mood disorders. This 

study also revealed that the expression of genes involved in microRNA biogenesis, notably 

EXPORTIN-5 and DICER, also switches from teenagehood onward [55]. These findings 

suggest that abnormalities in the adolescent pattern of microRNA expression trajectories in 

the PFC could lead to predisposition to mental illness.

Dysfunction of the PFC has been strongly implicated in the etiology of psychiatric 

disorders of adolescent onset, including schizophrenia, major depressive disorder (MDD) 

and substance use disorder (see: [8, 56–58]). An increasing number of studies, including 

those by our group, have identified alterations in microRNA expression in postmortem 

PFC samples of psychiatric patients. A summary of results from studies in schizophrenia, 

bipolar disorder, depression, and substance use disorder, are presented in Table 1. Some 

microRNAs have been found to be dysregulated in multiple disorders, suggesting that they 

may play a role in core neurodevelopmental processes. miR-29, for example, is involved 

in cortical maturation [59], neuronal differentiation [60], neuron survival [61], and synapse 

formation [62], and appears to be altered in both schizophrenia and bipolar disorder. In fact, 

a recent study in rodents links miR-29 to neurobehavioral deficits through the regulation 

of postnatal cortical maturation [63]. Studies are needed to assess the role and timing of 

specific microRNAs in the pathogenesis of these disorders.

2.1. Role of miR-218 in psychiatric disorders of PFC dysfunction and adolescent onset

Major depression is one of the most widespread psychiatric disorders, ranked by the World 

Health Organization as the leading cause of disability worldwide [64], and as many as 40% 

of patients diagnosed with MDD do not respond to common antidepressant therapies [65–

67]. The incidence of depression is high between the ages 12–25 [68–71] and an alarming 

25% of adolescents meet the criteria for depression [72–75]. Experiencing a depressive 

episode in adolescence increases the risk of depression and of higher severity in adulthood 

up to 3-fold [76–78].

In our studies investigating microRNAs involved in PFC maturation and MDD vulnerability, 

we identified the microRNA miR-218-5p (whose matured sequence originates from the 5’ 

strand of its miR-218-1 or miR-218-2 stem loop precursors), as a repressor of the DCC 
gene. DCC is a receptor for the guidance cue Netrin-1 [79] and is intimately involved in 

the formation of neuronal networks during early neurodevelopment. Notably, DCC-mediated 

Netrin-1 signaling controls the protracted maturation of the PFC circuitry specifically in 

adolescence [80–82]. Using postmortem brain samples, we showed that DCC expression 

in the PFC of adult individuals who were diagnosed with MDD and died by suicide 

is significantly upregulated compared to control individuals who died by sudden death 

[79]. We replicated this finding in two independent cohorts [79,80]. To probe the role of 

miR-218–5p (henceforth referred to as miR-218) in the DCC expression changes observed 

in MDD, we assessed its expression in the same postmortem PFC samples and found that 
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miR-218 is downregulated in MDD by approximately 50% compared to controls. Reduced 

levels of miR-218 correlate with elevated expression of DCC in the PFC of individuals 

with depression, suggesting a causal link between miR-218 and DCC alterations in MDD 

pathogenesis [79].

A rapidly increasing number of studies show that changes in DCC are linked to vulnerability 

to psychopathologies of adolescent onset and involving PFC dysfunction, most prominently 

MDD (reviews from [83, 84]). Furthermore, we have shown that variation in the DCC 
gene co-expression network within the PFC is associated with total brain volume across 

childhood, highlighting the role of this system in broad postnatal neurodevelopment [85]. 

Whether genetic variants (single nucleotide polymorphisms) within DCC (see Ref. [86]) 

affect the binding of microRNAs, or whether changes in expression of the DCC network are 

linked to altered microRNA function, remains to be shown.

Postmortem studies cannot reveal whether alterations in microRNA expression in MDD 

mediate atypical development of the PFC and/or play a causal role in disorder 

symptomatology. MicroRNAs are highly conserved, and miR-218-5p is homologous 

between humans, macaques, and rodents (UCSC genome browser [87]), offering a link 

between preclinical and translational studies. The social defeat stress paradigm is a well­

established model used in rodents to study stress-induced behavioral abnormalities that 

resemble depression-like traits [88,89]. Using this model, we assessed the effects of 

reducing the levels of miR-218 directly in the PFC of adult male rodents via anti-sense 

oligonucleotides (“antagomirs”). Consistent with the reduced expression of miR-218 in 

the PFC of MDD patients, we found that downregulating miR-218 in the adult mouse 

PFC increases Dcc expression and elicits vulnerability to stress-induced depression-like 

behavioral abnormalities [90]. Furthermore, in mice that show resilience to stress, intranasal 

administration of miR-218 antagomir induces a similar vulnerability. Upregulating miR-218 

in the PFC, via viral-mediated gene transfer, instead reduces Dcc expression and protects 

against stress-induced depression-like behavioral traits, pointing at miR-218 as a potential 

therapeutic target. Altered miR-218 levels in the PFC have also been reported in adult 

stress-exposed rats (either through the chronic stress paradigm or corticosterone injections) 

[91], and in adult mice exposed to chronic unpredictable mild stress [92].

Given that DCC receptors control the adolescent maturation of the PFC [80–82], we 

investigated miR-218 expression in the mouse PFC across postnatal life. Consistent with 

the adolescent shift in global microRNA expression observed in the PFC in humans 

[54,55], miR-218 levels in mice increase from early adolescence to adulthood. Postnatal 

PFC miR-218 and Dcc expression in mice correlate negatively [33]. Disrupting this 

developmental pattern has enduring behavioral consequences: downregulation of miR-218 in 

the PFC of adolescent mice via antagomir microinfusion, induces resilience to detrimental 

effects of chronic social defeat stress in adulthood. This finding is opposite to the effects 

seen following miR-218 downregulation in the adult matured PFC, yet in line with the idea 

that changes in the adolescent pattern of microRNA expression in the PFC are associated 

with vulnerability to developing psychiatric traits. Interestingly, results from a preliminary 

experiment show that intranasal administration of miR-218 antagomir in adolescent male 

mice leads to reduced anxiety-like behavior in adulthood, without affecting motor abilities 
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[93–95], indicating that targeting microRNA expression in adolescence may have enduring 

preventative and/or treatment benefits.

The opposite effects that adolescent versus adult antagomir-218 microinfusions in the 

PFC have on stress vulnerability are intriguing [33,79,90], particularly within the context 

of miR-218 regulation of Dcc expression across postnatal life [33]. The Netrin-1/DCC 

guidance cue pathway organizes neural connectivity in the developing and matured brain 

via age-specific molecular and cellular processes. In adolescence, DCC-mediated Netrin-1 

signaling is involved in axonal targeting and growth, whereas in the adult brain this 

signaling pathway controls the refinement of already established circuitries, by modifying 

neuronal structure, including dendritic spine morphology [83,84]. The role of miR-218 in 

shaping psychiatric vulnerability or resilience is likely to be dictated by the function of the 

Netrin-1/DCC pathway at that particular developmental period. Downregulating miR-218 in 

the adolescent PFC, when its levels are significantly lower than in adulthood, would prolong 

high expression of Dcc and likely extend the postnatal window of axonal targeting and 

growth and synapse formation. In contrast, reducing miR-218 in the adult PFC, would bring 

Dcc expression to levels observed in the immature brain, eliciting aberrant changes in the 

organization of synaptic circuitry. RNA sequencing based strategies assessing alterations in 

PFC gene expression under antagomir-218 treatment in adolescence versus adulthood would 

aid in elucidating gene networks and pathways involved in the distinct behavioral outcomes.

2.2. microRNAs may coordinate the organization of synaptic circuits in the developing 
adolescent PFC

The maturation of the PFC requires tight regulation of gene expression to drive proper 

neuronal connectivity and plasticity [42,96]. In cultured cortical neurons, microRNAs have 

been shown to modulate synaptogenesis [97] and axon extension [97–100]. In rodent studies 

with a focus on early postnatal life, microRNAs have been found to regulate cortical 

pyramidal neuron dendritic structure [101] and spine morphology [102], which are key 

determinants of intercellular communication and circuitry organization. The influence of 

microRNAs over PFC development in adolescence likely involves coordinating expression 

of gene networks that control the establishment of synaptic connections, including 

those influencing dendritic spine morphology and plasticity. Consistent with this idea, 

postnatal deficiency in microRNA production in pyramidal neurons, due to conditional 

downregulation or deletion of the DGCR8 microprocessor, results in altered dendritic 

morphology and synaptic transmission in the PFC [103,104]. miR-218 is highly expressed 

in dendritic spine compartments of PFC pyramidal neurons [102], and changes in its 

expression are associated with modification of spine morphogenesis in these cells [90]. 

Changes in somatodendritic properties of PFC pyramidal neurons are well documented in 

psychiatric disorders of adolescent onset [105,106]. Abnormal neuronal size [107], dendritic 

outgrowth [108], reduced basal dendrite [109] and spine density [110] have all been reported 

in schizophrenia. In MDD, modifications in dendritic spine morphology, density of PFC 

pyramidal neurons, and loss of synapses in PFC circuitry have also been consistently 

documented [106,111]. Altered microRNA expression in the PFC in adolescence may 

disrupt ongoing synaptic pruning and the balance of excitatory and inhibitory signaling, 

inducing psychiatric vulnerability [61,105].
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3. Circulating microRNAs as biomarkers of psychiatric risk in 

adolescence

The neurobiological processes underlying the elevated risk for psychiatric disorders 

in adolescence has not been representatively studied and there is a pressing need to 

identify biological factors that would aid in early identification and prevention. Depressive 

symptoms and rates in adolescents have been on a rapid rise with the ongoing global viral 

pandemic [112–116]. The abrupt change in psychosocial interaction and elevated stress 

stemming from home confinement already appears to be disproportionately exacerbating 

depressive symptoms in youth [112,115,116]. Unfortunately, the number of studies in 

psychiatry aimed at discovering biological markers of risk in adolescence is scant. Using 

keywords “biomarker” and “psychiatry” in the Scopus® search engine yields a track record 

from the year 1989 with ~ 500 articles added per year in the last two decades (Fig. 1A). 

Adding the keyword “adolescence” to the search shows a track record from the year 2000 

with only ~80 articles published annually in the last 6 years (Fig. 1B). More studies aimed 

at discovering biomarkers to detect psychiatric vulnerability in adolescence are urgently 

needed.

MicroRNAs are emerging as promising diagnostic and therapeutic tools in human disease 

[117]. They are very stable, do not degrade due to heat [118] or after prolonged storage 

[119,120], and are abundant and readily detectable in a variety of peripheral fluids, such 

as blood, saliva, and urine [121,122]. MicroRNAs are secreted into peripheral fluids and 

transported out of cells via exosomes, microvesicles, or by binding to proteins, achieving 

post-transcriptional regulation of gene expression at far away targets. Parallel changes in 

microRNA expression have been observed between brain and peripheral samples [33,79, 

123–126]. In our miR-218 studies in mice, we have found that the dynamic pattern of 

miR-218 expression in the postnatal PFC is also observed in blood and that stress-induced 

reduction of miR-218 levels in the PFC is also detected in blood samples [33]. In 

humans, miR-218 levels in blood also appear to be downregulated in MDD, as observed 

in a study in aging individuals with MDD and cognitive impairment [127]. Remarkably, 

direct upregulation and downregulation of miR-218 in the PFC of adult mice, including 

specifically within pyramidal neurons, lead to corresponding changes in peripheral blood 

[79]. MicroRNAs in peripheral fluids may serve as readout of brain expression and function, 

and be used for early prediction of risk severity for mental illness [128].

To address whether peripheral microRNAs in adolescence could serve as biomarkers of 

psychiatric vulnerability, we collected blood samples from adolescent male mice that 

were subjected to chronic social defeat stress in adulthood. We found that circulating 

miR-218 in adolescence predictsvulnerability to stress-induced depression-like behavioral 

abnormalities in adulthood. In comparison to control and resilient groups, adult mice that 

showed susceptibility to stress had elevated blood levels of miR-218 in adolescence [33]. 

Previous studies assessing the role of microRNAs as early biomarkers of psychiatric risk 

in humans have provided an exciting direction for the field. However these studies have 

focused on associating participant-reported adverse childhood events with later outcomes 

or diagnosis [50], or comparing a child cohort with a separate adult group [129], rather 
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than longitudinally following up on adolescent cohorts. We propose that future longitudinal 

studies be designed to identify microRNA profiles in peripheral samples from adolescent 

boys and girls to determine whether they can serve as identification markers of risk and 

guide preventative and intervention measures specifically during this age (Fig. 2). Analysis 

of global microRNA expression through unbiased small RNA sequencing of peripheral 

sampling is a promising strategy we are currently using to investigate changes associated 

with the development of maladaptive behaviors in longitudinal adolescent cohorts. These 

studies may identify microRNAs not previously linked to psychiatric traits as well as 

provide more information regarding the potential role of microRNAs differentially expressed 

in psychiatric disorders (e.g. Table 1) in adolescent neurodevelopment. Finding associations 

between circulating microRNAs and changes in cognitive function and behavior during 

adolescence may also shed light into whether specific microRNAs play a role in shaping 

developmental trajectories in the human brain.

The transition from adolescence to adulthood does not have a clearly defined differentiating 

boundary [130–132]. Given our studies in rodents showing that circulating miR-218 levels 

in adolescence and in adulthood predict opposite outcomes regarding stress susceptibility, 

diagnosis prediction using peripheral microRNAs in late adolescence may be limited and 

would need to be considered with caution. Assessing microRNA biomarkers in combination 

with clinical observations and markers of developmental stages, including the Tanner 

pubertal staging and hypothalamic-pituitary-adrenal axis responses [133], is an important 

next step.

4. Conclusions and future directions

This review shows that microRNA control over gene networks that organize PFC circuitry 

during adolescence may be a key mechanism in the development of vulnerability or 

resilience to mental illness. MicroRNAs measured in saliva or blood in adolescence may 

serve as indicators of PFC maturational stage and function and be used to predict behavioral 

outcomes to stress later in life. In biofluids, microRNAs are enriched in exosomes [134] and 

the approach of isolating circulating brain-specific exosomes [135–137] during adolescence 

could serve as a more objective measure of brain function and maturational state, enhancing 

the specificity and sensitivity of microRNAs as diagnostic tools. In this review we focused 

on microRNA expression in the PFC. However, microRNAs in non-cortical regions are 

also likely to contribute to PFC development and to the etiology of MDD, schizophrenia 

and substance use disorders. Indeed, miR-218 levels have been shown to be also elevated 

in the postmortem lateral amygdala of individuals with neuroticism and anxiety [138]. In 

rodents, the disruption of PFC dopamine development by exposure to recreational-like doses 

of stimulant drugs of abuse in adolescence requires miR-218 upregulation in the ventral 

tegmental area [139]. Manipulations of brain-wide microRNA expression via systemic 

administration of antagomir will aid in prevention, and in the discovery of therapeutic 

treatments [117].

The incidence rate and onset of PFC-related psychiatric disorders that emerge during 

adolescence are sex specific [140,141]. This poses an important limitation to the results 

derived from studies assessing the role of microRNAs on PFC development and adolescent 
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risk, which have largely been conducted exclusively in males. As the prevalence of mental 

illness in adolescent boys and girls is on a rise, there is a pressing need for basic and 

clinical research in both males and females. In our own unpublished studies we are finding 

sexual dimorphisms in the pattern of microRNA expression in the postnatal PFC and in our 

translational studies we are prioritizing cohorts with representative male and female ratios.

How experiences in adolescence impact microRNA systems in the developing brain needs to 

be assessed in more detail. Particularly, whether they are regulated by adaptive and coping 

mechanisms, including biological, psychological, or social factors, that result in resilience 

despite adversity-related risk [142]. Individuals with the highest risk for mental illness are 

often the ones who benefit the most from early positive interventions [143]. A few recent 

studies have begun to address the involvement of microRNAs in this regard [123,144–148], 

but the developmental adolescent perspective in this line of research is missing. Efforts to 

understand microRNA function in PFC development prior to the closing of the formative 

adolescent window may ultimately help improving mental health outcomes for youth.
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Fig. 1. 
Number of articles published in the topic of biomarkers for psychiatric risk according to 

searches using Scopus ® Elsevier B.V. (A) Using keywords “biomarker” and “psychiatry” 

yields a track record, as of February 2021, from the year 1989 with ~ 500 articles added 

per year in the last two decades. (B) Using the keywords “biomarker”, “psychiatry” and 

“adolescence” to the search shows a track record from the year 2000 with only ~80 articles 

published annually in the last 6 years.
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Fig. 2. 
Peripheral microRNAs in adolescence as indicators of neurodevelopmental state and 

psychiatric risk. Assessment of microRNA profiles in peripheral samples from adolescent 

boys and girls in longitudinal studies could (i) help identifying markers of risk and 

resilience, (ii) guide prevention and intervention programs specifically for this age, and 

(ii) allow monitoring of disease severity.
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Table 1

Evidence showing alterations in microRNA expression in postmortem prefrontal cortex samples of psychiatric 

patients. The methods for measuring microRNA expression vary across studies, most likely explaining the 

variability of findings.

microRNAs Cortex region Human condition Reference

miR-26b, miR-30b, miR-29b, miR-195, 
miR-92, miR-30a-5p, miR-30d, miR-20b, 
miR-29c, miR-29a, miR-212, miR-106b, miR-7, 
miR-24, miR-30e, miR-9-3p

PFC BA-9 Schizophrenia vs. non­
psychiatric control subjects

Perkins et al., 2007 [149]

miR-346 BA46 Zhu et al., 2009 [150]

miR-34a, miR-132, miR-212, miR-544, miR-7, 
miR-154,

Dorsolateral PFC 
BA-46

Schizophrenia vs. control 
individuals

Kim et al., 2010 [151]

miR-504, miR-454, miR-29a, miR-520c-3p, 
miR-140-3p, miR-145, miR-767-5p, miR-22, 
miR-145, miR-874, miR-133b, miR-154, 
miR-32, miR-573, miR-889

Bipolar vs. control individuals

let-7d, miR-128a, miR-16, miR-181a, b, 
miR-20a, miR-219, miR-27a, miR-29c, miR-7

Dorsolateral PFC BA-9 Schizophrenia vs. control 
individuals

Beveridge et al., 2010 [152]

miR-553, miR-369-3p, miR-18a, miR-339-5p, 
miR-1, miR-7, miR-196a, miR-301a, miR-144, 
let-7g, miR-153, let-7f, miR-203, miR-34c-5p, 
miR-101, miR-376c, miR-665, miR-152, 
miR-194, miR-423-5p, miR-515-3p, miR-374b, 
miR-140, miR-519b-3p, miR-586, miR_135b, 
miR-92a, miR-15b, miR-580, miR-146a, 
miR-454-3p, miR-380, miR-652, miR-802, 
miR-196b

PFC Alcohol user vs. control Lewohl et al., 2011 [153]

miR-328, miR-17-5p, miR-134, miR-652, 
miR-382, and miR-107

Dorsolateral PFC 
BA-46

Schizophrenia/schizoaffective 
disorder vs. control individuals

Santarelli et al., 2011 [154]

miR-330, miR-33, miR-193b, miR-545, 
miR-138, miR-151, miR-210, miR-324-3p, 
miR-22, miR-425, miR-181a, miR-106b, 
miR-193a, miR-192, miR-301, miR-27b, 
miR-148b, miR-338, miR-639, miR-15a, 
miR-186, miR-99a, miR-190, miR-339

BA-9 Schizophrenia vs. control 
individuals AND Bipolar vs. 
control individuals

Moreau et al., 2011 [155]

miR-132 Dorsolateral BA-46 Schizophrenia vs. control 
individuals

Miller et al., 2012 [156]

miR-383, miR-32, miR-490-5p, miR-165b, 
miR-513-5p, miR-876-3p, miR-449b, miR-297, 
miR-188-5p, miR-187

miR-142-5p, miR-137, 
miR-489, miR-148b, 
miR-101, miR-324-5p, 
miR-301a, miR-146a, 
miR-335, miR-494, 
miR-20b, miR-376a, 
miR-190, miR-155, 
miR-660, miR-130a, 
miR-27a, miR-497, 
miR-10a, miR-20a, 
miR-142-3p

Bipolar vs. control individuals 
PFC BA-9 Depressed suicide vs. 

control individuals

Smalheiser et al., 2012 [157]

miR-185 Anterior PFC BA-10 Depression vs. control 
individuals

Maussion et al., 2012 [158]

hsa-miR-375, hsa-miR-3065-5p, hsa-miR-488­
star, hsa-miR-299-3p, hsa-miR-377, hsa­
mir-516a-2, hsa-miR-767-5p, hsa-miR-493, 
hsa-miR-379, hsa-miR-105, hsa-miR-29b, hsa­
miR-149

Frontal BA-9 Alcohol user vs. control Manzardo et al., 2013 [159]

miR-31, miR-33, miR-96, miR-28, miR-30e-5p, 
miR-199a, miR-501, miR-504, miR-15b, 
miR-29c, miR-455, miR-380-3p, miR-323, 

PFC BA-9 Differential expression for 
schizophrenia, bipolar and 
control groups

Banigan et al., 2013 [160]
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microRNAs Cortex region Human condition Reference

miR-527, miR-93, miR-32, miR-20b, 
miR-516-5p, miR-92, miR-30a-3p, miR-497 etc.

miR-17-5p, miR-331-5p, miR-16-5p, 
miR-187-3p, miR-106b-5p, miR-485-5p, 
miR-129-2-3p, miR-454-3p, miR-185-5p, 
miR-429-3p, miR-511, miR-18a-5p, 
miR-590-5p, miR-106a-5p, miR-145-5p, 
miR-642a-5p, miR-625-5p, miR-508-3p, 
miR-219-2-3p

PFC BA-10 Schizophrenia vs. control 
individuals

Smalheiser et al., 2014 
[161]

miR-17-5p, miR-145-5p, miR-579, 
miR-106b-5p, miR-485-5p, miR-370, 
miR-500a-5p, miR-34a-5p, miR-29c-3p

Bipolar vs. control individuals

miR-508-3p, miR-152-3p Depression vs. control 
individuals

miR-34c-5p, miR-139-5p, miR-195, miR-320c Ventrolateral PFC 
BA-44

Depression vs. control 
individuals

Lopez et al., 2014 [162]

miR-1202 Ventrolateral PFC 
BA-44

Depression vs. control 
individuals

Lopez et al., 2014 [163]

miR-218 Ventrolateral PFC 
BA-44

Depression vs. control 
individuals

Torres-Berrio et al., 2017 
[79]

miR-124 Dorsolateral PFC 
BA-46

Depression vs. control 
individuals

Roy et al., 2017 [164]

miR-146a-5p, miR-146b-5p, miR-24-3p, 
miR-425-3p

Ventrolateral PFC 
BA-44

Depression vs. control 
individuals

Lopez et al., 2017 [165]

miR-19a-13p Dorsolateral BA-10 Depression vs. control 
individuals

Wang et al., 2018 [166]

miR-3162, miR-936 BA-46 Schizophrenia vs. control 
individuals

Hu et al., 2019 [167]

miR-30e Dorsolateral PFC BA-9 Depression vs. control 
individuals

Gorinski et al., 2019 [168]
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