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Abstract

Background: Polycystic liver diseases (PLDs) are genetic inherited disorders char-

acterized by the progressive growth of numerous intrahepatic biliary cysts, which

are the main cause of morbidity. Previous studies revealed that cystic chol-

angiocytes are characterized by endoplasmic reticulum stress and aberrant post-

translational modification (PTM) of proteins, in particular hyper‐SUMOylation, that

promote PLD pathobiology. Protein NEDDylation is a newly characterized PTM that

modulates a plethora of biological processes and its dysregulation is associated with

the development and progression of several human diseases. However, the role of

NEDDylation in PLD remains elusive.

Objective: To explore the role of protein NEDDylation in PLD and its potential

therapeutic regulatory value.
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Methods: Levels and functional effects of NEDDylation, including response to

Pevonedistat (first‐in‐class selective inhibitor of the NEDDylation E1 enzyme NAE),

were assessed in vitro, in vivo, and/or in patients with PLD. NEDDylated

protein levels in normal and cystic human cholangiocytes were assessed by

immunoprecipitation, and the proteomic profile was further analyzed by mass

spectrometry.

Results and Conclusion: The genes involved in the NEDDylation pathway were

found overexpressed (mRNA) in polycystic human and rat liver tissue, as well as in

cystic cholangiocytes in culture, compared to controls. Elevated levels of NEDDy-

lated proteins were further confirmed in cystic cholangiocytes in vitro, which

diminished under Pevonedistat incubation. Pevonedistat promoted apoptotic cell

death and reduced proliferation in cystic cholangiocytes in vitro. Comparative

proteomic profiling of NEDD8‐immunoprecipitated proteins between normal and

cystic cholangiocytes in culture reported candidate proteins involved in cysto-

genesis, mostly associated with protein biogenesis and quality control. All these

data indicate that cystic cholangiocytes display increased protein NEDDylation,

contributing to cell survival and proliferation, ultimately supporting hepatic cysto-

genesis. Targeting of protein hyper‐NEDDylation in cystic cholangiocytes inhibits

cystogenesis in experimental models, representing a novel therapeutic

opportunity in PLD.
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INTRODUCTION

Polycystic liver diseases (PLDs) are genetic disorders characterized

by progressive growth of numerous (>10) fluid‐filled intrahepatic

biliary cysts.1 PLD includes a wide spectrum of heterogeneous he-

reditary disorders that exhibit either isolated liver cysts in autosomal

dominant polycystic liver disease or coexists with kidney cysts in

autosomal dominant polycystic kidney disease (ADPKD) or autosomal

recessive polycystic kidney disease. Most common comorbidities

include abdominal pain or distension, shortness of breath, and

gastroesophageal reflux, which are aggravated by mechanical pres-

sure of cysts. Infrequently, PLD is complicated by portal hyperten-

sion, hepatic cyst rupture, infection, or hemorrhage. Current

therapeutic strategies (i.e., radiological, surgical, and pharmacolog-

ical) only mildly ameliorate symptomatology and display short‐term
benefits, thus positioning liver transplantation as the only potential

curative option.1 To develop effective therapies, understanding the

complex pathogenesis and providing insights into the molecular

mechanisms of PLD is of pivotal importance.

The great majority of mutations so far described in patients with

PLD (i.e., PKD2, PRKCSH, SEC63, GANAB, SEC61B, ALG8, and ALG9) are

mapped to genes that code for proteins localized in the endoplasmic

reticulum (ER) and thus associated with protein biogenesis and

Key summary

Summarize the established knowledge on this subject

� Polycystic liver diseases (PLDs) are genetic inherited

disorders characterized by progressive growth of intra-

hepatic biliary cysts.

� Most PLD‐associated genes code for endoplasmic retic-

ulum (ER)‐resident proteins.
� Cystic cholangiocytes are characterized by ER stress,

aberrant post‐translational modification (PTM) of pro-

teins and abnormal protein homeostasis.

� Protein hyper‐SUMOylation promotes PLD patho-

biology.

What are the significant and/or new findings of this study?

� Protein NEDDylation is dysregulated in PLD, reinforcing

the abnormal protein dynamics.

� Hyper‐NEDDylated proteins in PLD are mostly associ-

ated with protein biogenesis and quality control.

� Targeting protein hyper‐NEDDylation increases apo-

ptosis and reduces proliferation of cysticcholangio-

cytes.
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transport, triggering general abnormalities in cell protein homeostasis.

Thus, aberrant proteostasis and ER stress are common features of

cystic cholangiocytes, contributing to disease pathogenesis. Indeed,

strategies aiming at reducing ER stress modify disease burden in

experimental models of PLD.2 Furthermore, perturbations in post-

translationalmodifications (PTMs), particularly in SUMOylation, result

in aberrant protein dynamics contributing to the pathology.3 There is

elevated protein SUMOylation in cystic cholangiocytes, which drives

hepatic cystogenesis in experimental models. Administration of SAMe,

an inhibitor of the SUMO‐conjugating enzyme UBC9, decreased pro-

liferation and increased apoptotic cell death of cystic cholangiocytes,

thus reducing hepatic cystogenesis in vitro and in vivo.3

Protein NEDDylation results from a covalent and reversible

attachment of neural precursor cell expressed developmentally down‐
regulated protein 8 (NEDD8) to a lysine residue in the substrate

protein. This type of PTM is catalyzed by a three‐step enzymatic

cascade involving the heterodimer NEDD8‐activating enzyme E1

(NAE1/UBA3), NEDD8‐conjugating E2 enzymes (UBE2F and

UBE2M), and substrate‐specific E3 ligases. Deregulated protein

NEDDylation has been found in several human diseases, including

different types of cancers, as well as neurodegenerative and cardiac

disorders.4 A number of hepatic disorders such as liver fibrosis, he-

patocellular carcinoma (HCC), and cholangiocarcinoma (CCA) exhibit

aberrant protein NEDDylation.5–8 Evidence for a role of protein

NEDDylation remains to be identified for PLDs. Interestingly, Pevo-

nedistat, a potent first‐in class selective inhibitor of the sole E1

activating enzyme NAE (a dimeric protein composed of regulatory

[NAE1] and catalytic [UBA3] subunits) has emerged as a potential

therapeutic agent for disorders presenting aberrant protein hyper‐
NEDDylation.9 Overall, taking this into account, we hypothesize

that protein NEDDylation might be aberrantly increased in PLDs and

therefore we aim to investigate the role of NEDDylation in PLD and

ascertain the therapeutic value of Pevonedistat.

MATERIALS AND METHODS

Patients and specimens

Biliary cyst tissue specimens were obtained from patients with

PLD (n = 16; Radboud University Medical Center, Nijmegen, The

Netherlands), while human gallbladder (GB; n = 14) and healthy liver

(n = 14) biopsies were collected from human individuals undergoing

cholecystectomy due to benign conditions or with colorectal cancer

undergoing surgery (Donostia University Hospital, San Sebastian,

Spain), respectively. Immunohistochemistry (IHC) was carried out in

paraffin‐embedded liver tissue from the Radboud University Medical

Center. Clinical and biochemical characteristics of the study popu-

lation are provided in Supplementary Table S1. This study received

the approval from the Clinical Research Ethics Committees [MSA‐
MMR‐2017‐01 (Donostia) and 2012/317 (Radboudumc)]. All partic-

ipants provided written consents for the use of their samples and

clinical information in biomedical research.

Primary cell cultures

Primary human normal and polycystic cholangiocytes (NHCs and

PHCs, respectively), as well as normal and polycystic rat chol-

angiocytes (NRC and PCK, respectively), were isolated and main-

tained as previously described.10,11 Of note, a missense mutation

[c.2515C > T,p.(Arg839Trp)] in the GANAB gene is present in PHCs.12

PCK cholangiocytes, isolated from PCK rats, bear a splicing mutation

(IVS35‐2A > T) in the PKHD1 orthologous gene.13,14 All cells were

cultured in fully supplemented DMEM/F‐12 medium as previously

described.2,3,11,15,16

RNA isolation, reverse transcription, and quantitative
polymerase chain reaction

RNA was isolated from human cystic wall and rat liver tissues as

well as from cell cultures with TRI Reagent (Sigma‐Aldrich). RNA
was reverse transcribed into cDNA and quantitative real‐time po-

lymerase chain reactions (qPCRs) were performed as described in

the Supplementary data. Glyceraldehyde‐3‐phosphate dehydrogenase

was utilized as a housekeeping endogenous control. The sequences

of the PCR primers (Sigma‐Aldrich) are outlined in Supplementary

Table S2.

Immunohistochemistry

NAE1, UBA3, free NEDD8, and NEDD8‐conjugated protein

levels were detected by IHC in hepatic paraffin‐embedded sec-

tions from human patients with ADPKD or PCK rat tissue and

compared with respective normal controls as previously

described.17 The used antibodies are described in Supplementary

Table S3.

Immunoblotting

Whole‐cell lysates or NEDD8‐immunoprecipitated (IP) cell lysates

obtained from cultured PHCs and NHCs were isolated to determine

alterations in NEDD8 and NEDD8‐conjugated proteins by immuno-

blotting as described in the Supplementary data.

Three‐dimensional cystic organoids

Isolation of intrahepatic biliary cystic organoids from PCK rats was

performed and cultured as previously reported.11 In the next day,

0.05 μM Pevonedistat was supplemented in cell culture media on a

daily basis. Images of three‐dimensional (3D) cystic organoids were

taken by light microscopy 24 and 48 h post‐incubation. The circum-

ference of cystic organoids was assessed by ImageJ (National In-

stitutes of Health, USA).
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Cell proliferation and apoptosis

Cell proliferation and apoptotic cell death were evaluated in NHCs

and PHCs under the presence or the absence of different dosages of

Pevonedistat using Celltrace CFSE Cell Proliferation Kit (Invitrogen)

and FITC Annexin (BioLegend) and TO‐PRO‐3 iodide (Invitrogen)

staining by flow cytometry, respectively, as described in the Sup-

plementary data.

Immunoprecipitation

Incubation with Dynabeads Protein G (Invitrogen) and cross‐linking
with anti‐NEDD8 or immunoglobulin G antibodies (Abcam) was

conducted on whole‐cell lysates from NHCs and PHCs. Elution of IP

proteins from the beads was achieved with 2% sodium dodecyl sul-

fate as described in the Supplementary data.

Mass spectrometry and proteomic analysis

Comparative shotgun proteomic analyses of NEDD8‐IP lysates were

performed in a nanoACQUITY UPLC System (Waters), online con-

nected to an LTQ Orbitrap XL mass spectrometer (Thermo Electron).

Protein identification was carried out against a database consisting of

human entries (Uniprot/Swissprot). Functional analyses of proteins

were performed in the STRING database and by gene ontology (GO)

enrichment using DAVID Bioinformatics Resources. Details are

shown in the Supplementary data.

Statistical analysis

Data are expressed as means ± SEM. Normality was assessed with

Shapiro–Wilk normality tests. When comparing two groups, para-

metric Student’s t‐tests or nonparametric Mann–Whitney tests were

applied according to the distribution of the population. On the other

hand, one‐way analysis of variance or nonparametric Kruskal–Wallis

tests followed by a posteriori Tukey or Dunns tests, respectively, were

used when comparing more than two groups. Results were consid-

ered statistically significant when p < 0.05. Statistical analysis was

performed with GraphPad Prism software (Version 8.4.3, San Diego,

CA, USA).

RESULTS

The NEDDylation system is upregulated in human
PLD tissue and cystic cholangiocytes in culture

To explore the global status of the NEDDylation pathway in PLD, the

expression (mRNA) levels of NAE1, UBA3, and NEDD8 were assessed

in cystic tissue of patients with PLD as well as in healthy human GB

and liver tissue. An overexpression of the regulatory subunit of the

E1 activating enzyme NAE1 was observed in the cystic tissue of

patients with PLD in comparison with both healthy GB and liver

tissues (Figure 1a). When evaluating the expression of the catalytic

subunit (UBA3) and the ligand itself (NEDD8), a significant upregu-

lation was found in cystic tissue compared to healthy GB tissue,

while no changes were found when compared to healthy liver tissue

(Figure 1a). In parallel, we also investigated the expression of key

NEDDylation pathway components (i.e., NAE1, UBA3, UBE2F, UBE2M,

and NEDD8) in primary NHCs and PHCs. An upregulation of NAE1,

UBA3, and UBE2F was detected in PHCs, when compared to NHCs,

while UBE2M was found downregulated and NEDD8 remained un-

altered (Figure 1b). Moreover, immunohistochemical staining in liver

tissue of patients with PLD demonstrated a nuclear NEDD8

enrichment (i.e., total sum of NEDD8‐conjugated proteins and free

NEDD8 ligand) within the biliary cysts compared to the normal bile

ducts of healthy controls (Figure 1c). Increased nuclear and cyto-

plasmic immunoreactivity was also seen in NAE1 and UBA3

(Figure 1c).

The NEDDylation machinery is also upregulated in rat
PLD tissue and cystic cholangiocytes in culture

Similarly, an equivalent array of genes was evaluated to establish the

global NEDDylation status in cystic liver tissue of PCK rats as well as

healthy liver tissue of wild‐type rats. Nae1 was upregulated in cystic

rat tissue, while Uba3 and Nedd8 showed no significant changes when

compared to normal rat tissue (Figure 2a). Furthermore, over-

expression of nearly every key NEDDylation pathway components

(i.e., Nae1, Uba3, Ube2m, and Nedd8) was observed in the PCK chol-

angiocytes compared to normal controls (NRC), with the only

exception of Ube2f that was found downregulated (Figure 2b). The

overexpression of NEDD8 in vitro was further supported by an

NEDD8 enrichment in the nuclei of cyst‐lining cholangiocytes in liver

tissue of PCK rats compared to bile duct epithelium of wild‐type rats

(Figure 2c). Additionally, increased immunoreactivity in NAE1 and

UBA3 was detected in PCK rats compared to wild‐type animals

(Figure 2c). Taking into account these data and the results obtained

in patients, hyper‐NEDDylation seems to be a common event in PLD,

independently of the underlying mutations.

Pevonedistat inhibits protein NEDDylation in cystic
human cholangiocytes

In agreement with the above‐mentioned upregulation of the NED-

Dylation system in cystic cholangiocytes, immunoblotting revealed

increased levels of NEDD8 and NEDD8‐conjugated proteins, under

baseline conditions, in PHCs when compared to NHCs in culture

(Figure 3). Consequently, we evaluated the effect of Pevonedistat, a

selective inhibitor of NAE, on the protein NEDDylation levels. Of

note, the levels of NEDD8‐conjugated proteins were dramatically
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F I GUR E 1 Aberrant expression of NEDDylation pathway components in cystic human tissue and cholangiocytes. (a) mRNA levels of
NEDDylation core components in healthy human tissue [gallbladder (n = 12) and liver (n = 13–16)] and cystic tissue of patients with

polycystic liver disease (PLD) (n = 13–16). (b) mRNA levels of NEDDylation core components in normal (n = 6) and cystic (n = 6) human
cholangiocytes. (c) Representative images of immunostaining of NEDD8, NAE1 and UBA3 in healthy liver tissue and cystic tissue of
patients with PLD. Scale bar: 100 μm, 50 μm (cropped). *p < 0.05; **p < 0.01; ***p < 0.001. (One‐Way analysis of variance or Kruskal–

Wallis tests)
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F I GUR E 2 Dysregulated expression of NEDDylation pathway components in cystic rat tissue and cholangiocytes. (a) mRNA levels of

NEDDylation core components in wild‐type rat tissue (n = 5–6) and cystic tissue of PCK rats (n = 14). (b) mRNA levels of NEDDylation core
components in normal (n = 10–11) and cystic (n = 11) rat cholangiocytes. (c) Representative images of immunostaining of NEDD8, NAE1 and
UBA3 in wild‐type rat tissue and cystic tissue of PCK rats. Scale bar: 100 μm, 50 μm (cropped). *p < 0.05; **p < 0.01; ***p < 0.001. (One‐way
analysis of variance or Kruskal–Wallis tests)
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diminished upon incubation of cells with Pevonedistat, whereas no

significant changes on NEDD8 protein levels were observed.

Pevonedistat impacts on cystic growth by reducing
cell proliferation and survival

The effect of Pevonedistat on cysts growth was investigated by

analyzing its impact on cell proliferation and survival. Initially, iso-

lated biliary cysts from PCK rats were cultured on a 3D collagen type

I matrix to monitor their growth for 3 days. Remarkably, Pevonedi-

stat completely abrogated the 3D growth of cystic organoids

(Figure 4a). Furthermore, exposure to several dosages of Pevonedi-

stat had a substantial dose‐dependent antiproliferative effect in both

NHCs and PHCs (Figure 4b). The half maximal inhibitory concen-

tration (IC50) for Pevonedistat in both cell lines was established at

0.05 μM. Interestingly, Pevonedistat (0.05 μM) inhibited proliferation

but did not induce apoptosis in NHCs or PHCs (Figure 4c). However,

higher concentrations significantly triggered apoptotic cell death in

both normal and cystic cholangiocytes (Figure 4c). Finally, Pevone-

distat (0.05 μM) increased the expression of several biliary epithelia

(CK7 and SOX17) and cell polarity (ZO‐1) markers in those viable

PHCs, while no alterations were observed in NHCs (Figure 4d).

NEDDylated proteins in PHCs are mostly associated
with the regulation of protein homeostasis

To identify the proteins that are being NEDDylated in PLD, these

NEDDylated proteins were immunoprecipitated with an NEDD8‐
specific antibody and subjected to proteomic analysis by mass

spectrometry. The isolation of NEDD8‐IP proteins was verified by

F I GUR E 3 Pevonedistat blocks protein NEDDylation in cystic cholangiocytes in vitro. Representative immunoblotting images and

quantification of NEDD8 and NEDD8‐conjugated proteins in normal and cystic human cholangiocytes (NHC and PHC, respectively) cultured in
the presence or in the absence of Pevonedistat. *p < 0.05; ***p < 0.001. (One‐way analysis of variance tests)
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F I GUR E 4 Pevonedistat inhibits cholangiocyte proliferation and survival in vitro. (a) Representative images and quantification of three‐
dimensional‐cultured PCK cysts in the absence or in the presence of Pevonedistat (n = 12). (b) Cell proliferation (n = 3) and (c) apoptosis
(n = 5) in the presence or in the absence of Pevonedistat in normal and cystic human cholangiocytes (NHC and PHC, respectively).

(d) mRNA levels of epithelial and polarity markers in the presence or in the absence of Pevonedistat. **p < 0.01; ***p < 0.001. (Two‐
tailed t tests or one‐way analysis of variance tests)
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F I GUR E 5 Increased NEDDylated proteins in cystic cholangiocytes, mostly involved in the translational machinery. (a) Representative

immunoblotting of NEDD8‐IP proteins in normal and cystic human cholangiocytes (NHC and PHC, respectively). (b) Volcano plot of all
identified NEDD8‐IP proteins (n = 140) by mass spectrometry comparing fold enrichment in PHCs to NHCs. Proteomic analyses of significant
identified proteins (n = 27) in PHCs and NHCs by (c) heatmap representation, (d) gene ontology analysis, and (e) protein–protein interaction

(PPI) network. Line color in PPI network indicates type of interaction evidence
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showing enrichment of these proteins by immunoblotting, when

comparing to the inputs of their respective cell controls (Figure 5a).

Afterward, shotgun proteomic analyses identified 140 NEDDylated

proteins in both cell lines. Of those 140 proteins, 27 proteins were

differentially identified between NHCs and PHCs. In PHCs, the levels

of two proteins were found downregulated (7%; in blue), whereas the

levels of the other 25 proteins were upregulated (93%; in red) in

comparison with NHCs (Figure 5b,c, Supplementary Table S4). Ac-

cording to GO analysis, the upregulated NEDDylated proteins in

PHCs are engaged in several biological processes, mostly related to

response to unfolded protein (i.e., HSPD1 and HSP90AB1) and cell‐
cell adhesion (i.e., RPL23A and PRDX1) (Figure 5d). Furthermore,

protein–protein interaction analysis revealed various associations

linked to cytoskeleton organization, cellular protein localization, E3

ubiquitin protein ligase complex and yet again to, response to

unfolded protein and cell‐cell adhesion (Figure 5e). Therefore, the

analyses revealed a connection of protein hyper‐NEDDylation with

protein biogenesis and quality control in PLD.

DISCUSSION

This study reveals that abnormal protein NEDDylation has a signifi-

cant role in the pathogenesis of PLD. Our key findings demonstrate

that (i) expression of enzymes involved in the NEDDylation pathway

is increased in liver tissue from patients and rats with PLD, as well as

in cystic cholangiocytes in vitro, compared to respective controls;

(ii) protein NEDDylation is upregulated in cystic cholangiocytes in

vitro; (iii) Pevonedistat causes depletion of NEDD8‐conjugated pro-

teins in cystic cholangiocytes in culture; (iv) cyst growth, cell prolif-

eration, and survival are reduced by Pevonedistat in vitro; and lastly

(v) proteomic analyses of NEDD8‐IP proteins reveal that the majority

of the upregulated NEDDylated proteins are involved in protein

synthesis and quality control. These data suggest that increased

NEDDylation of certain proteins promotes cell proteostasis, survival,

and ultimately cystogenesis. Hence, targeting protein NEDDylation

(such as Pevonedistat) might serve as a potential therapeutic tool to

halt disease progression of PLD.

Previous studies have also reported overactivation of the NED-

Dylation pathway in patients with liver fibrosis5 and HCC.6,7 NED-

Dylation inhibition with Pevonedistat has been shown to halt tumor

growth6,18 as well as to reduce hepatic stellate cell activation and

decrease liver fibrosis, ultimately diminishing liver injury.5 Thus,

Pevonedistat administration might not only halt hepatic cystogenesis

but also attenuate liver fibrosis in PLD. Besides, studies in CCA have

shown increased protein levels of NEDD8, NAE1, UBA3, and

UBE2M.8 Interestingly, increased NAE1 levels were shown to

correlate with worse prognosis (i.e., overall and recurrence‐free
survival) in patients with HCC and CCA, as well as in other types

of cancers such as lung and colorectal.6,8,19,20 Consequently, the

NEDDylation pathway is commonly deregulated in different liver

diseases, including PLD, thus being amenable for therapeutic

targeting.

The mechanism of action of Pevonedistat in PLD was evaluated

by immunoblotting and conducting several functional assays. At

baseline conditions, PHCs showed increased levels of NEDDylated

proteins, which drastically decreased after the administration of

Pevonedistat. Furthermore, Pevonedistat considerably restricted the

growth of 3D‐cultured cysts and reduced the proliferation and sur-

vival of cystic cholangiocytes in culture. Multiple mechanisms to

explain the antiproliferative properties of Pevonedistat have been

proposed. For instance, it is thought that chromatin licensing and

DNA replication factor 1, a DNA replication‐related protein accu-

mulates after Pevonedistat administration, consequently leading to

the activation of DNA damage checkpoints, cell cycle arrest, and

ultimately apoptosis or senescence.21

Pevonedistat is a small first‐in‐class inhibitor of NAE, which

processes NEDD8 before its conjugation to target substrates.

Noteworthy, the therapeutic efficacy of Pevonedistat is currently

being investigated in several clinical trials for hematological malig-

nancies and advanced solid tumors, presenting good tolerability and

clinical response in already published phase I studies.22–24 Hepato-

toxicity and sepsis syndromes have been reported as side effects of

high doses (beyond 100 mg/m2) of Pevonedistat used for hemato-

logical malignancies.22

Most mutated genes in PLD encode for ER‐resident proteins that
are mainly required for proper protein folding, transport, and matu-

ration. Experimental studies highlighted polycystin‐1 (PC1) as the

main key determinant in PLD pathogenesis since most of the muta-

tions in PLD result in decreased functional PC1 levels and therefore

in cyst formation.25 These findings emphasize the importance of the

ER in the pathobiology of PLD. In this regard, we have previously

reported abnormal protein homeostasis (i.e., proteostasis) and ER

stress in PLD, together with a significant upregulation of the unfolded

protein response pathway.2 Importantly, treatment with the chemical

chaperone, 4‐phenylbutyric acid, normalized the ER stress and

aberrant proteostasis and inhibited hepatic cystogenesis in vivo. In

this regard, most of the NEDDylated candidates identified upregu-

lated in PHCs after high throughput proteomic analysis on NEDD8‐
immunoprecipitated proteins corresponded to proteins involved in

response to unfolded protein (i.e., HSPD1 and HSP90AB1). Notably,

the HSP90 family (i.e., HSP90AB1) includes important chaperone

proteins that mediate correct protein folding and maturation of

hundreds of target proteins involved in cell proliferation, apoptosis,

and survival.26 These data indicate that NEDDylation of HSPD1 and

HSP90AB1 are pro‐survival mechanisms compensatory to the aber-

rant proteostasis and ER stress present in cystic cholangiocytes.

On the other hand, the most widely characterized substrates of

NEDDylation are the cullins. The cullins are the substrates of Cullin‐
RING Ligases (CRL), functioning as scaffold proteins and providing

support for E3 ubiquitin ligases. CRL are the largest known family of

E3 ubiquitin ligases, controlling the degradation of approximately

20% of proteasome‐regulated proteins.27,28 The activation of CRL by

NEDDylation is required to facilitate degradation via the ubiquitin‐
proteasome system (UPS).27 Another potential candidate protein

that was also found upregulated in NEDD8‐immunoprecipitated
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proteins from cystic cholangiocytes is CUL5. This protein is a

component of an E3 ubiquitin protein ligase complex that was also

previously related with HSP90 proteins. A previous study showed

CUL5‐mediated degradation via UPS of several HSP90 client pro-

teins (i.e., ErbB2 and Hif1‐α) through interaction with the HSP90

chaperone complex and respective HSP90 client protein.29 The

regulation of HSP90 client proteins is controlled by UPS and many of

them are aberrantly overexpressed in diseases.26 As such, CUL5

hyper‐NEDDylation could lead to the activation of CRLs and degra-

dation of HSP90 client proteins, maintaining protein homeostasis.

Pevonedistat was shown to effectively block NEDDylation of the

cullins, inactivating CRLs.9 Therefore, Pevonedistat might result in

the accumulation of multiple CRL substrates, and thus, increasing

cellular stress and, ultimately, inducing apoptosis of cystic

cholangiocytes.9

In summary, our study provides new molecular insights on the

role of NEDDylation in the pathobiology of hepatic cystogenesis and

reveals the therapeutic value of Pevonedistat in PLD. These data

support the evaluation of Pevonedistat in vivo, although its economic

high cost is a current limitation. Furthermore, studying the potential

crosstalk between NEDDylation and SUMOylation, two PTMs known

to be deregulated in PLD would be of great interest. Overall, new

effective therapies might emerge to treat patients with PLD and to

increase their outcome and welfare.
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