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Abstract

Purpose of Review: To review the literature and detail the potential immune mechanisms by 

which hyperserotonemia may drive pro-inflammation in preeclampsia and to provide insights into 

potential avenues for therapeutic discovery.

Recent findings: Preeclampsia is a severe hypertensive complication of pregnancy associated 

with significant maternal and fetal risk. Though it lacks any effective treatment aside from delivery 

of the fetus and placenta, recent work suggests that targeting serotonin systems may be one 

effective therapeutic avenue. Serotonin dysregulation underlies multiple domains of physiologic 

dysfunction in preeclampsia, including vascular hyporeactivity and excess platelet aggregation. 

Broadly, serotonin is increased across maternal and placental domains, driven by decreased 

catabolism and increased availability of tryptophan precursor. Pro-inflammation, another hallmark 

of the disease, may drive hyperserotonemia in preeclampsia. Interactions between immunologic 
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dysfunction and hyperserotonemia in preeclampsia depend on multiple mechanisms, which we 

discuss in the present review. These include altered immune cell, kynurenine pathway metabolism, 

and aberrant cytokine production mechanisms, which we detail. Future work may leverage animal 

and in vitro models to reveal serotonin targets in the context of preeclampsia’s immune biology, 

and ultimately to mitigate vascular and platelet dysfunction in the disease.

Summary: Hyperserotonemia in preeclampsia drives pro-inflammation via metabolic, immune 

cell, and cytokine-based mechanisms. These immune mechanisms may be targeted to treat 

vascular and platelet endophenotypes in preeclampsia.

Keywords

Preeclampsia; serotonin; immunology; inflammation; pregnancy; obstetrics

1. Introduction

Preeclampsia is a severe hypertensive complication of pregnancy associated with acute 

maternal risk and long-term risk to resultant children. While the incidence of preeclampsia is 

high and continues to grow (currently 3–10% worldwide), there are no effective treatments 

or cures for this often-devastating gestational disorder. This is in part because preeclampsia 

is a complex, multisystem progressive disorder, involving immune, neurological, and 

cardiovascular dysregulation [1–3].

Neurological and neurodevelopmental problems occur at increased rates in preeclamptic 

women and in their children, respectively, implicating neurobiological systems in 

preeclampsia dysfunction [1]. For instance, women with severe preeclampsia may develop 

posterior reversible encephalopathy syndrome (PRES) and associated neurological deficits, 

while their children face increased rates of autism [odds ratio=1.50 (95% CI, 1.26–1.78)], 

ADHD [odds ratio=1.31 (95% CI, 1.19–1.44)], and other neurodevelopmental disorders 

[1, 4, 5]. History of maternal mood or anxiety disorder is also associated with a 

2.12-fold increased risk of preeclampsia [6]. Serotonin dysregulation may explain this 

bi-directional risk, as serotonin systems are abnormal in both preeclamptic women and 

in mood disorder patients. Further, serotonin-linked behaviors and psychopathologies are 

disproportionately impacted in children from preeclamptic pregnancies [1, 7, 8]. Similarly, 

immune dysregulation occurs in both mood and gestational hypertensive disorders [9, 10]. 

This suggests overlapping mechanisms and highlights the need to understand preeclampsia, 

at least in part, as a disordered serotoninergic and immunologic state.

Disrupted serotonin-immune interactions may unite the multiple domains of dysfunction 

in preeclampsia and explain resulting maternal and fetal vulnerabilities. Here, we 

review multiple mechanisms of serotonin-mediated immune disruption in preeclampsia. 

Understanding preeclampsia as an immune disorder, driven at least in part by serotonergic 

dysfunction, may highlight novel avenues for its treatment.
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2. Serotonin

Italian scientist Vittorio Erspamer discovered serotonin, an amine that caused contractions in 

the intestines, dubbing it “enteramine” [11]. Contemporary science maintains that serotonin 

is primarily found in the gastrointestinal tract, where it acts as a local hormone, though 

it is also localized to the nervous system, circulating platelets, and pulmonary epithelium 

[12]. More recent studies have also extended the biological role of serotonin to include 

immunoregulation, as we will discuss here.

Serotonin-immune interactions are integral in its very synthesis. Serotonin synthesis begins 

with tryptophan, an essential amino acid found in dietary proteins, which contributes either 

towards the serotonin or kynurenine pathways. In the kynurenine pathway, tryptophan 

is metabolized by indolamine-2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase 

(TDO) in an O2-dependent manner. IDO is a rate-limiting enzymes in the kynurenine 

pathway and is produced in response to inflammation, acting as an immunosuppressor 

[13]. The serotonin pathway begins with tetrahydrobiopterin (BH4)-dependent conversion 

of tryptophan by tryptophan hydroxylase (TPH) into 5-hydroxytryptophan (5-HTP). 5-HTP 

is then decarboxylated to serotonin (5-HT) by dopa decarboxylase (DDC) in a pyridoxal 

phosphase (PLP)-dependent manner. 5-HT can further be inactivated or excreted by 

conversion into 5-hydroxyindoleacetic acid (5-HIAA) by monoamine oxidase A (MAO-A).

In circulation, serotonin is readily bound up by intravascular platelets, which express the 

serotonin transporter (SERT). Binding of serotonin by platelets leaves little free serotonin 

in the blood, and release from activated platelets (e.g., upon aggregation) elicits local 

vasoconstriction [14]. The use of tryptophan in serotonin or kynurenine synthesis is 

balanced by a variety of factors, including by melatonin, the end-product of the serotonin 

synthesis pathway, and by IDO itself [15].

Serotoninergic cell bodies in the midbrain and brainstem raphe nuclei also release serotonin 

and project to a variety of targets in the central nervous system (CNS), including the 

spinal cord, forebrain, and locally. Though only approximately 5% of the body’s serotonin 

is synthesized in the brain [16], serotonin axons are distributed throughout the brain, 

implicating this system in many brain networks and physiological functions (e.g., sleep­

wake regulation, feeding, stress reactivity, learning and memory, mood, and more [17]). The 

role of serotonin also involves CNS response to peripheral [18] and central inflammation, as 

we discuss in further detail below.

Serotonin’s vascular role is complex—it causes vasodilation or vasoconstriction depending 

on the nature and conditions of a particular vascular bed, the receptor expression profile, 

administration route, and underlying sympathetic tone [19]. The distribution and function of 

serotonin receptors also varies widely. There are seven known serotonin receptors (HTR1–7) 

with 14 subtypes, all of which except HTR3 (a serotonin-gated ion channel) are protein­

coupled. HTR signaling thus strongly implicates regulators of protein-coupled signaling 

[e.g., the regulator of G protein signaling (RGS) family] in downstream cascades. Given 

this heterogeneity, target- and tissue-specific study of serotonin interactions in normal and 

diseased physiology is critical.
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Among its many complex physiologic roles, serotonin’s role in the immune system was only 

identified in recent decades [20]. As reviewed elsewhere, serotonin is immunomodulatory 

and serotonin receptors and serotonin cascade molecules/enzymes are expressed by many 

types of immune cells including dendritic cells, mast cells, NK cells, T cells, B cells, 

neutrophils, macrophages, and monocytes [21]. Platelet delivery of serotonin to sites of 

immune response or injury is also well described, and direct serotonergic modulation of 

monocytes and lymphocytes is an emerging area of discovery [21]. These mechanisms have 

significant implications for preeclampsia, a disease featuring profound vascular and immune 

dysregulation leading to significant pathologic effects in pregnancy and development.

3. Serotonin in pregnancy and embryogenesis

The serotonin system is required for multiple aspects of normal pregnancy, maternal 

behavior, and placental and fetal development [22–25]. Serotonin receptors are broadly 

expressed in female reproductive tissues. For instance, the genes encoding the serotonin 

transporter (SLC6A4) and receptors HTR2B, HTR1F, and HTR1D are expressed in breast 

tissues. HTR7 is expressed in the ovaries, and a variety of serotonin receptors (HTRA4, 
HTRA1, HTR3A, HTRA2, HTR2B, HTR1F), SLC6A4 (at low levels in trophoblast cells), 

and MAOA are expressed in the placenta [26, 27]. These expression patterns indicate some 

functional importance for serotonin systems in reproductive tissues and biological processes, 

though differences between tissues also demonstrate unique roles of serotonin that are 

dependent on target tissue type. For instance, early embryonic blood flow via placental 

vascular beds is regulated by serotonin transporters at the trophoblast cell membrane, and 

serotonin regulates trophoblast viability and proliferation via HTRA2 [24, 28].

Platelet serotonin levels increase during pregnancy then decrease following delivery in 

response to fetal requirements, a phenomenon that has been linked to risk for pre- and 

postpartum mood disorders [29]. Both maternal and placental serotonin are early and 

critical sources of serotonin for developing mammalian offspring. Embryogenesis, including 

formation of the fetal CNS and gut, is regulated by maternal serotonin. Tph1-null dams, 

which are hyposerotonemic, produce morphologically abnormal pups, and maternal but 

not offspring SERT Ala56 genotype, which causes hyperserotonemia, alters placental and 

offspring brain serotonin [30, 31]. Work by Bonnin and Levitt revealed that maternal 

immune activation disrupts placental tryptophan metabolism, leading to altered fetal brain 

serotonergic circuit formation. Bonnin and Levitt further demonstrated that the placenta 

is the primary source and regulator of fetal forebrain serotonin, which is synthesized 

from maternal tryptophan [22, 32]. Their data underlies the importance of pregnancy and 

placental mechanisms in driving crucial serotonin production during development. During 

the postpartum period, maternal serotonin is likewise critical to caregiving and attachment 

behaviors, which also shape offspring neurodevelopment [25]. Clearly, dysregulation of 

serotonin in pregnancy at multiple levels can lead to pathologic states.

4. Serotonin dysregulation in preeclampsia

Serotonin dysregulation in maternal circulation, placenta, and cord blood is well 

documented in clinical preeclampsia (Fig. 1). Broadly speaking, increased tryptophan 
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availability, decreased kynurenine pathway activity (e.g., decreased synthesis by 

indoleamine 2,3 dioxygenase), and decreased degradation of serotonin by MAOA drives 

increased free 5-HT in maternal circulation in preeclampsia [12, 13, 33–37] and gestational 

hypertension [38, 39]. As in circulation, IDO [33, 34] and kynurenine are decreased in the 

preeclamptic placenta; unlike in maternal circulation, placental tryptophan is decreased [33]. 

Transcriptomics further suggest significant preeclampsia impacts on tryptophan metabolism 

gene networks in the placenta [26]. Placental serotonin is significantly increased (up 

to 9.6-fold) in preeclampsia [37] in a dose-responsive manner, with serotonin levels 

positively correlated with blood pressure and disease severity [8]. Given that in situ 
quantitation suggests significant serotonin decrements with preeclampsia in placental villus 

syncytiotrophoblasts [46], where 5-HT is synthesized, extracellular serotonin is likely 

driving placental hyperserotonemia in preeclampsia, as in maternal circulation.

While previous studies are under-powered, warranting replication, reports generally 

demonstrate increased serotonin and impaired serotonin catabolism by MAOA across 

maternal and placental domains in preeclampsia [8, 40, 41]. For instance, placental 

serotonin is significantly increased from 174.01 ± 9.74 ng/gm to 324.16 ± 15.34 ng/gm 

in one study of preeclamptic women, while MAOA activity (units/mg protein localized 

to the mitochondrial fraction) is decreased, from 33.93 ± 2.97 to 19.43 ± 2.03 units 

[8]. However, serotonin transporter expression and function at the placental interface 

remains unchanged [41–43]. Carrasco et al. reported equivalent levels of serotonin uptake 

by placental syncytiotrophoblasts from normal and preeclamptic subjects but increased 

serotonin metabolism in preeclamptic placental homogenate [41]. These results demonstrate 

that increased plasma-free serotonin in preeclampsia is likely due to reduced MAOA activity 

rather than reduced serotonin uptake by placental cells in preeclamptic patients.

Despite conclusions around maternal-placental serotonin function, direct examination of 

cord blood is required to better understand serotonin levels and metabolism in fetal 

domains. Indeed, whole cord blood 5-HT is increased in severe preeclampsia [44], while 

5-HT catabolism by MAOA is impaired in preeclamptic umbilical artery samples [44, 45]. 

Examination of enzymatic activity and bound versus free serotonin remain necessary.

While existing findings paint a somewhat mixed view of fetal conditions, what is clear is 

that serotonin supplies to the fetus are increased in preeclampsia, as in maternal circulation 

and placenta, while serotonin degradation is decreased. A clearer understanding of umbilical 

vein versus artery supplies will be important for clarifying disruptions to arterial supplies, 

a read-out of fetal metabolism and immunologic response, or venous supplies, a read-out 

of placental function. These details are important in understanding the relationship of 

serotonin-immune interaction in disease states such as preeclampsia.

5. Mechanisms of dysregulated serotonin-immune interaction in 

preeclampsia

As with serotonin biology dysfunction, immune biology dysfunction is also well­

documented in preeclampsia, as has been expertly reviewed elsewhere [10, 47–49]. 

Broadly, preeclampsia can be understood as a pro-inflammatory condition in which the 
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maternal response to the immunologic challenge of pregnancy is allogenic placental-fetal 

rejection. Serotonin is strongly implicated in the pro-inflammatory processes that occur 

in preeclampsia and may thus contribute to the immune pathology seen in preeclampsia. 

Serotonin-immune interaction disruptions may drive preeclamptic abnormalities in 

kynurenine pathway metabolism, T cell function, and cytokine production, as we review 

here (Fig. 2).

5.1. IDO-mediated metabolism in preeclampsia

One of the mechanisms by which serotonin and inflammatory systems interact is via the 

kynurenine pathway. Pro-inflammatory cytokines such as IFN-γ, the principal effector of 

IDO [50], alter IDO activation, thereby limiting tryptophan availability for kynurenine 

synthesis and driving serotonin synthesis. In the IDO knock-out animal, impacts of pro­

inflammation on serotonin synthesis are absent [51]. Decreased serotonin-to-tryptophan 

in the context of pro-inflammation may restore inflammatory homeostasis, as serotonin 

alters the inflammatory milieu [9]. Notably, the IDO knock-out model also recapitulates 

essential features of clinical preeclampsia, including pregnancy-induced hypertension and 

proteinuria, as well as intrauterine growth restriction [13]. IDO is also dysregulated 

in clinical preeclampsia (Fig. 2b), as discussed above and may serve as a key switch 

in serotonin-immune signaling, which is necessary for the maintenance of balanced 

immunoreactivity and a healthy pregnancy. Dysregulation of this immunogenic switch may 

result in inadequate inflammatory mediation, as occurs in preeclampsia.

5.2. Immune cells and serotonin interaction in preeclampsia

Interactions between serotonin and the immune system are enabled by the cellular and 

molecular profiles of immune cells. Platelets are the primary source of serotonin to immune 

cells such as macrophages and monocytes, which take up serotonin. Many immune cells, 

including monocytes, mast cells, and T cells, also have the molecular machinery required 

to synthesize and catabolize serotonin [9]. Furthermore, seminal early work found that 

exogenous systemic serotonin suppresses inflammatory processes, including IgM and IgG 

antibody production, via peripheral and not CNS mechanisms [52]. Serotonin release 

from mast cells, basophils, or platelets, which is triggered by injury or inflammation, can 

initiate immune cascades and processes including HTR1A-mediated chemotaxis (e.g. for 

eosinophils, dendritic cells, mast cells) and cellular phagocytosis [53].

Data also support the conclusion that serotonin signaling is necessary for normal dendritic 

cell function; Li et al. demonstrated decreased IL-12 production by dendritic cells lacking 

TPH1, which was restored by serotonin stimulation. These authors also reported decreased 

CD4+ T cell production of IL-17 and IFN-γ after T cell priming by TPH1-deficient 

dendritic cells [54], further pointing to the functional significance of serotonin-immune cell 

interactions.

Serotonin-immune interactions in the context of other inflammatory diseases may inform an 

understanding of these dynamics in preeclampsia. For example, in inflammatory conditions 

such as asthma and arthritis, T cell function and cytokine production are modulated by 

serotonin, which is elevated as it is in preeclampsia [55]. Ex vivo studies of T cells 
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from patients with multiple sclerosis, an autoimmune disease, demonstrate that serotonin 

modulates T cell proliferation and pro-inflammatory cytokine release (e.g., IL-17), as well 

as regulatory T cell frequency [56]. T cell function may be modulated by serotonin via 

a number of mechanisms. Via one direct mechanism, serotonin stimulates T cells via 

receptors including HTR7, driving T cell activation, differentiation, and cytokine release. 

In the context of increased tryptophan, suppression of T cell regulatory pathways necessary 

for fetal tolerance is impaired [57]. This mechanism may underlie pro-inflammatory disease 

processes in preeclampsia, in which tryptophan is increased. Collectively, these findings 

reveal direct impacts of serotonin on T cell behavior and function across pro-inflammatory 

conditions including preeclampsia.

5.3. Cytokine release and serotonin in preeclampsia

Serotonin is required for normative cytokine production and activation of inflammatory 

processes. Serotonin impacts acute and more chronic, reactive production of cytokines 

including IFN-γ, IL-1B, IL-8, IL-12, TNFα, IL-17, and IL-6 [9, 58]. Mice lacking 

TPH1 have decreased dendritic cell activation, cytokine production, and pro-inflammatory 

reactivity [54]. Serotonin antagonism in pro-inflammatory mouse models of heart disease 

and asthma decreases inflammation and improves outcomes [55], while SERT knockout 

mice have abnormal pro-inflammatory responses to immune perturbation [59]. These 

findings suggest that manipulations of the T cell serotonin response (e.g., via HTR7 

blockade) in the setting of preeclamptic hyperserotonemia may mediate inflammation-linked 

pathology in preeclampsia. However, to further clarify underlying mechanisms, there 

remains a need to examine how specific types of immune cells and transgenic manipulations 

of serotonin targets in these cells contribute to preeclampsia pathogenesis.

6. Additional serotonergic mechanisms in preeclampsia

Canonical serotonergic vascular mechanisms also interact with immune biology in ways 

which may explain elements of preeclampsia pathoetiology. Given that umbilical vessels 

lack direct innervation, vasoactive factors such as serotonin regulate umbilical smooth 

muscle and contractility [60]. Kynurenine is similarly vasoactive, with metabolism of 

tryptophan to kynurenine by IDO causing vascular relaxation and hypotension. This 

relaxation is exacerbated by IDO induction by pro-inflammation in endothelial cells [61].

Serotonin and serotonin synthesis pathways play essential roles in regulating blood flow, 

and thus immune cell trafficking, to/from the feto-placental unit. Vascular hyporeactivity to 

serotonin occurs in the uterine, placental, and other vessels of preeclamptic patients [62–64], 

and the peripheral blood flow response to serotonin infusion is blunted in preeclamptics 

relative to non-pregnant controls [65]. However, exogenous serotonin administered to 

venous chorionic rings from preeclamptic women reveals 1.7-fold increased sensitivity to 

5-HT, as well as earlier instantiation of rhythmic contractions of a higher amplitude, relative 

to healthy control rings [66]. Collateral vessels, which have enhanced vasoreactivity to 

serotonin [67], may also play a role in serotonin response heterogeneity. Preeclampsia 

results in placental ischemia and hypoxia [68], particularly in late gestation, conditions that 

drive collateral vessel formation [69]. Little is known about the impacts of serotonin on 
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lymphatic trafficking. Chen et al. reported much lower levels of serotonin in lymph than 

in portal blood [70], though additional studies are needed to clarify the potential impact of 

serotonin on immune cell trafficking via lymphatic vessels.

Mixed vasoreactivity findings may be driven by receptor expression variability across 

tissues and pathological states. For instance, preeclampsia is associated with increased 

vascular expression of HTR1B and HTR1D, which, when agonized, lead to vasoconstriction 

[71, 72]. In the preeclamptic placenta, HTR7 expression, which regulates smooth muscle 

relaxation [73], is increased 8-fold relative to control placenta [74]. These various receptors 

have differing developmental roles—for example, HTR2A is critical to placentation and 

trophoblast cell viability, migration, and invasion processes, as well as vasoconstriction, and 

may thus play more of a role in early than late placental vascular pathology in preeclampsia 

[75, 76]. Additionally, HTR7 is a critical regulator of macrophage effector functions and 

brain development [77].

Platelets are critical players in mechanisms of inflammatory effector cell activation, 

delivering serotonin to circulating and resident immune cells at sites of inflammation. The 

body’s largest pool of circulating serotonin exists in dense granules stored in blood platelets, 

which, upon aggregation, induce serotonin release into local vasculature via calcium­

dependent signaling cascades. Endothelial cell damage in preeclampsia promotes platelet 

aggregation and thus serotonin release and vasoconstriction, which in smooth muscle and in 

the human uterine artery is largely HTR2-mediated [78]. This exacerbated serotonin release 

by platelets alters local vascular function directly, by stimulating vascular smooth muscle 

contraction and endothelial cell activation, and indirectly, by potentiating other vasoactive 

factors (e.g., thromboxane A2, prostaglandins, etc.) and adrenergic innervation of smooth 

muscle, causing vasodilation [19, 79].

Increased platelet aggregation and serotonin release feeds-forward to further increase 

serotonin release via platelet HTR2 mechanisms. Furthermore, prostaglandin up-regulation 

and thus renin-angiotensin activation in umbilical and placenta vessels by serotonin 

mechanisms, which might otherwise compensate for impaired placental perfusion, fails 

due to loss of HTR1 in damaged vessels [12, 80]. These conditions collectively promote 

vasoconstriction by HTR2-mediated mechanisms, which are largely unopposed by HTR1­

mediated vasodilation in damaged vessels [81]. Unchecked, preeclamptic hyperserotonemia 

thus drives further endothelial cell damage, platelet aggregation, and ultimately turbulent 

blood flow and microvascular damage in the placenta and systemically, phenomena that 

further increase inflammation.

In HELLP (hemolysis, elevated liver enzymes, low platelet count) syndrome, a severe 

variant of preeclampsia, platelet count decreases while the neutrophil-to-lymphocyte ratio 

increases due to increased neutrophils, indicative of circulating immune dysfunction [82]. 

Platelets are also critical to dendritic and natural killer cell function; platelet deficits in 

HELLP syndrome may thus contribute to deficient immunomodulation [83].

Hyperserotonemia-related platelet aggregation and resulting vasoconstriction may also drive 

placental spiral artery pathology, including the inflammatory, invasion, and remodeling 
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deficits which are hallmarks of preeclampsia [84]. Serotonin also regulates trophoblast 

viability, though in excess, as in SERT-deficient animals [28, 76], it also causes impaired 

trophoblast proliferation and cell death [28]. This cellular dysfunction and death can further 

drive local inflammation. Hyperserotonemia may therefore interact both directly (e.g., via 

vasoactive mechanisms) and indirectly (e.g., via inflammatory mechanisms) with placental 

vascular function to drive placental dysfunction in preeclampsia.

In addition to platelet and broader vascular mechanisms, serotonin may also interact 

with maternal inflammatory mechanisms to drive preeclampsia via CNS mechanisms. 

Hyperserotonemia can cause blood-brain barrier dysfunction, brain edema, and 

neurotoxicity, likely via oxidative stress and NO-related pathways [85]. These pathologies 

may underlie susceptibility to eclamptic seizure and PRES. Critically, serotonin does not 

cross the blood brain barrier and as such peripheral and central serotonin systems are 

generally independent in the intact system. However, peripheral inflammation can trigger 

central dorsal raphe serotonin activity and serotonin release [18], demonstrating systemic 

links between peripheral inflammation and CNS serotonergic tone. Underlying mechanisms, 

whether direct via the nervous system or indirect via messenger cascades, remain unclear. 

One possibility is that vagus nerve tone, which is diminished with sympathetic activation 

under conditions of stress or pro-inflammation, communicates from the periphery to 

the CNS to regulate serotonin transmission. CNS inflammatory cells such as microglia 

also release inflammatory factors in response to perturbation, changing local tryptophan 

metabolism dynamics [86]. How these dynamics interact with broader preeclampsia 

physiology remains unclear, however.

Also in the brain, serotonin fibers from the raphe directly synapse onto vasopressin (AVP) 

neurons in the supraoptic nucleus and nucleus circularis, which express HTR1B. Vasopressin 

(AVP), a hormone synthesized in the hypothalamus, regulates systemic blood pressure 

and water reabsorption by the kidney. It is also elevated, as early as the first trimester, 

in women who develop preeclampsia [87], and chronic infusion of AVP into pregnant 

mice is sufficient to causes key phenotypes of preeclampsia (e.g., gestational hypertension, 

renal glomerular endotheliosis, proteinuria, fetal growth restriction, pro-inflammation, and 

placental pathology and oxidative stress) [87, 88]. Serotonergic neurons inhibit downstream 

vasopressin neurons, which project to the anterior hypothalamus and elsewhere. These links 

are not unidirectional—amygdala AVP projections to serotonergic neurons in the dorsal 

raphe via glutamate intermediates [89] also stimulate serotonergic neurons via HTR1A 

[90]. Increased CNS AVP in the context of preeclampsia may therefore facilitate further 

hyperserotonemia. This functional neuroanatomy provides a known biological substrate for 

direct CNS interaction between AVP, a key regulator of preeclampsia biology and clinically­

relevant preeclampsia biomarker [87, 88], and serotonin. The role of brain immune cells, 

such as microglia, in these circuits remains unclear. There is cause to predict, however, that 

systemic inflammation, as in preeclampsia, might lead to microglia activation, which alters 

the formation of neural systems [91].
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6.1. Unanswered mechanistic questions

Despite significant growth in scientific understanding of the mechanisms underlying 

serotonin dysregulation in preeclampsia, gaps remain. Animal models for the study 

of preeclampsia (e.g., the AVP model, RUPP model, etc.) will serve a particularly 

important role in addressing these mechanistic gaps [87, 92] in determining whether 

serotonin dysregulation is necessary and/or sufficient to achieve specific preeclampsia 

endophenotypes.

Future studies may target intracellular signaling cascades. Given that most serotonin 

receptors are G-protein coupled, intracellular serotonin signaling is reliant on regulators 

of G-protein signaling (RGS), including RGS2. RGS2, which is expressed in reproductive 

tissues and immune cells [93] and is an early response gene in activated T lymphocytes [94], 

regulates intracellular serotonin signaling via Gαq [95] and is an endogenous inhibitor of 

AVP signaling [3]. RGS2 overexpression drives aggressive behavior in mice, a phenotype 

mediated by increased serotonergic tone and neurotransmission in the dorsal raphe 

and ventrolateral hypothalamus [96]. Decreased RGS2 expression, meanwhile, decreases 

HTR1A,B expression in the raphe, increases anxiety- and depressive-like behavior, and 

decreases sociability [97]. In humans, RGS2 variants predict social anxiety and clinical 

serotonergic drug response [98] and are associated with preeclampsia [99]. In addition to 

serotonergic behavioral deficits, RGS2-deficiency is further associated with reduced T cell 

proliferation and IL-2 production [100]. Despite these roles at the crux of serotonin-immune 

and neurobiological mechanisms, there remains much to be understood about the precise 

role of RGS2 in regulating hyperserotonemia physiology in preeclampsia.

The potential role of genetics in specific aspects of serotonin-immune signaling is also 

unclear. Genes encoding transporters at the placenta, for example, may encode placental 

response potential to drugs and endogenous factors such as serotonin cascade molecules and 

immune factors [101]. Some work has indicated that polymorphic variants of HTR2A and 

SLC6A4 are not associated with hypertension in pregnancy [102], though additional targets 

and gene-by-environment interactions remain unexplored.

Epigenetic and posttranslational modifications may also link serotonin dysregulation to 

immune dysfunction in preeclampsia. This is particularly relevant to SERT, as its function, 

kinetics, and membrane insertion are regulated by post-translational modifications, which 

may be altered in preeclampsia [103]. Recent work has also demonstrated that serotonin 

directly targets histones via post-translational “serotonylation,” a process by which serotonin 

alters recruitment of chromatin-remodeling complexes and transcription factors [104]. 

Extravesicular serotonylation in the cell nucleus and soma may explain gene expression 

changes in response to serotonin dysregulation in immune and other cells.

7. Conclusions

Despite causing significant maternal-fetal morbidity and mortality, the pathoetiology and 

clinical interventions for preeclampsia are poorly developed, with treatment presently 

limited to delivery. However, decades of research on serotonin and immunologic dysfunction 

offer some significant insights to move the field forward. Given the significant bi-directional 
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clinical association between psychiatric disorders and preeclampsia, consideration of 

serotonin-related therapy for either/both may prove to alter clinical outcomes of these 

common co-morbidities in pregnancy. As we discuss here, preeclamptic hyperserotonemia is 

likely a significant driver of immune dysfunction in preeclampsia, interacting with placental, 

vascular, and platelet pathology to drive maternal disease (Fig. 2a). Further investigation of 

serotonin-immune interactions in preeclampsia may offer some hope for the many women 

who succumb to preeclampsia annually, as well as their clinical providers, families, and 

children.
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Fig. 1. Serotonin is dysregulated across maternal, placenta, and fetal domains in preeclampsia.
A) Plasma tryptophan is increased in preeclampsia, while the kynurenine-to-tryptophan ratio 

is decreased [12] in some but not all patients [33] and kynurenine synthesis by indoleamine 

2,3 dioxygenase is decreased [13, 34]. Increased tryptophan ultimately increases maternal 

plasma 5-HT in preeclampsia [35–37] and gestational hypertension [38, 39], though 

whole serum 5-HT is decreased in preeclampsia and HELLP (hemolysis, elevated liver 

enzymes, low platelet count) syndrome. Decreased MAOA in plasma and platelets further 

leads to blunted production and urine excretion of 5-HIAA [35]. In the preeclamptic 

placenta, tryptophan [33], IDO [33, 34], and kynurenine [33] are decreased, demonstrating 

tryptophan preference for the serotonin over kynurenine pathway. B) Placental serotonin 

is significantly increased in preeclampsia [37], increases which are positively correlated 

with blood pressure and disease severity [8]. Placental MAOA (protein and enzymatic 

activity) is decreased in preeclampsia, possibly contributing to increased placental serotonin 

[40], with greater MAOA deficits associated with more severe disease (preeclampsia 

versus eclampsia) [8]. Decreased serotonin catabolism in placental syncytiotrophoblasts 

also contributes to increased placental serotonin [41]. Despite increased serotonin in 

preeclampsia, fetal serotonin transport may be unaffected. Placental serotonin transporter 

(SERT) gene (SLC6A4) and protein expression [42, 43], as well as functional 5-HT 

transport by syncytiotrophoblasts [41], are unchanged in preeclampsia. C) Umbilical 

artery or vein tryptophan is unchanged in preeclampsia, though whole cord blood 5-HT 

is increased in severe cases while 5-HIAA-to-5-HT ratio is decreased [44]. Conversely, 

umbilical vein 5-HT and 5-HIAA are decreased in gestational hypertension [38], likely due 

to impaired 5-HT catabolism by MAOA [44, 45]. 5-HIAA is increased in umbilical cord 

blood in both mild disease (gestational hypertension) [38] and in severe preeclampsia [44]
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Fig. 2. Hypothesized mechanism by which hyperserotonemia drives pro-inflammation in 
preeclampsia.
A) Persistent serotonergic disruptions in the context of preeclampsia—namely, 

hyperserotonemia across maternal, placental, and fetal domains—may be due to initiating 

factors such as physiologic stress. Serotonin binds T cells and initiates downstream cascades 

through serotonin receptors (5-HTR), which are G protein-coupled receptors. Regulators of 

G-protein signaling (RGS), such as RGS2, modulate intracellular cascades and therefore 

inflammatory protein production. Inflammatory proteins including cytokines have impacts 

on vascular and platelet function and can contribute to further dysfunction in the setting 

of preeclampsia. Vascular and platelet dysfunction also feed-forward to increase circulating 

serotonin and signaling at the level of the T cell. B) Decreased maternal and placental 

IDO expression, which is modulated by inflammation, pushes tryptophan towards increased 

serotonin production in preeclampsia
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