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Abstract

Acute lymphoblastic leukemia (ALL) is a hematopoietic malignancy comprised of molecular 

subtypes largely characterized by aneuploidy or recurring chromosomal rearrangements. Despite 

extensive information on the ALL transcriptome and methylome, there is limited understanding 

of the ALL chromatin landscape. We therefore mapped accessible chromatin in 24 primary ALL 

cell biospecimens comprising three common molecular subtypes (DUX4/ERG, ETV6-RUNX1 

and hyperdiploid) from patients treated at St. Jude Children’s Research Hospital. Our findings 

highlight extensive chromatin reprogramming in ALL, including the identification ALL subtype-

specific chromatin landscapes that are additionally modulated by genetic variation. Chromatin 

accessibility differences between ALL and normal B-cells implicate the activation of B-cell 
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repressed chromatin domains and detail the disruption of normal B-cell development in ALL. 

Among ALL subtypes, we uncovered roles for basic helix-loop-helix, homeodomain and activator 

protein 1 transcription factors in promoting subtype-specific chromatin accessibility and distinct 

gene regulatory networks. In addition to chromatin subtype-specificity, we further identified 

over 3500 DNA sequence variants that alter the ALL chromatin landscape and contribute to 

inter-individual variability in chromatin accessibility. Collectively, our data suggest that subtype-

specific chromatin landscapes and gene regulatory network impact ALL biology and contribute to 

transcriptomic differences among ALL subtypes.

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a heterogeneous hematopoietic malignancy, and it 

is the most common cancer in children (1). The vast majority (85-90%) of ALL stems from 

B-lineage precursor cells (B-ALL) (2). B-ALL is further classified into distinct molecular 

subtypes based on specific malignant drivers, including gene fusions, translocations, 

complex rearrangements and/or aneuploidy (2). In addition to these pronounced genetic 

alterations, cooperating mutations in key transcription factor (TF) genes and other genes 

encoding signaling molecules have been identified and impact malignant transformation (2).

Although investigations of ALL transcriptomes (3, 4) and methylomes (5, 6) have been 

performed, there is limited understanding of the ALL chromatin landscape, including the 

extent to which the chromatin environment differs among ALL subtypes or between normal 

hematopoietic cells and ALL cells. To better understand ALL chromatin structure, we 

mapped accessible chromatin sites, a marker of active cis-regulatory elements (7), in a panel 

of 24 primary ALL cell biospecimens from patients treated at St. Jude Children’s Research 

Hospital using Assay for Transposase Accessible Chromatin followed by next-generation 

sequencing (ATAC-seq) (8, 9). These primary ALL samples comprised three common 

molecular subtypes, ETV6-RUNX1, DUX4/ERG and hyperdiploid, that collectively make 

up 65-70% of childhood standard-risk patients (10). ETV6-RUNX1 ALL is the most 

commonly diagnosed B-ALL subtype (~25% of ALL patients), and is characterized by a 

t(12;21)(p13;q22) translocation encoding an ETV6-RUNX1 gene fusion (11). DUX4/ERG 

ALL is characterized by genetic alterations in DUX4 and ERG genes that comprises ~7% of 

diagnosed childhood ALL cases (12). In this subtype, DUX4, a homeobox TF (13), becomes 

deregulated due to complex rearrangements (14). While ETV6-RUNX1 and DUX4/ERG 

are characterized by more focal genomic alterations, hyperdiploid ALL is a heterogeneous 

subtype that is characterized by gain of at least 5 chromosomes and is seen in around 

20% of ALL patients (15). Consequently, these diverse ALL patient samples allowed us 

to further assess differences in chromatin landscapes among common molecular subtypes 

harboring distinct types of malignant driver events: gene fusions, complex translocations and 

aneuploidy.

We mapped over 150,000 sites of accessible chromatin harboring over 1 million TF 

footprints in primary ALL cells. To further expand on our findings, we integrated our open 

chromatin maps with diverse orthogonal genomic datasets obtained from the corresponding 

patient ALL cell sample. Collectively, our functional genomic profiling demonstrates high 
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diversity in ALL chromatin landscapes among ALL subtypes and across individual patient 

biospecimens, thereby highlighting the complexity and importance of the epigenome in the 

regulation of ALL cell biology.

MATERIALS/SUBJECTS AND METHODS

Patient samples

Written informed consent was obtained from all patients or their legal guardians. These 

samples were collected as part of St. Jude Total Therapy XVI and the use of these samples 

was approved by the institutional review board at St. Jude Children’s Research Hospital. 

ATAC-seq and RNA-seq data from patient biospecimens have been deposited to NCBI Gene 

Expression Omnibus (GSE161501).

Genomic experimentation and functional studies

We performed FAST-ATAC (9) on 10,000 cryopreserved primary ALL cells and 10,000 

fresh cells from ALL cell lines. ALL cell line data can be found on the NCBI Gene 

Expression Omnibus (GSE129066). Total RNA was purified from patient samples using 

the Norgen Total RNA Purification Kit for RNA-seq. ATAC-seq and RNA-seq next-

generation sequencing (NGS) was performed at the Hartwell Center for Bioinformatics 

and Biotechnology at St. Jude. ChIP-seq was performed as previously described (16). 

Normal hematopoietic cell ATAC-seq and RNA-seq fastq files (9, 17) were downloaded 

from NCBI (GSE74912 and GSE118189). Illumina Infinium HumanMethylation450K 

CpG DNA methylation array data (18) from patient ALL samples were obtained from 

NCBI (GSE66708). SNP genotyping data from patient ALL samples was obtained 

from published studies (18). ChromHMM (19, 20) data from GM12878 cell line was 

downloaded from the UCSC genome browser (https://genome.ucsc.edu/) whereas primary 

B-cell chromatin ChIP-seq data was downloaded from the Blueprint Epigenome Consortium 

(https://www.blueprint-epigenome.eu/). More detailed information, including CRISPR/Cas9 

genome editing experimentation, is provided in supplemental methods.

Data Analysis

ATAC-seq and RNA-seq NGS reads were mapped to the hg19 reference genome using 

bowtie2 (21) and ATAC-seq peaks were identified using MACS2 (22). Differentially 

accessible sites and differentially expressed genes were identified using DESeq2 (23). 

HINT-ATAC (24) was used to identify TF footprints and TF activity scores. TF gene 

regulatory networks was generated by Paired Expression and Chromatin Accessibility data 

(PECA) (25). caQTLs were identified by WASP (26). Pathogenicity scores were determined 

using Combined Annotation Dependent Depletion (CADD) (27). More detailed information 

is provided in supplemental methods.

RESULTS

Extensive chromatin reprogramming between ALL cells and normal hematopoietic cells

We performed ATAC-seq (9) on primary ALL cell biospecimens from 24 patients treated 

at St. Jude to identify regions of accessible chromatin in the ALL genome (Supplemental 
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Table 1). These primary ALL samples were comprised of ETV6-RUNX1 (n=6), DUX4/ERG 

(n=7) and hyperdiploid (n=11) B-ALL subtypes and we identified 60,516 accessible 

chromatin sites, on average, in each sample, and 169,423 sites were identified across 

all samples. We first compared our ALL open chromatin maps to normal hematopoietic 

cells. For this analysis, we combined our accessible chromatin sites from the ALL genome 

with accessible chromatin sites from normal hematopoietic cells from published ATAC-seq 

datasets (9, 17) and performed quantitative analyses using normalized read depth at 306,691 

accessible chromatin sites identified across all samples. Unsupervised hierarchical clustering 

of pair-wise Spearman rank correlations successfully distinguished ALL cells from normal 

hematopoietic cells, and normal hematopoietic cells were appropriately clustered based on 

their cell lineage and developmental timepoint (Fig. 1A), whereas principal component 

analysis (PCA) reflected a directionality mirroring hematopoietic cell differentiation and 

maturation (Fig. 1A–B). Notably, ALL cell biospecimens clustered between common 

lymphoid progenitors (CLP) and mature B-cells, accurately delineating the pathophysiology 

of B-ALL from immature lymphocytes (Fig. 1A–B).

We next accessed chromatin accessibility changes between ALL cells (n=24) and normal 

B-cells (n=15). Using Chromatin State Segmentation by HMM (ChromHMM) data (19, 20) 

from the GM12878 B-cell lymphoblastoid cell line that is typically used to model B-cells, 

we identified striking differences in chromatin state between ALL cells and B-cells (Fig. 

1C). Most notably, compared to normal B-cells, a significantly greater fraction of ALL 

accessible chromatin sites map to heterochromatin (ChromHMM state 13; 0.29 vs 0.14; 

Wilcoxon p = 2.16×10−8), weak enhancers (ChromHMM state 7; 0.15 vs 0.08, Wilcoxon p 

= 3.53×10−7) and repressed chromatin state (ChromHMM state 12; 0.07 vs 0.03; Wilcoxon 

p = 1.11×10−8) in GM12878. Further supporting these observations, consistent patterns in 

chromatin state were uncovered between ALL cells and normal B-cells when we utilized 

chromatin data from primary B-cells (Supplemental Fig. 1). Collectively, these data suggest 

that ALL chromatin reprogramming involves the activation of cis-regulatory elements from 

B-cell repressed chromatin domains.

We further mapped differentially accessible chromatin sites between ALL cells and normal 

B-cells. We mapped 55,251 differentially accessible open chromatin sites (FDR<0.01) 

between ALL cells and B-cells (Fig. 1D). In concordance with chromatin state profiling, a 

larger fraction of ALL enriched sites mapped to heterochromatin compared to ALL depleted 

sites (0.59 vs 0.33) in GM12878, and this pattern became even more pronounced for ALL 

enriched sites exhibiting extreme changes in chromatin accessibility (absolute log2FC >2; 

0.68 vs 0.18). Using the Genomic Regions Enrichment of Annotations Tool (GREAT) (28), 

we identified genes that were associated with sites exhibiting extreme changes in chromatin 

accessibility between ALL and B-cells (absolute log2FC >2; Fig. 1D). To identify which 

associated genes were likely targets for these differentially accessible sites, we obtained 

published RNA-seq gene expression data from normal B-cells (n=15) (9, 17) and performed 

RNA-seq in a subset of our ALL cell biospecimens that had sufficient genetic material 

(n=19). Differential expression analysis identified 10,649 genes that exhibited large changes 

in expression between ALL cells and B-cells (absolute log2FC >2). By comparing these 

differentially expressed genes to those associated with differentially accessible sites, we 

mapped 1272 and 1194 candidate target genes in ALL cells and B-cells respectively (Fig. 
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1E). B-cell accessible sites were equally associated with both up- and down-regulated genes 

in B-cells (49% versus 51%). By contrast, sites exhibiting substantially stronger accessibility 

in ALL cells were preferentially associated with genes up-regulated in ALL (79% versus 

21% of target genes; chi-square p<2.2×10−16). Consequently, these data suggest that ALL 

accessible chromatin sites play a predominant role in gene activation. Through Gene Set 

Enrichment Analysis (GSEA) (29), we further uncovered that repressed genes in ALL cells 

were involved in leukocyte and lymphocyte biology, whereas genes upregulated in ALL 

cells were involved in cell cycle control and diverse oncogenic signaling pathways (Fig. 1F–

G). Overall, these data suggest that ALL cells harbor widely distinct chromatin landscapes 

compared to normal hematopoietic cells, and the extensive epigenetic reprogramming of 

ALL cells promotes the dysregulation of numerous genetic pathways.

Chromatin accessibility discriminates ALL molecular subtypes

We assessed open chromatin landscape differences between molecular subtypes of 

ALL using accessible chromatin sites that were reproducibly identified in each ALL 

subtype (Fig. 2A). Across accessible chromatin sites, only 45% were identified in all 

3 subtypes, supporting a high degree of open chromatin heterogeneity among ALL 

subtypes. In concordance with this observation, unsupervised hierarchical clustering of 

pair-wise Spearman rank correlations successfully identified and grouped patient samples by 

molecular subtype, as did PCA analysis on normalized read depth (Fig. 2B). Notably, we 

obtained similar results when we used all open chromatin sites identified in the ALL genome 

(Supplemental Fig. 2).

To evaluate these observations further, we mapped differentially accessible chromatin 

sites among the ALL subtypes (Fig. 2C). Integration of our results from all pair-wise 

analyses between subtypes uncovered 3571, 5891 and 6425 open chromatin sites that 

exhibited consistently greater accessibility (FDR<0.05) in ETV6-RUNX1, DUX4/ERG and 

hyperdiploid ALL, respectively, compared to opposing subtypes (hereafter referred to as 

subtype-accessible sites; Supplemental Tables 2–4). In addition, we mapped 2804, 4740 

and 4257 open chromatin sites that exhibited consistently lower accessibility (FDR<0.05) 

in ETV6-RUNX1, DUX4/ERG and hyperdiploid ALL (hereafter referred to as subtype-

depleted sites; Supplemental Tables 5–7). Notably, the vast majority of subtype-accessible 

sites (>88%) were distal to transcription start sites (>+/−5kb), which is concordant with 

observations from other cell types that describe promoter-distal cis-regulatory elements as 

playing a role in lineage-specificity (9, 30).

We next determined if subtype-accessible sites from primary ALL cells exhibited consistent 

subtype enrichment patterns in a panel of human ALL cell lines (Fig. 2D). We focused our 

efforts on 6 relevant ALL cell lines representative of diverse B-ALL subtypes that included 

REH (ETV6-RUNX1), Nalm6 (DUX4/ERG-like), SEM (KMT2A-rearranged), SUPB15 

(BCR-ABL), UoCB1 (TCF3-HLF), and 697 (TCF3-PBX1)). Overall, we uncovered that 

B-ALL cell line open chromatin landscapes predominantly clustered together, underscoring 

substantial epigenomic differences among primary ALL cells and immortalized ALL 

cell lines (Supplemental Fig. 3). Nonetheless, we found that 42.5% of ETV6-RUNX1-

accessible sites from primary cells exhibited the strongest accessibility in the ETV6-RUNX1 
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subtype REH cell line, whereas 42.4% of DUX4/ERG-accessible sites from primary cells 

exhibited the strongest accessibility in the DUX4/ERG-like subtype Nalm6 cell line. By 

contrast, only 11.5% of ETV6-RUNX1-accessible sites and DUX4/ERG-accessible sites 

from primary cells, on average, displayed stronger accessibility in non-ETV6-RUNX1 and 

non-DUX4/ERG cell lines, respectively (number of overlapping sites in corresponding 

subtype cell lines versus opposing subtype cell lines, Wilcoxon p=0.03). Collectively, these 

cell line data corroborate our open chromatin accessibility maps derived from primary cells 

and suggest that our observations of subtype-specificity are translatable to a broader panel of 

ALL subtypes.

ALL subtypes harbor distinct transcription factor footprints and activities

Regions of accessible chromatin harbor footprints that correspond to TF protein binding 

events (24). We therefore mapped TF footprints within accessible chromatin sites to identify 

candidate TFs implicated in ALL subtype biology. We identified 1,107,106 TF footprints 

across all subtypes (Fig. 3A). In concordance with extensive subtype-specificity in open 

chromatin landscapes, we uncovered that 64% of TF footprints (709,794) were subtype-

specific.

To identify candidate protein factors that drive chromatin differences among subtypes, we 

evaluated differences in TF protein binding events at sites of accessible chromatin among 

ALL subtypes. For this analysis, we identified position-weight matrix-predicted canonical 

TF motifs at footprints and calculated differences in TF activity scores among subtypes 

(24) (Fig. 3B–C and Supplemental Fig. 4). Intriguingly, we uncovered several significant 

(p<0.05) and consistent patterns when we compared TF activities among ALL subtypes. We 

observed that activator protein 1 (AP-1) TFs displayed the weakest binding scores in ETV6-

RUNX1 and consistently harbored the strongest binding intensity in hyperdiploid ALL. 

By contrast, basic helix-loop-helix (bHLH) TFs exhibited consistently stronger binding 

scores in ETV6-RUNX1 ALL. In DUX4/ERG ALL, we identified consistently stronger 

binding scores for homeodomain TFs, including DUX4, which is known to be deregulated 

in this molecular subtype (14, 31). Importantly, overlapping sets of TF footprints were 

identified when we restricted our analyses to subtype-accessible sites (Supplemental Fig. 

5) and we further determined that AP-1, bHLH and homeodomain TF footprints were 

significantly enriched at hyperdiploid, ETV6-RUNX1 and DUX4/ERG subtype-accessible 

sites respectively, compared to non-subtype accessible sites (p<5.5×10−12), highlighting 

their role in establishing and/or maintaining unique chromatin landscapes among ALL 

subtypes.

Although multiple TF proteins were identified for each TF family, DNA binding motifs 

were generally concordant or closely related within TF families. To therefore identify 

candidate TFs within these TF families, we used transcriptomic data from primary ALL 

cells to uncover the top over-expressed TF family gene in each subtype. We identified 

TCFL5, DUX4 and JDP2 as the top over-expressed bHLH, homeodomain and AP-1 TF in 

ETV6-RUNX1, DUX4/ERG and hyperdiploid ALL respectively (Fig. 3C and Supplemental 

Fig. 6). Consistent with these observations, DUX4 and JDP2 TF footprints were enriched 

at DUX4/ERG and hyperdiploid subtype-accessible sites respectively, compared to non-
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subtype-accessible sites (p<1.8×10−8). Moreover, DUX4 ChIP-seq experiments in Nalm6 

DUX4/ERG-like cells uncovered DUX4 binding to DUX4/ERG subtype-accessible sites, 

further supporting a role for this homeodomain TF in establishing and/or maintaining 

DUX4/ERG subtype-accessible chromatin architecture (Supplemental Fig. 7). Overall, these 

data suggest ALL subtypes utilize distinct TF repertoires that contribute to accessible 

chromatin differences among subtypes.

Chromatin accessibility is correlated with CpG DNA methylation

Changes in the chromatin landscape are known to be mirrored by DNA methylation at 

CpG dinucleotides (32–34). The DNA methylomes in 19 of 24 patient samples were 

available to test the hypothesis that ALL CpG methylation is inversely correlated with ALL 

open chromatin accessibility. As we predicted, within the same subtype we observed less 

DNA methylation at subtype-accessible sites compared to DNA methylation from opposing 

subtypes. We first performed PCA using genome-wide DNA methylation beta-values and 

found that DNA methylation could not discriminate subtypes as well as open chromatin 

state (Supplemental Fig. 8). Nonetheless, we subsequently analyzed DNA methylation 

beta-values at subtype-accessible sites and observed that DNA methylation differed by 

subtype (ETV6-RUNX1 Wilcoxon p<4.98×10−6; DUX4/ERG Wilcoxon p<2.2x10−16; 

Hyperdiploid Wilcoxon p<2.2×10−16; Fig. 4A). Supporting these observations and the 

identification high-confidence subtype-accessible sites, we found high correlation (rho 

>0.91; p<0.001) between DNA methylation levels at these CpG sites and DNA methylation 

from corresponding CpGs in an independent cohort of pediatric ALL cases (35, 36) 

(Supplemental Fig. 9). Overall, these data highlight coordination across distinct epigenomic 

levels in the ALL genome.

Subtype-accessible sites are enriched near differentially expressed genes

Open chromatin state is known to impact gene expression (37, 38). We therefore mapped 

differentially expressed genes (DEGs) among ALL subtypes (n=19) and uncovered 1461, 

1395 and 769 genes that were reproducibly up- or down-regulated (FDR<0.05) in ETV6-

RUNX1, DUX4/ERG and hyperdiploid ALL (i.e. subtype-specific DEGs). Importantly, 

our DEG analysis recapitulated results from published findings (39, 40). For instance, 

we identified subtype-specific up-regulated DEGs in ETV6-RUNX1, such as BEST3 and 
IGF2BP1 which have been shown to have hypomethylated promoters in ETV6-RUNX1 

(39), as well as genes found in previous screens of ETV6-RUNX1 ALL (40), such as 

BIRC7. RNA-seq transcriptomics also delineated patient samples by ALL subtype to a 

similar extent as did open chromatin state (Supplemental Fig. 10).

To explore if subtype-accessible sites are potential contributors to differences in gene 

expression among ALL subtypes, we integrated subtype-accessible sites with subtype-

specific DEGs. We identified significant enrichment of subtype-accessible sites near genes 

up-regulated in each subtype (Kolmogorov-Smirnov test p <2.2x10−16; Fig. 4B). Notably, 

accessible sites from opposing subtypes did not show an enrichment near up-regulated 

DEGs, and in all cases exhibited significant depletion compared to all expressed genes 

(Kolmogorov-Smirnov test p <1.8x10−4; Fig. 4B). Importantly, similar enrichments were 
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observed when we performed these analyses on subtype-depleted sites and down-regulated 

DEGs (Supplemental Fig. 11).

We next used CRISPR/Cas9 genome editing to functionally validate the role of subtype-

accessible sites in subtype-specific gene expression via targeted knock-out (Supplemental 

Fig. 12). Using flanking gRNAs in REH cells, we targeted 3 ETV6-RUNX1 subtype-

accessible sites at DSC3, KCNN1 and IGF2BP1 gene loci that are up-regulated genes in 

ETV6-RUNX1 ALL. Importantly, deletion of these open chromatin sites even in a portion of 

the pools of cells led to significant reduction in expression of these subtype-specific genes. 

Overall, these data further support a role for subtype-accessible sites in driving distinct 

transcriptional programs among ALL subtypes.

ALL molecular subtypes harbor unique gene regulatory networks

To further explore a functional link between unique open chromatin landscapes and gene 

expression signatures among ALL subtypes, we generated gene regulatory network maps 

in each subtype (25). We identified an average of 385,608 unique network connections in 

each subtype (i.e. “TF-gene target” interactions). Supporting substantial gene regulatory 

network subtype-specificity, we uncovered that on average 20.4% of these unique 

network connections were subtype-specific. To uncover enriched TFs in each network, 

we identified TFs that had stronger connectivity in each subtype compared to opposing 

subtypes and ranked them by average difference in target gene connectivity (Fig. 5A and 

Supplemental Fig. 13). Supporting our TF footprinting results, we uncovered numerous 

bHLH, homeodomain and AP-1 TFs as top ranked in ETV6-RUNX1, DUX4/ERG and 

hyperdiploid ALL respectively, including over-expressed TFs TCFL5, DUX4 and JDP2. 
We further uncovered that on average 15% of top up-regulated DEGs (FDR<0.01) in each 

subtype were directly connected to these over-expressed TFs, and an additional 45% of 

up-regulated DEGs were indirectly connected through an intermediate TF (Fig. 5B–C and 

Supplemental Fig. 14). By contrast, only 5% of up-regulated DEGs from opposing subtypes 

were connected to these TFs (3-fold enrichment, Wilcoxon p<0.05; 2.8-fold enrichment 

using up-regulated DEGs at FDR<0.05, Wilcoxon p<0.05). To functionally validate these TF 

observations, we used CRISPR/Cas9 genome editing to disrupt TCFL5 in REH cells, which 

led to significant effects on target gene expression and ALL cell biology. (Supplemental Fig. 

15).

We also compared the frequency of target gene connections between ALL subtypes to 

map enriched target genes that exhibit stronger network connectivity in each ALL subtype 

compared to opposing subtypes. In total, we identified 148 target genes that exhibited 

consistently stronger network connectivity (>=75 interactions) in a particular ALL subtype 

compared to opposing subtypes (Supplemental Fig. 16–18; 377 target genes identified using 

a cutoff of >=50 interactions). Interestingly, our gene regulatory network maps identified 

genes that we previously uncovered to be subtype-specific up-regulated DEGs in each ALL 

subtype, such as SOX11, BIRC7 and IGF2BP1 in ETV6-RUNX1 ALL. To determine if 

subtype-specific up-regulated DEGs harbored significantly greater network connectivity in 

the same subtype, we performed pair-wise comparisons among ALL subtypes by plotting 

and ranking connectivity differences for all target genes and subsequently compared these 
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ranked network target genes to the top subtype-specific up-regulated DEGs (FDR<0.01). 

Strikingly, we observed that subtype-specific up-regulated DEGs were highly enriched 

in target genes that exhibited stronger connectivity in the same ALL subtype (>85% 

of subtype-specific up-regulated DEG network target genes; Kolmogorov-Smirnov test 

p<2.2×10−16; Fig. 5D). Collectively, these data demonstrate that ALL subtypes harbor 

distinct gene regulatory networks linked to the unique open chromatin landscapes and gene 

expression signatures observed within ALL molecular subtypes.

DNA sequence variation contributes to inter-individual variability in chromatin 
accessibility

To better understand elements contributing to inter-individual variation in open chromatin 

landscapes, we mapped quantitative trait loci (QTL) impacting ALL chromatin accessibility 

(i.e. chromatin accessibility QTLs or caQTLs) in each subtype. We used single nucleotide 

polymorphism (SNP) genotyping data from primary ALL cells (n=24) and Web-based 

Allele-Specific PCR (WASP) (26) to identify caQTLs. We collectively mapped 3555 SNPs 

(FDR<0.05; 5530 SNPs at FDR<0.1) within ALL open chromatin sites that act as caQTLs 

(Fig. 6A–B and Supplemental Tables 8–10). Notably, 371 caQTLs were identified in 

>=2 ALL subtypes (572 caQTLs at FDR<0.1), and in all instances these shared caQTLs 

exhibited concordant allele-specific effects on chromatin accessibility (Fig. 6C). Consistent 

results were obtained using caQTLs at FDR<0.1 (Supplemental Fig. 19). Only 25% of 

caQTLs lie within TF footprints, supporting a role for DNA sequences distal to direct TF 

binding events in the regulation of local chromatin accessibility. Because noncoding variants 

have been associated with diverse biological traits through alterations of gene regulation 

(41–46), we utilized expression quantitative trait loci (eQTL) data in primary ALL cells 

from published studies (18, 47) and found 348 caQTLs (10% of all caQTLs at FDR<0.05) 

that additionally acted as cis eQTLs (<1Mb from target gene). Importantly, in over 75% of 

cases we observed biologically consistent directionality for these variants, meaning caQTL 

alleles with increased accessibility were associated with higher gene expression, whereas 

caQTL alleles with decreased accessibility were associated with lower gene expression (Fig. 

6D).

Cancer genomes harbor functional somatic variants within noncoding regulatory DNA 

sequences (48–51). We therefore investigated ALL somatic variants that were identified 

by the Pediatric Cancer Genome Project (52) (PCGP). We obtained noncoding somatic 

variant data for ETV6-RUNX1 (n=58), DUX4/ERG (n=25) and hyperdiploid (n=53) ALL 

patients and mapped variants to accessible chromatin sites. We mapped 1578, 1214 

and 250 somatic variants to open chromatin sites in ETV6-RUNX1, DUX4/ERG and 

hyperdiploid ALL, respectively. We further explored the predicted functional effects for 

these variants by obtaining their Combined Annotation Dependent Depletion (CADD) 

pathogenicity scores (27) and uncovered a discernable trend (Fig. 6E); variants mapping 

to closed chromatin harbored the lowest pathogenicity scores, variants mapping outside 

of TF footprints but within accessible chromatin harbored higher pathogenicity scores 

(p<2x10−16, mean difference between closed and open chromatin outside of TF footprints = 

0.28 +/−0.01) and variants localizing to TF footprints within accessible chromatin harbored 

the highest pathogenicity scores (p=0.0485, mean difference between open chromatin 
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outside and within TF footprints = 0.04 +/−0.02). Significant differences in somatic variant 

pathogenicity scores were also uncovered in each ALL subtype among variants in closed 

versus open chromatin, and among variants within TF footprints versus outside of TF 

footprints (Supplemental Fig. 20). Collectively, in addition to pronounced open chromatin 

heterogeneity among ALL subtypes, these data further indicate that DNA sequence variation 

contributes to inter-individual differences in ALL chromatin accessibility.

DISCUSSION

To date there has been limited understanding of the ALL chromatin landscape, and 

the extent of chromatin differences among ALL molecular subtypes has been largely 

unexplored. By mapping open chromatin sites using ATAC-seq in primary ALL samples 

from 24 patients, we uncovered extensive differences in the accessible chromatin landscape 

between ALL and normal hematopoietic cells that mirror the pathophysiology of ALL. 

Chromatin accessibility differences between ALL cells and normal B-cells involve the 

activation of B-cell repressed chromatin domains in ALL and further implicate the 

disruption of lymphocyte development and cell cycle control, and the activation of 

numerous oncogenic signaling pathways (e.g. BMP, C-MYB, endothelin, HIF-1a and Wnt). 

Consequently, these observations strongly support leukemic transformation as the primary 

driver of chromatin differences in ALL cells. However, because dissociation of potential 

cell-of-origin effects from the effects of leukemic transformation on the ALL chromatin 

landscape is challenging, we cannot exclude the possibility that a subset of these open 

chromatin differences are driven by cell-of-origin effects. Notably, C-MYB, HIF-1a and 

Wnt signaling have been implicated in leukemogenesis, ALL cell survival, chemoresistance 

and/or patient outcome (53-59), whereas dysregulation of BMP and endothelin signaling 

has been previously linked to other hematological malignancies (60, 61). Consequently, our 

results support further investigation of these signaling pathways in ALL.

Our data further demonstrate that open chromatin state can discriminate ALL subtypes. We 

identified thousands of open chromatin sites that exhibit consistently stronger accessibility 

within each ALL subtype than opposing subtypes through analyses of differential chromatin 

accessibility, while our TF footprinting analyses uncovered roles for bHLH, homeodomain 

and AP-1 TFs in establishing and/or maintaining unique chromatin landscapes among 

ALL subtypes. We additionally uncovered that subtype-accessible sites show decreased 

DNA methylation, that they are enriched near DEGs, and that they promote distinct gene 

regulatory networks among ALL subtypes. CRISPR/Cas9 genome editing and ChIP-seq 

further validated the gene regulatory effects of subtype-accessible sites and candidate 

TFs. Overall, these findings support coordination between multiple levels of epigenetic 

and transcriptional control and highlight the power of combining epigenomics and 

transcriptomics.

Our study also explored the effects of DNA sequence variation on the ALL open 

chromatin landscape. We identified thousands of DNA sequence variants that impact local 

chromatin accessibility, including a subset that associated with neighboring gene expression. 

We further identified thousands of somatic variants in regions of accessible chromatin 

and demonstrate that variants within accessible chromatin harbor greater pathogenicity 
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compared to variants in closed chromatin. Overall, our findings support the functional 

effects of DNA sequence variants on ALL chromatin state and gene regulation and highlight 

genetic variation as a key contributor to inter-individual variability in ALL open chromatin 

state.

In conclusion, our results suggest that there are ALL subtype-specific chromatin landscapes 

that are additionally modulated by genetic variation, and these unique chromatin landscapes 

in turn contribute to distinct gene regulatory networks and gene expression signatures 

among ALL subtypes. A better understanding of epigenomic landscapes in diverse ALL 

subtypes could be used to illuminate novel gene regulatory drivers or to better categorize 

ALL subtypes. Notably, as diverse molecular subtypes of ALL are associated with distinct 

prognoses (2, 62), chromatin profiling can be further used to optimize therapies or to exploit 

novel targets or genetic pathways for the treatment of ALL. The work herein advances 

our understanding of ALL epigenomic complexity and underscores the integral role of the 

chromatin landscape in defining ALL cell biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Extensive chromatin reprogramming between ALL and normal B-cells.
(A) Unsupervised hierarchical clustering heatmap of ALL with normal hematopoietic 

cells is depicted on the left. PCA plot of normalized read depth at open chromatin sites 

is shown on the right. HSC=hematopoietic stem cell; MPP=multipotent progenitor cell; 

LMPP=lymphoid-primed multipotent progenitor cell; CLP=common lymphoid progenitor 

cell; B-cell=normal B lymphocyte; T-CD4= CD4+ T lymphocyte; T-CD8= CD8+ T 

lymphocyte; NK=natural killer cell; B-ALL= B-cell acute lymphoblastic leukemia. (B) 
Schematic of hematopoiesis is shown and includes the developmental stage where B-ALL 
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occurs. (C) Fraction of diverse ChromHMM chromatin states from GM12878 that map to 

open chromatin sites in ALL (n=24) and normal B-cells (n=15). At the right, the number 

of open chromatin sites that map to heterochromatin domains in GM12878 is provided. (D) 
Histogram depicting differentially accessible ATAC-seq sites between ALL cells and normal 

B-cells. The frequency of log2 fold changes (log2FC) in normalized read depth at the 

union of all reproducible open chromatin sites in ALL cells and normal B-cells is provided. 

Sites that are significantly more accessible (FDR<0.01) in ALL (pink) and normal B-cells 

(yellow) are shown, and the number of sites exhibiting extreme changes (absolute log2FC 

>2) is provided. Fraction of diverse ChromHMM states at enriched and depleted ALL sites 

is shown below. (E) Pie charts show the total number and percentage of up- (green) and 

down- (red) regulated genes associated with extremely accessible sites (absolute log2FC 

>2) in ALL cells (left) or B-cells (right). Gene set enrichment analysis (GSEA) depicting 

biological pathways (x-axis) and their significance (y-axis) is provided for differentially 

expressed genes associated with extremely accessible sites in ALL (F) and normal B-cells 

(G).
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FIGURE 2. Open chromatin heterogeneity among ALL molecular subtypes.
(A) Venn diagrams depict overlap in open chromatin sites among ALL subtypes. (B) 
Unsupervised hierarchical clustering heatmap of Spearman rank correlations from pair-wise 

comparisons of normalized open chromatin site read counts between ALL cell samples is 

depicted on the left. The heatmap denotes the rho value between pair-wise ALL sample 

comparisons. PCA plot of normalized read depth at open chromatin sites is shown on the 

right. (C) Examples of genomic loci harboring open chromatin sites exhibiting differences 

in chromatin accessibility between ALL subtypes. Open chromatin accessibility from human 
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ALL cell lines and locations of genes is provided below. (D) Across a panel of B-ALL cell 

lines (x-axis), a bar plot delineates the number of ETV6-RUNX1-accessible sites (red) and 

DUX4/ERG-accessible sites (blue) that exhibited the strongest accessibility in each ALL 

cell line. Hashtags denote the number of ETV6-RUNX1-accessible sites in REH cells and 

the number of DUX4/ERG-accessible sites in Nalm6 cells.
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FIGURE 3. Distinct TF footprints and TF activities among ALL molecular subtypes
(A) Venn diagrams depict overlap in TF footprints among ALL subtypes. (B) Dot plots 

show ALL subtype comparisons of TF activity scores (x-axis; p<0.05) at open chromatin 

sites for all pairwise analyses. Consistently identified TF families are highlighted and their 

corresponding colors are provided below the plots. (C) Normalized ATAC-seq profiles for 

homeobox TF DUX4 activity in DUX4/ERG (red) and hyperdiploid (blue) subtypes (top). 

Normalized ATAC-seq profiles for AP-1 TF JDP2 activity in hyperdiploid (red) and ETV6-

RUNX1 (blue) subtypes (bottom). Stronger TF activity is seen for DUX4 in DUX4/ERG 

subtypes and for JDP2 in hyperdiploid subtypes. At the right, average transcripts per million 

(TPM) plots for DUX4 and JDP2 TF genes are shown among ALL subtypes (E=ETV6-

RUNX1, D=DUX4/ERG, H=Hyperdiploid).
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FIGURE 4. Coordination between multiple levels of epigenetic and transcriptional control.
(A) Boxplot of median CpG DNA methylation beta-values at subtype-accessible sites 

from the same subtype versus median CpG DNA methylation beta-values from opposing 

subtypes. Wilcoxon rank-sum test p-values are provided. (B) Cumulative distribution 

functions display the fraction (y-axis) and distance (x-axis) of ALL subtype up-regulated 

gene transcription start sites to the nearest subtype-accessible site. Data is provided for 

ETV6-RUNX1-accessible sites, DUX4/ERG-accessible sites and hyperdiploid-accessible 

sites (left-to-right). For each set of subtype-accessible sites, distances to genes up-regulated 

>2-fold (fc2) or >1.5-fold (fc1.5) within the same subtype are provided, as well as 

genes up-regulated >1.5-fold in opposing subtypes. Background distance distributions use 

transcription start sites of all expressed genes in each subtype. Kolmogorov-Smirnov (K-S) 

test p-values are provided for each plot for genes up-regulated >2-fold (fc2) or >1.5-fold 

(fc1.5) within the same subtype.
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FIGURE 5. Stronger gene regulatory network connectivity for subtype-specific up-regulated 
genes.
(A) Distribution of top TFs ranked by enrichment in target gene connections in DUX4/ERG 

ALL. Location of DUX4 (in blue) is denoted in the TF ranking. (B) Pie charts showing the 

number of subtype-specific up-regulated DEGs connected to TCFL5, DUX4 and JDP2 in 

ETV6-RUNX1, DUX4/ERG and hyperdiploid ALL. Direct connections are shown in darker 

hues (red, blue and gray) while secondary/indirect connections through an intermediate TF 

are shown in lighter hues. Unconnected target genes are shown in light gray in each pie 

chart. (C) Gene regulatory network map of DUX4 TF connections to target genes that are 

subtype-specific up-regulated DEGs in DUX4/ERG ALL. Target gene names are provided 

for DEGs with an average log2 fold change greater than 2. Target genes that also act as TFs 

are shown as hexagons. (D) Network target gene comparison plots for all pairwise subtype 

analyses. Network target genes are ranked by differences in connection frequency between 

subtypes. Colored diamonds represent network target genes that are subtype-specific 

up-regulated DEGs in each ALL subtype (red= ETV6-RUNX1, blue=DUX4/ERG and 

gray=hyperdiploid). Network target genes harboring greater connectivity in a subtype were 
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significantly enriched (K-S test p<2.2x10−16) in up-regulated DEGs in the same subtype. 

Several notable up-regulated DEG network target genes are highlighted. The percentage of 

subtype-specific up-regulated DEGs that show greater connectivity in the same subtype is 

also provided (bottom left and upper right).
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FIGURE 6. DNA sequence variation impacts chromatin accessibility and related phenotypes.
(A) Log distribution of allele-specific accessibility ratios (reference versus alternative allele 

count) at caQTLs (FDR<0.05) in ALL cell samples (REF=reference, ALT=alternative). (B) 
Example of caQTL in DUX4/ERG ALL. SNP rs3926389 impacts chromatin accessibility 

and lies within a footprint spanning the canonical CTCF motif and an ENCODE CTCF 

ChIP-seq site (shown). In heterozygous ALL cells, 82% of reads map to the reference 

G allele, which more closely matches the canonical CTCF motif (shown). ATAC-seq 

enrichment plots, genotypes, sequence conservation and the location of the variant is 
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provided. (C) Comparison of log2 allele-specific accessibility read count ratios (REF/

ALT) between overlapping ALL subtype caQTLs (FDR<0.05). Hyperdiploid (X-axis) and 

ETV6-RUNX1 (Y-axis) overlapping caQTLs are shown in pink, hyperdiploid (X-axis) and 

DUX4/ERG (Y-axis) overlapping caQTLs are shown in light blue and ETV6-RUNX1 (X-

axis) and DUX4/ERG (Y-axis) overlapping caQTLs are shown in purple. (D) Plot comparing 

caQTL log2 allele-specific accessibility read count ratio versus eQTL gene expression 

estimates. Over 75% of caQTLs show concordant effects (denoted in black) on chromatin 

accessibility and gene expression (quadrants highlighted in purple). (E) Box plots show raw 

CADD scores for diverse sets of noncoding somatic variants. Not ATAC = not in accessible 

chromatin; ATAC -FP = in accessible chromatin but not TF footprint; ATAC +FP = in 

accessible chromatin and TF footprint.
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