Skip to main content
. 2021 Sep 9;20:15330338211039125. doi: 10.1177/15330338211039125

Table 2.

The Differentiational Ability of all Models Based on 5 Feature Selection Methods and 9 Feature Classification Methods.

Models Test group
Sensitivity Specificity Accuracy AUC
OD_LDA 0.990 0.833 0.954 0.953
DC_LDA 0.990 0.867 0.962 0.997
RF_LDA 0.990 0.900 0.969 0.997
LASSO_LDA 0.950 0.500 0.853 0.788
Xgboost_LDA 0.980 0.933 0.969 0.993
GBDT_LDA 0.990 0.867 0.962 0.980
OD_SVM 0.990 0.833 0.923 0.987
DC_SVM 0.990 0.867 0.962 0.993
RF_SVM 1.000 0.900 0.954 0.987
LASSO_SVM 1.000 0.500 0.792 0.915
Xgboost_SVM 0.970 0.933 0.938 0.990
GBDT_SVM 1.000 0.867 0.962 0.983
OD_RF 0.970 0.717 0.915 0.983
DC_RF 0.990 0.833 0.954 0.990
RF_RF 0.980 0.733 0.923 0.990
LASSO_RF 0.980 0.783 0.938 0.958
Xgboost_RF 0.990 0.833 0.954 0.995
GBDT_RF 0.990 0.783 0.946 0.997
OD_Adaboost 0.990 0.767 0.938 0.987
DC_Adaboost 0.961 0.750 0.915 0.962
RF_Adaboost 0.980 0.783 0.938 0.983
LASSO_Adaboost 0.960 0.750 0.915 0.933
Xgboost_Adaboost 0.990 0.800 0.946 0.990
GBDT_Adaboost 0.980 0.900 0.962 0.993
OD_KNN 0.960 0.633 0.884 0.955
DC_KNN 0.960 0.800 0.923 0.970
RF_KNN 0.980 0.767 0.931 0.970
LASSO_KNN 0.970 0.450 0.861 0.912
Xgboost_KNN 0.950 0.783 0.915 0.962
GBDT_KNN 0.980 0.800 0.938 0.977
OD_GaussianNB 0.980 0.767 0.931 0.923
DC_GaussianNB 0.970 0.867 0.946 0.953
RF_GaussianNB 0.910 0.867 0.900 0.935
LASSO_GaussianNB 0.950 0.467 0.846 0.907
Xgboost_GaussianNB 0.950 0.867 0.931 0.950
GBDT_GaussianNB 0.940 0.900 0.931 0.935
OD_LR 0.990 0.583 0.900 0.953
DC_LR 1.000 0.633 0.915 0.957
RF_LR 1.000 0.667 0.923 0.967
LASSO_LR 1.000 0.000 0.783 0.909
Xgboost_LR 1.000 0.400 0.869 0.952
GBDT_LR 1.000 0.483 0.885 0.990
OD_GBDT 0.960 0.783 0.923 0.898
DC_GBDT 0.980 0.850 0.954 0.932
RF_GBDT 0.960 0.783 0.923 0.917
LASSO_GBDT 0.980 0.817 0.946 0.941
Xgboost_GBDT 0.970 0.850 0.946 0.932
GBDT_GBDT 0.980 0.783 0.938 0.937
OD_DT 0.970 0.783 0.931 0.877
DC_DT 0.980 0.750 0.931 0.865
RF_DT 0.970 0.750 0.923 0.860
LASSO_DT 0.960 0.750 0.915 0.855
Xgboost_DT 0.980 0.750 0.931 0.865
GBDT_DT 0.990 0.750 0.938 0.870

Abbreviations: Adaboost, Adaptiveboosting; AUC, area under the curve; DC, distance correlation; DT, decision tree; GaussianNB, Gaussian Naïve Bayes; GBDT, gradient boosted decision tree; ICCA, intrahepatic cholangiocarcinoma; KNN, k-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis; LR, logistic regression; RF, random forest; SVM, support vector machine; OD, original data; XGBoost, eXtreme gradient boosting.