Skip to main content
. 2021 Sep 2;12(35):8627–8636. doi: 10.1021/acs.jpclett.1c01261

Table 1. Differential Enthalpy ΔHads and Differential Gibbs Free Energy ΔGads for Physical Adsorption and Differential Enthalpy of Decomposition ΔHdec (all in kJ/mol) for Molecular Oxygen and Water on Defect-Free (i) PtTe2- and (ii) Pt2Te2-Terminated Pt3Te4 Surfaces and, Moreover, in the Nearness of Te Vacancies in These Surfaces (See Figure 1b,c)a.

adsorbent surface termination of Pt3Te4 site ΔHads [kJ/mol] ΔGads [kJ/mol] ΔHdec [kJ/mol]
CO PtTe2 defect-free –15.61 +3.74
    Te vacancy –12.72 +6.63  
  Pt2Te2 defect-free –21.07 –1.72
    Te vacancy –12.59 +6.76  
H2O PtTe2 defect-free –25.59 +5.71 +405.20
    Te vacancy –20.11 +11.19 +428.38
  Pt2Te2 defect-free –26.07 +5.23 +173.55
    Te vacancy –16.48 +14.82 –30.18
O2 PtTe2 defect-free –42.62 –31.13 –51.78 (+1.31)
    Te vacancy –33.29 –21.99 –69.37 (−30.99)
  Pt2Te2 defect-free –40.81 –29.51 –98.08 (−27.06)
    Te vacancy –34.99 –23.69 –162.98 (−73.58)
a

In the case of oxygen decomposition, we also report the differential enthalpy of the oxidation of whole surface (in parentheses).