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Abstract

The binding of adenosine 5’-triphosphate (ATP) and adenosine 5’-monophosphate (AMP) to 

adenylate kinase (AdK) drives closure of lids over the substrate adenosyl groups. We test 

the hypothesis that this conformational change activates AdK for catalysis. The rate constants 

for Homo sapiens adenylate kinase 1 (HsAdK1)-catalyzed phosphoryl group transfer to AMP, 

kcat/Km = 7.0 x 106 M−1 s−1, and phosphite dianion, (kHPi)obs ≤ 1 x 10−4 M−1 s−1, show 

that the binding energy of the adenosyl group effects a ≥7.0 x 1010-fold rate acceleration of 

phosphoryl transfer from ATP. The third-order rate constant of kcat/KHPiKEA = 260 M−2 s−1 

for 1-(β-D-erythrofuranosyl)adenine (EA)-activated phosphoryl transfer to phosphite dianion was 

determined, and the isohypophosphate reaction product characterized by 31P NMR. The results 

demonstrate: (i) a ≥14.7 kcal/mol stabilization of the transition state for phosphoryl transfer 

by the adenosyl group of AMP and a ≥2.6 x 106-fold rate acceleration from the EA-driven 

conformational change, and (ii) the recovery of ≥8.7 kcal/mol of this transition state stabilization 

for EA-activated phosphoryl transfer from ATP to phosphite.
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The phosphodianion of phosphate monoester substrates for metabolic reactions provides ca. 

12 kcal/mol of binding energy for stabilization of transition states for enzyme-catalyzed 

proton transfer, hydride transfer,1, 2 decarboxylation,2, 3 and phosphoryl transfer reactions.4 

From 33–66% of this binding energy is utilized in phosphite dianion activation of these 

enzymes for catalysis of the reactions of phosphodianion truncated substrates.1–5 Our model 

to rationalize the reactions of substrate pieces can be generalized to any enzyme that 

undergoes a substrate-driven conformational change,6 but phosphite dianion is the only 

identified activating substrate piece.

Adenylate kinase (AdK) catalyzes the transfer of a phosphoryl group from ATP to AMP 

to form two molecules of ADP (Scheme 1). The binding of nucleotide substrates to 

AdK drives the closure of ATP- and AMP-lids over the substrate adenosine groups.7 We 

predict that these protein-adenosine interactions activate AdK for catalysis of phosphoryl 

transfer, and that AdK is an effective catalyst of the reaction of the AMP pieces 1-(β-

D-erythrofuranosyl)adenine (EA) and phosphite dianion. This is a reversal of the roles 

of phosphite dianion (substrate) and truncated nucleoside EA (activator) from that for 

phosphite dianion activation of orotidine monophosphate decarboxylase (OMPDC, Scheme 

2).8

The commercial sources for all materials, and the methods for the preparation of Homo 
sapiens adenylate kinase 1 (HsAdK1) and tobacco etch virus (TEV) protease are given in 

the Supporting Information (SI). The following protocols are described in the SI: (i) assays 

for AdK-catalyzed phosphoryl transfer from ATP to AMP, for AdK-catalyzed hydrolysis of 

ATP, and for unactivated and EA-activated AdK-catalyzed phosphoryl transfer from ATP to 

phosphite dianion and (ii) protocol for product determination using 31P NMR.

His6-tag labelled HsAdK1 was expressed in E. coli, purified over a Ni2+-column, and the 

His6-tag removed by tobacco etch virus (TEV)-protease. The purified HsAdK1 showed 

a single band by SDS-PAGE (Figure S1). The initial velocity, vo, at 25 °C for HsAdK1

catalyzed phosphoryl transfer from ATP to AMP was determined by a standard enzyme 

assay (SI).9 Figure S2 shows a plot of vo/[E] against AMP for HsAdK1-catalyzed 

phosphoryl transfer from 1 mM ATP (saturating)10 to AMP to form 2 ADPs at 25 °C 
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and pH 7.5, which gave the kinetic parameters kcat/Km = (7.0 ± 0.4) x 106 M−1 s−1, kcatt = 

475 ± 8 s−1 and Km = 68 ± 4 μM.

HsAdK1-catalyzed hydrolysis of ATP to ADP was monitored by coupling the formation of 

ADP to the oxidation of NADH by pyruvate, catalyzed by lactate dehydrogenase. Figure 

S3A shows the dependence of vo on [HsAdK1] for catalysis of hydrolysis of 1 mM ATP 

(saturating)10 to form ADP. The slope of this correlation, khyd = 5 x 10−6 s−1, is similar to 

khyd = 2 x 10−6 s−1 reported for adenylate kinase from E. coli.7

Figure S3B shows the increase in khyd = 5 x 10−6 s−1 for HsAdK1-catalyzed (72 μM) 

conversion of ATP (1 mM) to ADP in the presence of increasing concentrations of phosphite 

dianion. The slope of this correlation, (kHPi)obs = (9.9 ± 0.3) x 10−5 M−1 s−1, is the sum 

of the rate constants for HsAdK1-catalyzed phosphoryl transfer from ATP to phosphite 

to form isohypophosphate (HPPi), (kHPi)E, and for activation of the HsAdK1-catalyzed 

hydrolysis reaction by a specific salt effect, (kHPi)salt. The formation of ADP by the reaction 

of phosphite with ATP (Scheme 3) would result in a low yield of HPPi, undetectable by the 
31P analytical methods described below. Therefore, the value of (kHPi)obs = (9.9 ± 0.3) x 

10−5 M−1 s−1 (Figure S3B) sets an upper limit of (kHPi)E ≤ 1 x 10−4 M−1 s−1 for unactivated 

HsAdK1-catalyzed phosphoryl transfer from ATP to phosphite (Table 1).

The HsAdK1-catalyzed conversion of ATP to ADP in the presence of phosphite dianion 

is strongly activated by EA. Figure 1A shows the effect of increasing [EA] on (vobs – vo) 

for HsAdK1-catalyzed (2 μM) reactions of saturating ATP (1 mM), where vobs is the total 

reaction velocity, and vo is a ≤1.1% correction for the velocity at [EA] = 0 M. The increase 

in (vobs – vo) is consistent with EA-activation of HsAdK1 for catalysis of phosphoryl 

transfer from ATP to HPO3
2− to form HPPi (Scheme 3). We confirm this by determining the 

reaction products using 31P NMR.

The HsAdK1-catalyzed conversion of ATP to ADP in the presence of phosphite dianion 

was monitored in a 1.0 mL solution in D2O that contains 50 mM TEA (pD 7.5), 10 mM 

EA, 3 mM MgCl2, 30 mM KCl, 25 mM phosphite (93% dianion),1 1 mM ATP, 30 mM 

phosphoenolpyruvate (PEP), 10 mM phosphonoacetate (31P-standard), 1 U pyruvate kinase, 

and 67 μM HsAK1. This reaction was monitored continuously for 16 h at 25 °C by 31P 

NMR spectroscopy on a Varian Inova 500 MHz spectrometer, as described in the SI. Figure 

2 shows the relevant changes in the 31P NMR spectra during this time. The integrated areas 

for the singlet for PEP (−0.62 ppm) and doublet for phosphite (3.05 ppm, d, 1JPH = 568 Hz) 

decrease, as peaks for HPPi appear (−4.50 ppm, dd, 1JPH = 646 Hz, 2JPP = 17 Hz; −5.44 

ppm, d, 2JPP = 17 Hz).11 No inorganic phosphate from adenylate-kinase catalyzed hydrolysis 

of ATP, or from hydrolysis of HPPi was detected. This is consistent with the published 12 h 

halftime for hydrolysis of HPPi at 60 °C and pH 7.4.11

The sum of the normalized 31P peaks areas for the reactants PEP and phosphite (AR) 

and the HPPi product (AP) were determined using a constant peak area (AS) for the 

phosphonoacetate standard. There is no significant change in the sum of normalized areas 

of peaks for reactants and products during the reaction. Figure 3 compares the time courses 

for the decrease in the fraction of PEP and phosphite reactants remaining (Ai = AR) with 
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the increase in the fraction of reactants converted to HPPi (Ai = AP), with normalization of 

(AR + AP). The solid lines in Figure 3 show the fit of these data to the rate equation for 

the apparent first-order conversion of (30 mM PEP + 25 mM phosphite) to HPPi, using a 

rate constant of kobs = 0.16 h−1 and reaction end-points of 22 mM HPPi and 11 mM (PEP 

+ phosphite). These fits show that the reactants are converted to HPPi as essentially the 

exclusive product.

Figure 3 shows that HsAdK1-catalyzed phosphoryl transfer from ATP to phosphite dianion 

to form HPPi can account for essentially the entire increase in (vobs – vo) from Figure 1A. 

The solid lines for Figures 1A show the nonlinear least squares fits of the kinetic data to 

eq 1, derived for Scheme 4, assuming KHPi >> [HPi] and using the values of (kcat/KEA)obs 

determined for reactions at different [HPO3
2−]. Figure 1B shows the linear plot (eq 2) of 

values of (kcat/KEA)obs from Figure 1A, against [HPO3
2−]. The slope of this correlation is 

(kcat)HPi•EA/KHPiKEA = (2.58 ± 0.05) x 102 M−2 s−1 (Table 1).

Table 1 summarizes data that defines the role of the adenosyl group of AMP in activating 

HsAdK1 for catalysis of phosphoryl transfer from enzyme saturated with ATP (1 mM). 

The values of kcat/Km = 7.0 x 106 M−1 s−1 and (kHPi)E ≤ 1 x 10−4 M−1 s−1, respectively 

for the catalyzed reactions of AMP and phosphite dianion show that the AMP adenosyl 

group is responsible for a ≥7.0 x 1010-fold rate acceleration for phosphoryl group transfer. 

This is a lower limit, because the full AMP binding interactions are probably not expressed 

at the transition state for the enzyme conformational change, which limits the rate of 

reaction of AMP.7 This corresponds to a ≥14.7 kcal/mol stabilization of the transition state 

for phosphoryl transfer by the AMP adenosyl group. The ratio of the rate constants for 

HsAdK1-catalyzed phosphoryl transfer from ATP to HPO3
2− in the presence and absence of 

the EA activator, ≥2.6 x 106 M, shows that ≥8.7 kcal/mol of the adenosyl binding energy 

is recovered as stabilization of the transition state by the activator. This binding energy is 

utilized to hold AdK in an active closed conformation.6, 12–15 By comparison, the transition 

state for OMPDC-catalyzed decarboxylation is stabilized 12 kcal/mol by interactions with 

the OMP phosphodianion and 19 kcal/mol by interactions with the OMP ribosyl and orotate 

moieties.8

Inorganic tripolyphosphate binds weakly to chicken muscle adenylate kinase (Kd = 1 mM) 

and undergoes phosphoryl transfer to AMP with kcat that is ca (104–105)-fold smaller than 

for the reaction of ATP.16 This shows that the adenosyl group of ATP is essential for optimal 

phosphoryl donor activity. HsAdK1 shows a higher specificity for the phosphoryl acceptor 

AMP compared to the donor ATP,17 which suggests a larger activating adenosyl binding 

energy for the acceptor compared with the donor nucleotide.

υobs − υo
E =

kcat HPi·EA EA HPO3
2 −

KHPiKEA + KHPi EA
(1)

kcat/KEA obs =
kcat HPi·EA HPO3

2 −

KHPiKEA
(2)
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Adenylate kinase functions in muscle tissues to maintain an equilibrium concentration of 

ATP, ADP, and AMP in order to optimize [ATP] under conditions of energy stress, created 

by the rapid myosin-catalyzed hydrolysis of ATP. This important function creates pressure to 

optimize enzyme activity, similar to that for the glycolytic enzyme TIM.19, 20 In these and 

other cases, the pressure to optimize catalytic activity has driven evolution of protein motifs, 

where substrate binding energy is utilized to drive large, enzyme-activating, conformation 

changes.2, 6

X-ray crystal structures for AdK show that the adenosyl group of AMP sits distant from 

the reacting phosphates, and is held at the enzyme by hydrogen bonds with protein side 

chains and backbone amides.21, 22 The ligand phosphates interact with many cationic amino 

acid side chains and backbone amides, so that the activator-driven conformational changes 

move disordered polar groups into positions that provide for optimal stabilizing electrostatic 

interactions with the phosphate oxygens at the transition state for HsAdK1-catalyzed 

phosphoryl transfer.23 We propose that the ≥8.7 kcal/mol transition state stabilization from 

binding of the EA activator is due to the incremental tightening of many stabilizing polar 

interactions that result from the ligand-driven enzyme conformational change.
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ABBREVIATIONS

AdK adenylate kinase

AMP adenosine 5’-monophosphate

ADP adenosine 5’-diphosphate

ATP adenosine 5’-triphosphate

HsAdK1 Homo sapiens adenylate kinase 1

EA 1-(β-D-erythrofuranosyl)adenine

HPPi isohypophosphate

OMP orotidine 5’-monophosphate

OMPDC orotidine 5’-monophosphate decarboxylase

SI Supporting Information

TEA triethanolamine

TEV tobacco etch virus
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TIM triosephosphate isomerase
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Figure 1. 
(A) The effect of increasing [EA] on the velocity for HsAdK1-catalyzed reactions of ATP (1 

mM) at 25 °C. Key: ♦, 25 mM [HPi]T, (93% dianion); ▼, 20 mM [HPi]T; ▲, 15 mM [HPi]T; 

■, 10 mM [HPi]T; ●, 5 mM [HPi]T. (B) The effect of increasing [HPO3
2−] on the values of 

(kcat/KEA)obs determined for Figure 1A.
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Figure 2. 
31P NMR spectra that show the change with time in the areas of the peaks AR at −0.62 and 

3.05 ppm for PEP and phosphite reactants, and Ap at −4.50 and 5.44 ppm for HPPi product 

of EA-activated HsAdK1-catalyzed reactions (Scheme 3).
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Figure 3. 
The fractions of reactants PEP and phosphite remaining (▼, Ai = AR) and product HPPi 

formed (▲, Ai = AP at time t, determined by integration of the peaks from Figure 2.
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Scheme 1. 
Adenylate Kinase-Catalyzed Phosphoryl Transfer from ATP to ADP.
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Scheme 2. 
Roles of Dianion and Nucleoside (EO and EA) Substrate Pieces in Reactions Catalyzed by 

OMPDC and AdK.
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Scheme 3. 
Assay to Monitor AdK-Catalyzed Phosphoryl Transfer from ATP to Phosphite Dianion.
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Scheme 4. 
Kinetic Mechanism for Activation of HsAdK1-Catalyzed Phosphoryl Transfer from ATP to 

Phosphite Dianion by the Substrate Piece EA.
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Table 1.

Rate Constants and Transition-State Binding Energies ΔΔG‡ for HsAdK1-Catalyzed Phosphoryl Transfer from 

1.0 mM ATP to AMP and to Phosphite Dianion.
a

Phosphoryl Acceptor Kinetic Parameter ΔΔG‡ (kcal/mol) 
b

AMP kcat/Km (7.0 ± 0.4) x 106 M−1 s−1
≥ 14.7 

c

HPO3
2− + EA (kcat)HPi•EA/KHpiKEA (2.58 ± 0.05) x 102 M−2 s−1 d ≥ 8.7 

e

HPO3
2−

(kHpi)E ≤1.0 x 10−4 M−1 s−1 f

a
At 25 ° C and pH 7.5.

b
Calculated from the ratio of rate constants for HsAdK1-catalyzed reactions of AMP and the substrate piece (HPO32−) or pieces (HPO32− + EA).

c
Assuming similar intrinsic nucleophilic reactivities for AMP and phosphite dianion.

d
Determined from the fit of data from Figure 1B to eq 2.

e
Calculated from the ratio of rate constant for HsAdK1-catalyzed reactions of phosphite in the presence and absence of EA.18

f
The slope from Figure S3B (see text).
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