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Abstract

The deep and durable antitumor effects of antibody-based immunotherapies such as immune 

checkpoint inhibitors (ICIs) have revolutionized oncology and transformed the therapeutic 

landscape for many cancers. Several anti–programmed death receptor 1 and anti–programmed 

death receptor ligand 1 antibodies have been approved for use in advanced solid tumors, including 

melanoma, non–small cell lung cancer (NSCLC), bladder cancer, and other cancers. ICIs are 

under development across many tumor types and preliminary results are compelling. However, 

ICIs have been associated with severe immune-related adverse events (irAEs), including rash, 

diarrhea, colitis, hypophysitis, hepatotoxicity, and hypothyroidism, which in some cases lead to 

high morbidity, are potentially life-threatening, and limit the duration of treatment. The incidence 

of severe irAEs increases further when programmed cell death-1 and programmed cell death 

ligand-1 inhibitors are combined with anti-CTLA-4 and/or other multi-drug regimens. Probody™ 

therapeutics, a new class of recombinant, proteolytically activated antibody prodrugs are in 

early development and are designed to exploit the hallmark of dysregulation of tumor protease 

activity to deliver their therapeutic effects within the tumor microenvironment (TME) rather than 

peripheral tissue. TME targeting, rather than systemic targeting, may reduce irAEs in tissues 
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distant from the tumor. Probody therapeutic technology has been applied to multiple antibody 

formats, including immunotherapies, Probody drug conjugates, and T-cell–redirecting bispecific 

Probody therapeutics. In preclinical models, Probody therapeutics have consistently maintained 

anti-cancer activity with improved safety in animals compared with the non-Probody parent 

antibody. In the clinical setting, Probody therapeutics may expand or create therapeutic windows 

for anti-cancer therapies.
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Introduction

Evasion of antitumor immunity is a hallmark of cancer. Therefore, immunotherapies 

were developed to activate, expand, and/or redirect tumor-reactive T cells to enhance cell

based antitumor immune responses, including antibody-based therapies such as immune 

checkpoint inhibitor (ICIs) and T-cell–redirecting bispecifics (TCBs) (1–4). Although 

immunotherapies prolong survival in patients with various tumor types, they can result in 

toxicity because the desired systemic immunostimulatory effects on the tumor also occur 

in healthy tissue. Immune-related adverse events (irAEs) are the result of treatment-induced 

inflammation. Although irAEs can present anywhere in the body, common sites include 

skin, liver, and the endocrine system (1–4). Such toxicities can be life-threatening and 

lead to treatment discontinuation. Therefore, the National Comprehensive Cancer Network 

recently published guidelines on the management of irAEs with ICIs (5).

Despite the often-durable clinical benefits of ICIs, many patients do not respond, respond 

only transiently, or develop resistance; therefore, immunotherapy combinations are under 

investigation to improve response rates and durability of response. However, the proportion 

of patients with toxicities increases with immunotherapy combination, and irAEs are often 

more difficult to manage versus those expected with individual therapies (6–8). Toxicities 

can be so severe that the development of otherwise promising immunotherapy regimens is 

discontinued because therapeutic doses are not safe.

Given the important link between immunotherapy efficacy and toxicity, identifying 

strategies to uncouple the two is important in cancer drug development. One potential 

solution is to preferentially activate drugs in tumors and spare healthy tissue through an 

antibody prodrug or “pro-antibody” approach. Similar to non-biologic prodrug medicines 

that have been proven safe and effective in a variety of therapeutic areas including cancer 

(9,10), antibody prodrugs may enable administration of the antibody at otherwise intolerable 

doses or in combination with a chemotherapeutic agent that would otherwise have a high 

toxicity rate, thereby allowing longer durations of therapy than achievable by the parent 

antibody alone.

In this review, we discuss the strengths and weaknesses of current immunotherapeutic 

strategies, focusing on ICIs, and describe potential advantages of antibody prodrugs, using 

the novel Probody therapeutic platform as a model.
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Immune Checkpoint Inhibitors: Efficacy, Safety, and Considerations for 

Combination Therapy

Antibodies blocking the inhibitory checkpoints cytotoxic T-lymphocyte–associated 

antigen-4 (CTLA-4) and programmed death 1 (PD-1), or its ligand PD-L1, restore T

cell–mediated antitumor immune responses and have emerged as effective immune-based 

cancer treatments (11). One CTLA-4 inhibitor (ipilimumab) and six PD-1/PD-L1 inhibitors 

(pembrolizumab, nivolumab, atezolizumab, durvalumab, cemiplimab, and avelumab) are 

approved for the treatment of specific cancers (11–13). Although ICIs demonstrate 

anticancer efficacy with variable response rates across tumor types and patient populations, 

most patients are nonresponsive to monotherapy (12); thus, combination strategies are being 

explored.

Although ICI monotherapy is generally well tolerated compared with traditional 

chemotherapy, potentially life-threatening irAEs can occur during and up to 1 year 

after treatment (2,14–16). irAEs result from an immune response against self-antigens, 

with subsequent target organ inflammation, and commonly include thyroiditis, colitis, 

and pneumonitis (16). In a recent meta-analysis of 13 studies, rates of hypothyroidism, 

pneumonitis, colitis, and hypophysitis were higher with anti–PD-1/PD-L1 antibodies 

compared with control treatments (14). These events are generally managed with high-dose 

corticosteroids and other immunosuppressants, and ICI therapy can usually continue after 

mild irAEs, with close monitoring. However, moderate to severe irAEs may result in severe 

declines in organ function and quality of life, and, in some cases, death. Furthermore, 

corticosteroids could reduce therapy effectiveness (17). New strategies to maintain efficacy 

and reduce toxicity are needed.

Because ICIs activate a broad-based immune response, irAEs represent an on-target, off

tumor toxicity for which incidence correlates with efficacy in some cases (eg, the PD-1 

inhibitor nivolumab in melanoma and non–small cell lung cancer [NSCLC]) (18–20). A 

retrospective analysis of nivolumab-treated melanoma (N=148), demonstrated statistically 

significant improvements in overall survival in patients with rash (hazard ratio [HR], 0.423; 

95% confidence interval [CI], 0.243–0.735; P=0.001) and vitiligo (HR, 0.184; 95% CI, 

0.036–0.94; P=0.012) (18). In an observational cohort study of nivolumab-treated NSCLC 

(N=38), patients with irAEs had significantly higher objective response rates (ORR) than 

patients without irAEs (63.6% vs 7.4%; P<0.01) (20). Similarly, irAEs positively correlated 

with progression-free survival (HR, 0.525; 95% CI, 0.287–0.937; P=0 .03) and overall 

survival (HR, 0.282; 95% CI, 0.101–0.667; P=0 .003) in patients with advanced or recurrent 

NSCLC treated with second-line nivolumab (N=134) (18). The association between toxicity 

and response is not predictive for individual patients because some patients with irAEs do 

not achieve clinical efficacy with ICI therapy (21).

PD-1/PD-L1 inhibitors may have greater antitumor efficacy with fewer irAEs than CTLA-4 

inhibitors (22). A study comparing adjuvant nivolumab (n=453) and ipilimumab (n=453) 

in patients with resected stage III/IV melanoma demonstrated a significantly greater rate of 

12-month recurrence-free survival (70.5% vs 60.8%, respectively) and a lower rate of grade 

3/4 treatment-related AEs (TRAEs; 14.4% vs 45.9%, respectively) with nivolumab (21). In a 
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meta-analysis and systematic review of 73 studies of ICIs (N=3418), the incidence of irAEs 

was highest with CTLA-4 inhibitors (53.8%), followed by PD-1 inhibitors (26.5%), and was 

lowest with PD-L1 inhibitors (17.1%) (22). Conversely, overall response rates were lower 

with CTLA-4 inhibitors (11.2%) versus PD-1 inhibitors (27%) or PD-L1 inhibitors (22.2%) 

(22). Combination of PD-1/PD-L1 inhibitors with chemotherapy, CTLA-4 inhibitors, BRAF 

and/or MEK inhibitors, or vascular endothelial growth factor inhibitors improves response 

rates, but increases overall and grade ≥3 AEs.

Anti–CTLA-4 and anti–PD-1/PD-L1 antibody combinations have demonstrated superiority 

over anti–PD-1/PD-L1 antibody monotherapy in metastatic melanoma and renal cell 

carcinoma (RCC), but cause increased toxicity (24–26). In melanoma, 57.6% of patients 

treated with ipilimumab and nivolumab (n=314) had a Response Evaluation Criteria in 

Solid Tumors (RECIST) objective response, and 55% incurred a treatment-related grade 

≥3 irAE; approximately one-third of patients discontinued therapy because of TRAEs (24). 

By comparison, of those receiving nivolumab monotherapy (n=316), ORR was 43.7%, 

and 16.3% of patients experienced grade ≥3 irAEs (7.7% discontinued therapy because 

of TRAEs). Results of a phase 3 trial of ipilimumab-nivolumab in intermediate- and 

high-risk advanced RCC are similar (ORR was 42%, grade 3 irAEs reported in 46% of 

patients [n=425], and discontinuation because of TRAEs was 22%) (25). Additionally, 

a single-center cohort of 64 patients with melanoma in an expanded-access program of 

nivolumab plus ipilimumab found that nearly three-fourths of patients required steroids, 

and over one-third were hospitalized for an irAE, some of which occurred months after 

treatment discontinuation (26). These toxicities have quality-of-life implications for patients 

and management of irAEs often requires high-dose steroids. These findings underscore the 

need for more tolerable combination therapies. Although multiple combination ICI studies 

are underway, only anti–PD-1/PD-L1 in combination with anti–CTLA-4 antibodies are 

currently approved in a limited number of indications.

Patients with pre-existing autoimmune disease or history of organ transplantation could be at 

high risk for AEs and are often excluded from clinical trials. Therefore, therapy that avoids 

off-tumor toxicities would be beneficial. Concerns about irAEs also limit the use of ICIs in 

patients with advanced thymic carcinoma, who are at higher risk of autoimmune disorders. 

In patients with thymic cancer (N=40), pembrolizumab was active, with an ORR of 22.5%; 

however, 15% had severe irAEs, including 5% with myocarditis (27).

T-cell–Engaging Bispecific Antibodies (TCBs)

TCBs are potent therapeutics designed to direct the activity of cytotoxic T cells to tumors. 

TCBs are dual-targeted and can bind to two different targets (ie, cell-surface receptors) on 

the same or different cells. Such dual binding potentially enhances therapeutic antitumor 

efficacy by simultaneously blocking multiple targets involved in pathogenesis, activating 

cell signaling, inducing antibody-dependent cell-mediated cytotoxicity, avoiding resistance 

and increasing antiproliferative effects, and temporarily engaging a patient’s own cytotoxic 

T cells to lyse cancer cells (3,4). Two TCBs are approved for cancer immunotherapy 

(catumaxomab, which targets CD3 and EpCAM to treat malignant ascites and blinatumomab 

which targets CD19 and CD3 to treat Philadelphia chromosome positive acute lymphoblastic 
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leukemia) and more than 50 are in clinical development (3). These highly potent TCBs 

target healthy tissue even with low antigen expression, resulting in significant on-target, 

off-tumor toxicity (eg, cytokine release autoimmunity) that can limit dosing (3,4). Therefore, 

TCB levels necessary for therapeutic efficacy have been difficult to reach without excessive 

toxicity and novel methods are necessary to engage the potent antitumor activity of TCBs 

while limiting off-target toxicity.

Overcoming the Challenge of Immunotherapy-Associated AEs

New approaches are needed to optimize antitumor activity of antibody-based 

immunotherapeutics without compromising control of systemic immunity. One approach 

is local administration of low-dose immunotherapies via intratumoral or peritumoral 

injection (28–30). In preclinical mouse models, injection of low-dose, slow-release anti–

CTLA-4 antibody formulation near the tumor resulted in effective antitumor CD8+ T-cell 

responses and tumor eradication, whereas serum levels of systemic antibodies remained 

low (28). Similarly, intratumoral co-injection of low-dose anti–CTLA-4 and anti-OX40 

antibodies in tumor-bearing mice resulted in a systemic antitumor immune response (29). 

Intratumoral injection is under clinical investigation, though largely limited to individuals 

with palpable tumors, which challenges the potential scalability of this strategy (30). 

Furthermore, because not all metastatic tumors can be injected, either using image guidance 

(interventional radiology) or local subcutaneous intratumoral injection, these approaches 

must be demonstrated to yield systemic abscopal (ie, distant) anti-cancer, clinically 

meaningful effects.

Probody™ Therapeutics

A recent approach to overcoming AEs associated with immunotherapy is a new class 

of recombinant, proteolytically activated antibody prodrugs called Probody therapeutics, 

which exploit the hallmark dysregulation of protease activity in tumors and are designed 

to largely restrict drug activity to the tumor microenvironment (TME) (31,32). A Probody 

therapeutic consists of three modular components—an active anticancer monoclonal IgG 

antibody or fragment of a variable region, a masking peptide linked to the N-terminus of the 

light chain, and a protease-cleavable substrate linker peptide—produced as a single protein 

using recombinant antibody production methodology (Fig. 1) (31,32). In healthy tissue, 

the Probody therapy remains largely intact and blocked from target binding and retains 

the long circulatory half-life expected for monoclonal antibody therapies. When a Probody 

therapeutic reaches the TME, tumor-associated proteases cleave the substrate linker, which 

releases the masking peptide, enabling the antibody to bind target antigen (Fig. 1) (31,32). 

Measurement of tumor-associated proteases from human tissue across many tumors showed 

that >90% of tumors had sufficient protease activity in the TME for Probody therapeutic 

activation ex vivo (31).

In principle, a distinct advantage of Probody technology is its potential application to 

any therapeutic antibody. Preclinically, the technology has been successfully applied to 

several antibody-based therapies, including immune modulators/ICIs (eg, anti–PD-L1 [33]), 

antibody-drug conjugates (eg, anti-CD71 [34], anti-CD166 [35,36]), and TCBs (eg, targeting 
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epidermal growth factor receptor (EGFR)-CD3 [37]). Although the Probody TCB targeting 

EGFR and CD3 (Pb-TCB) has not yet advanced into clinical development, preclinical 

results appear promising. In vitro studies demonstrated that an unmasked Pb-TCB exhibits 

potent dose-dependent tumor killing, while the masked molecule reduces cytotoxicity 

by more than 100,000-fold (37). In established HT29 xenograft tumor models in mice 

reconstituted with human PBMCs, the masked Pb-TCB demonstrated significant antitumor 

activity at 0.5 mg/kg and complete tumor regression at 1.5 mg/kg. EGFR-CD3 Pb-TCB 

has a significantly higher maximum tolerated dose than the unmasked TCB in nonhuman 

primates. Cynomolgus monkeys tolerated a dose of 4000 μg/kg of the Pb-TCB, whereas 

the maximum tolerated dose of the unmasked TCB was 60 μg/kg (37). The results of these 

studies suggest that the Pb-TCB might enable the development of T-cell–engaging bispecific 

therapeutics against broadly expressed targets such as EGFR.

Clinical trials evaluating Probody therapeutics are summarized in Table 1. Farthest along 

in development is CX-072, a Probody immunotherapy targeting PD-L1. Preclinical and 

preliminary clinical studies suggest that CX-072 has the potential to optimize anticancer 

efficacy without increasing toxicity. Like other Probody therapies, CX-072 is activated by 

tumor-associated proteases. In preclinical studies, occupancy of CX-072 on peripheral blood 

and splenic T cells was markedly reduced compared with that of the unmasked parental 

antibody at the same dose (33). CX-072 radiolabeled with zirconium-89 (89Zr) was used 

to study biodistribution into tumor versus lymphoid tissue; 89Zr-CX-072 accumulated in 

PD-L1-expressing tumors, with only minor uptake in murine peripheral lymphoid tissue 

(38). In mice bearing MC38 syngeneic tumors, CX-072 induced an antitumor response 

that was comparable to an unmasked parental antibody at the same dose (33). In addition, 

CX-072 provided protection from induction of autoimmune diabetes in a mouse model at 

doses that the parental antibody induced diabetes. Taken together, these preclinical findings 

suggest that CX-072 could induce an antitumor response similar to the parent antibody 

while remaining relatively inactive in peripheral tissue and potentially reduce the occurrence 

of systemic irAEs associated with other PD-1/PD-L1 inhibitors.(33) These data provided 

the rationale for further clinical development of an antibody-based Probody therapeutic 

targeting the T-cell checkpoint.

CX-072: From Proof-of-Concept to Clinical Trials

Launched in 2017, PROCLAIM-CX-072 (PRObody Clinical Assessment In Man; 

NCT03013491), is a proof-of-concept phase 1/2a, open-label, multicenter, dose-escalation, 

study to evaluate tolerability and antitumor activity of CX-072 as monotherapy or in selected 

combinations in patients with advanced, unresectable solid tumors or lymphoma for which 

a PD-1 or PD-L1 inhibitor was not approved by the US Food and Drug Administration 

(FDA) or other regulatory body (38,40). Patients were required to be naïve to ICI therapies. 

PROCLAIM-CX-072 includes dose-escalation groups (monotherapy and combinations), a 

stage testing biomarkers and efficacy in PD-L1+ tumors, and an indication expansion phase. 

Preliminary results are available for the monotherapy and combination dose-escalation 

phases.
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In the monotherapy escalation phase, CX-072 is being evaluated for efficacy and safety 

(maximum tolerated dose) in dose-escalation patient cohorts, and preliminary results have 

been presented (39). As of April 2018, 37 patients who had a median of 3 prior therapies 

(range: 1–13) received CX-072 at increasing doses from 0.03 to 30.0 mg/kg. The median 

time on treatment was 2.1 months (range: 1–10 months). In 23 evaluable patients across 

all dose levels, investigator-assessed best tumor response included 2 patients with partial 

response (one each in patients with thymoma and triple-negative breast cancer) and 10 

patients with stable disease. At the time of data cut-off, a maximum tolerated dose had not 

been reached; one dose-limiting toxicity (grade 3 febrile neutropenia) was observed in a 

thymoma patient receiving CX-072 at 3 mg/kg. Grade 3 or 4 treatment-related AEs were 

observed in 4 patients (10.8%), and irAEs with reversible grade 3 events were observed in 3 

patients (8.1%), including thrombocytopenia, elevated aminotransferases, and dyspnea. Two 

patients (5.4%) discontinued because of AEs. Preliminary results from the monotherapy 

dose expansion at CX-072 10 mg/kg in cohorts with anal squamous cell carcinoma, 

cutaneous squamous cell carcinoma (cSCC), small bowel adenocarcinoma (SBA), triple

negative breast cancer with skin lesions (TNBC), or undifferentiated pleomorphic sarcoma 

(UPS) also have been presented (41). A total of 51 patients, with a median age of 63 

years (range: 32–80) and median of 3 prior regimens (range: 1–12), were evaluated as of 

the November 2018 cut-off, at a median treatment duration of 1.8 months (range: 0.3–14.7 

months). Partial responses (confirmed and unconfirmed) were observed in patients with 

cSCC (n = 1 of 3 total patients), TNBC (n = 2 of 2 total patients), and UPS (n = 1 of 

16 total patients). One grade 3/4 treatment-related AE was observed (grade 3 rash), and 2 

patients discontinued treatment because of AEs (nausea and sepsis; n = 1 each). Although 

direct comparison to FDA-approved anti–PD-1/PD-L1 antibodies is limited based on sample 

size and trial design, these preliminary results with CX-072 are very encouraging when 

compared with historic control data for PD-1/PD-L1 inhibitors.

Pharmacodynamic and pharmacokinetic studies performed on patients receiving CX-072 

as monotherapy mirror preclinical research for this agent. As part of translational efforts, 

a cohort of 13 patients underwent paired baseline and on-treatment biopsies (42). Most 

patients (75%) in this paired biopsy cohort had protease activity that could be measured 

in their pre-treatment tumor sample (42). The proportion of patients with detectable 

intratumoral activation of CX-072 increased with increasing dose. Consistent with clinical 

activity observed with CX-072, this research supports the intended mechanism of action 

of Probody therapeutics. Moreover, this integrated clinical and translational data led to the 

selection of the CX-072 10-mg/kg dose for the expansion cohorts.

The CHECKMATE 067 trial provided evidence of enhanced efficacy with anti-PD-1 

(nivolumab) and anti-CTLA-4 (ipilimumab) combination therapy in patients with melanoma 

(43). However, the improved efficacy of the ICI combination was at the expense of 

higher toxicity, with a markedly higher rate of immune-related toxicities observed with 

the combination compared with each agent alone (22,43). To evaluate the efficacy of 

combination treatment while potentially lowering the safety risk of traditional combination 

regimens, the PROCLAIM-CX-072 trial includes two combination treatment arms, one with 

ipilimumab and one with a BRAF inhibitor (vemurafenib), In the ipilimumab combination 

evaluation in the PROCLAIM-CX-072 study (44), patients (n=16) with advanced solid 
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tumors who received a median of 3 prior cancer treatments (range: 1–12) were treated with 

CX-072 (0.3, 1.0, 3.0, and 10.0 mg/kg) plus ipilimumab (3.0 mg/kg or 6.0 mg/kg for the 

highest CX-072 dose level). The median number of ipilimumab doses received was 3. Best 

tumor response in 10 evaluable patients was one patient with confirmed complete response 

(anal squamous cell carcinoma), two with confirmed partial responses (testicular cancer 

[n=1] and small bowel [n=1]), and one with stable disease. The maximum tolerated dose was 

not reached as of the data cut-off date; however, preliminary data suggest that concomitant 

dosing of CX-072 and full-dose ipilimumab compares favorably with historical data for non

Probody-therapeutic–based PD-1 pathway inhibitors combined with ipilimumab (22,41). 

Grade 3 treatment-related irAEs occurred in two patients (colitis and dyspnea/pneumonitis), 

but no patients discontinued combination therapy because of treatment-related irAEs.

Summary

Antibodies targeting PD-L1 demonstrate antitumor activity against a variety of cancers 

and are being evaluated in combination with other immunotherapies and targeted agents 

to improve response rate and durability. However, combinations may be accompanied by 

increases in overall grade ≥3 AEs, particularly irAEs from immune system overactivation. 

Because anti–PD-L1/PD-L1 agent use is limited by on-target and off-tumor toxicities, novel 

strategies are necessary that allow antigen binding in tumors with limited healthy tissue 

binding. Probody technology was developed to limit off-tumor toxicity. Preliminary results 

of the first-in-human PROCLAIM-CX-072 study suggest an encouraging safety profile and 

antitumor activity for the PD-L1–directed Probody therapeutic CX-072. These preliminary 

findings support further exploration of CX-072 as monotherapy and in combination with 

other ICIs or targeted therapies.

Probody therapeutics are a new approach to overcome the AE challenges of immunotherapy 

because their activation is designed to be restricted to the TME. Therefore, systemic toxicity 

should be limited, risk-benefit improved, and more potent combination therapies may be 

exploited. A robust pipeline of Probody therapeutics in oncology is advancing through 

preclinical and clinical trials with the potential to broaden the range of effective doses and 

targets and enable new treatment combinations.
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Figure 1. 
Schematic representation of Probody™ therapeutic activation in the tumor 

microenvironment. Probody therapeutics are fully recombinant antibody prodrugs designed 

to remain relatively inactive systemically and to be activated specifically in the tumor 

microenvironment by tumor-associated proteases. Figure redrawn with permission from 

CytomX.
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