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This post hoc analysis of the Adaptive Coronavirus Disease 
2019 (COVID-19) Treatment Trial-1 (ACTT-1) shows a treat-
ment effect of remdesivir (RDV) on progression to invasive 
mechanical ventilation (IMV) or death. Additionally, we create 
a risk profile that better predicts progression than baseline ox-
ygen requirement alone. The highest risk group derives the 
greatest treatment effect from RDV.
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The Adaptive Coronavirus Disease 2019 (COVID-19) Treatment 
Trial-1 (ACTT-1) identified remdesivir (RDV) as the first anti-
viral to benefit hospitalized COVID-19 patients, demonstrating 
a significant improvement in median time to recovery from 

15 days with placebo to 10 days with RDV [1]. On post hoc sub-
group analysis using an 8-point ordinal scale, the largest benefit 
of RDV was seen in subjects receiving supplemental oxygen at 
baseline, with no clear benefit in other subgroups.

ACTT-1 was not designed to evaluate RDV’s impact on pro-
gression to invasive mechanical ventilation (IMV) or death. 
Although deaths were numerically lower in the RDV arm, the 
difference was not statistically significant. Here we retrospec-
tively explore RDV’s treatment effect within the data set as a 
whole and by defining a new risk profile for disease progression, 
not solely dependent upon baseline oxygen requirement.

METHODS

Data Set

ACTT-1 included 1062 subjects; 1051 had an ordinal score (OS) 
recorded. OS reflected the subject’s oxygen requirement at enroll-
ment: OS4, not requiring supplemental oxygen; OS5, requiring 
supplemental oxygen; OS6, requiring noninvasive positive pres-
sure ventilation (NIPPV) or high-flow oxygen (HFO); OS7, re-
quiring IMV or extracorporeal membrane oxygenation (ECMO). 
Time to progression to IMV or death was defined as number of 
days until first occurrence of IMV or death, except for subjects 
requiring IMV at baseline, where the endpoint was time until 
death. Demographic characteristics, biomarkers, comorbidities, 
and temporal features were collected, as previously described [1]. 
Missing biomarker values, for those missing <5%, were imputed 
as the in-group median within OS (Supplementary Sections 2–3).

Risk Profile Development and RDV Treatment Effect

We developed a risk profile for progression to IMV or death by 
examining 13 features in addition to baseline oxygen require-
ment. Features were selected using the results of a model fit on 
half the placebo arm data. The risk profile was developed from the 
selected features on the remaining placebo recipients. We grouped 
participants into risk profile quartiles: “high,” “moderate,” “lower,” 
and “least” risk. We compared risk profile and OS accuracy using 
leave-one-out cross-validated area under the receiver operating 
characteristic curve (AUC) [2] in placebo recipients [2]. We fit 
separate Fine-Gray competing risk [3] (time to recovery vs pro-
gression to IMV/death) and logistic regression (binary day 29 out-
comes) models to evaluate RDV efficacy within each quartile (not 
adjusted for multiplicity) (Supplementary Sections) [4–7].

RESULTS

Risk Profile

The risk profile included four baseline variables: (1) platelet 
count, (2) absolute lymphocyte count (ALC), (3) abso-
lute neutrophil count (ANC), and (4) oxygen requirement. 
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Independently, lower platelet count, lower ALC, and higher 
ANC were associated with greater risk of progression to IMV 
or death (Table 1). Each risk quartile included participants 
with a range of baseline oxygen requirements. For example, in 
the “high risk” quartile 34.0% (89/262) required IMV/ECMO, 
18.7% (49/262) required NIPPV or HFO, 38.2% (100/262) re-
quired supplemental oxygen, and 9.2% (24/262) required no 
supplemental oxygen.

Observed proportions of patients progressing to IMV or death 
by quartile were 37.4% (98/262) “high risk,” 26.2% (69/263) 
“moderate risk,” 16.7% (44/263) “lower risk,” and 8.3% (22/263) 
“least risk.” The risk profile AUC was higher than OS alone 
(0.73 vs 0.53; P < .0001), better predicting progression to IMV 
or death (Supplementary Figure 5.1). In this regard, the “high 
risk” quartile captured more deaths than OS7: 45.6% (62/136) 
versus 41.9% (57/136) all deaths, respectively. When compared 
to OS7, the “high risk” quartile had lower median baseline ALC 
(0.6 × 10^9/L vs 0.9 × 10^9/L), higher median baseline ANC 
(8.1 × 10^9/L vs 7.1 × 10^9/L), and lower median baseline plate-
lets (192.5 × 10^9/L vs 235 × 10^9/L). Further highlighting the 
validity of the risk profile, 73.4% (69/94) of OS4 and OS5 subjects 
that progressed to IMV or death were captured in either the “high 
risk” or “moderate risk” quartiles (Supplementary Table 5.3).

Treatment Effect of RDV

Treatment with RDV was associated with fewer progressions to 
IMV or death across the entire cohort (hazard ratio [HR] 0.67; 
[95% confidence interval {CI}: .52, .87] P = .0023), as well as 
in OS5 (HR 0.45; [95% CI: .29, .71] P = .0003). The “high risk” 
quartile also showed a significant RDV treatment effect (HR 
0.59; [95% CI: .39, .87] P = .009) (Figure 1).

The risk quartiles were also assessed for time to one-point OS 
improvement, time to recovery (ACTT-1 endpoint), and death. 
Statistically significant effects for RDV treatment in the “high 
risk” quartile were observed for time to one-point improvement 
and time to recovery, with no impact seen in any of the other 
risk quartiles (Supplementary Table 6.1 and Supplementary 
Figure 6.1).

DISCUSSION

In the ACTT-1 cohort, combining baseline ALC, ANC, and 
platelets with baseline OS resulted in a more predictive risk 
profile of participant outcome. Low platelet count, low ALC, 
and high ANC have been shown to correlate with worsening di-
sease severity in small cohorts of patients with COVID-194–6. 
Low ALC, in particular, has been linked to increased mortality 
[7]. By incorporating these commonly measured hematologic 
parameters, we improved the predicted risk of IMV or death 
beyond OS alone. Although our risk profile requires validation 
in large prospective studies, it lends credence to the hypothesis 
that OS groups are heterogeneous and that some patients within 
each OS are more likely to experience severe outcomes. Ta
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Figure 1. Kaplan-Meier estimates of remdesivir (RDV) treatment effect for progression to invasive mechanical ventilation (IMV) or death: Probability of progression to 
IMV or death is shown in panel A for subjects receiving RDV (blue) and placebo (red) in risk profile quartiles defined by baseline oxygen requirement, ALC, ANC, and plate-
lets. Quartiles from top to bottom are “high risk,” “moderate risk,” “lower risk,” and “least risk.” Probability of progression to IMV or death is shown in panel B for subjects 
receiving RDV (blue) and placebo (red) in each ACTT-1 ordinal score (OS group). Ordinal scores from top to bottom are OS7 (requiring IMV or extracorporeal membrane 
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Our results highlight a need to reassess treatment guidelines 
regarding the use of RDV in hospitalized COVID-19 patients. 
Currently, for example, the World Health Organization (WHO) 
[8] recommends against routine RDV use, whereas COVID-19 
treatment guidelines issued by US organizations generally en-
dorse use. The WHO developed their recommendations based 
on data from several clinical trials, the largest of which was the 
Solidarity trial, which did not show a mortality benefit with RDV 
treatment [9]. However, our post hoc analysis of the ACTT-1 data 
set shows a clinically important salutary treatment effect of RDV 
on curtailing progression to IMV or death across the cohort.

Furthermore, the risk profile described in this report was able 
to identify patients more likely to progress to IMV or death, 
and this group had a substantial RDV treatment effect. These 
findings may help align published recommendations for the use 
of RDV within the United States. In this regard, the Infectious 
Diseases Society of America (IDSA) [10] recommends the ge-
neral use of RDV in hospitalized COVID-19 patients, whereas 
the National Institutes of Health (NIH) [11] does not recom-
mend for or against RDV use in patients who are not on sup-
plemental oxygen or in patients requiring IMV. The Society for 
Critical Care Medicine Surviving Sepsis Campaign guidelines 
[12] suggest against RDV use in patients requiring IMV. Our 
analysis proposes no restriction should be placed on RDV use 
based solely on oxygen requirement. Including other patient-
specific variables may be a better metric for RDV use. As de-
scribed here, there is a subset of patients at highest risk for 
progression to IMV or death who may benefit from treatment 
with RDV, regardless of their baseline oxygen requirement. 
Patients in this “high risk” quartile, whose baseline oxygen re-
quirements ranged from room air to IMV, receiving RDV had a 
hazard ratio of 0.59 [95% CI: .39, .87], P = .009 for IMV or death 
compared to patients receiving placebo. It should be noted that 
the extensive clinical and laboratory characterizations intrinsic 
to the ACTT-1 study design afforded the in-depth analyses de-
scribed. This type of granularity may be needed to capture the 
presence of a RDV treatment effect if present in only a subgroup 
of participants.

Our study has several limitations. First, this is a post hoc 
analysis with an endpoint, time to progression to IMV or death, 
which differed from the primary endpoint for ACTT-1, time to 
recovery. Progression to IMV or death was chosen because it is a 
clinically meaningful endpoint being used increasingly in other 
trials. We used time-to-event models instead of binary outcome 
models, to improve statistical efficiency, although both models 
had similar results (Supplementary Section 7.3). Second, sev-
eral key baseline variables were not available, including body 

mass index, inflammatory markers, and viral load (the latter 2 
assessments are planned). The inclusion of these variables may 
influence the risk profile. Third, in baseline OS7 patients only 1 
step in disease progression to the worst outcome, death, is pos-
sible, whereas in all risk profile quartiles, the worst outcome is 
either IMV or death. However, when assessing death alone the 
risk profile AUC was also higher than that of OS (AUC 0.69 vs 
0.60 P = .006) (Supplemental Section 5.2). Finally, within the 
“high risk” quartile it is unclear whether subjects needing only 
supplemental oxygen are the key driver of the RDV treatment 
effect; however, each quartile contains a similar percentage of 
such patients (between 38% and 49%), suggesting against this.

Despite these limitations, ACTT-1 was a large, double-blind, 
randomized, placebo-controlled trial assessing RDV utility 
in the relative absence of competing therapies. Our post hoc 
analysis suggests that baseline oxygen requirements may be 
too blunt of an instrument to assess an individual’s risk of pro-
gression to IMV or death and response to RDV treatment. The 
impact of RDV is likely to differ based on individual patient 
characteristics and use should not be restricted solely based on 
oxygen requirements. Our findings have implications for clin-
ical practice, development of COVID-19 treatment guidelines, 
and design of future COVID-19 treatment trials.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.
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