Barnes et al. Journal of Neuroinflammation (2021) 18:199

https://doi.org/10.1186/512974-021-02262-4 Journal of Neuroinflammation

RESEARCH Open Access

Check for
updates

Brain profiling in murine colitis and human
epilepsy reveals neutrophils and TNFa as
mediators of neuronal hyperexcitability

Sarah E. Barnes', Kristy A. Zera®, Geoffrey T. Ivison', Marion S. Buckwalter” and Edgar G. Engleman'”

Abstract

Background: Patients with chronic inflammatory disorders such as inflammatory bowel disease frequently
experience neurological complications including epilepsy, depression, attention deficit disorders, migraines, and
dementia. However, the mechanistic basis for these associations is unknown. Given that many patients are
unresponsive to existing medications or experience debilitating side effects, novel therapeutics that target the
underlying pathophysiology of these conditions are urgently needed.

Methods: Because intestinal disorders such as inflammatory bowel disease are robustly associated with
neurological symptoms, we used three different mouse models of colitis to investigate the impact of peripheral
inflammatory disease on the brain. We assessed neuronal hyperexcitability, which is associated with many
neurological symptoms, by measuring seizure threshold in healthy and colitic mice. We profiled the
neuroinflammatory phenotype of colitic mice and used depletion and neutralization assays to identify the specific
mediators responsible for colitis-induced neuronal hyperexcitability. To determine whether our findings in murine
models overlapped with a human phenotype, we performed gene expression profiling, pathway analysis, and
deconvolution on microarray data from hyperexcitable human brain tissue from patients with epilepsy.

Results: We observed that murine colitis induces neuroinflammation characterized by increased pro-inflammatory
cytokine production, decreased tight junction protein expression, and infiltration of monocytes and neutrophils into
the brain. We also observed sustained neuronal hyperexcitability in colitic mice. Colitis-induced neuronal
hyperexcitability was ameliorated by neutrophil depletion or TNFa blockade. Gene expression profiling of
hyperexcitable brain tissue resected from patients with epilepsy also revealed a remarkably similar pathology to that
seen in the brains of colitic mice, including neutrophil infiltration and high TNFa expression.

Conclusions: Our results reveal neutrophils and TNFa as central regulators of neuronal hyperexcitability of diverse
etiology. Thus, there is a strong rationale for evaluating anti-inflammatory agents, including clinically approved
TNFa inhibitors, for the treatment of neurological and psychiatric symptoms present in, and potentially
independent of, a diagnosed inflammatory disorder.
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Background

Patients with chronic inflammatory conditions fre-
quently experience neurological and psychiatric compli-
cations including epilepsy, depression, attention deficit
and hyperactivity disorders, migraines, and dementia [1-
7]. A meta-analysis of data from >25 million individuals
revealed associations between several autoinflammatory
conditions and psychiatric disorders [1], and a retro-
spective population-level study found that the risk of
epilepsy was increased almost fourfold in patients diag-
nosed with an autoimmune disorder [8]. Our lack of un-
derstanding of the mechanisms underlying these
disorders and their neuropsychiatric complications
makes it very difficult to identify which drugs will be
most helpful for individual patients. Furthermore, psy-
chiatric and neurological medications frequently pro-
duce disruptive and debilitating side effects such as
cognitive impairment, sedation, exacerbation of other
neurological and psychiatric symptoms, and sexual dys-
function [9, 10]. These severe side effects combined with
the large number of patients who do not respond to
existing therapies provide a strong rationale to examine
the mechanistic connection between peripheral inflam-
mation and the development of neurological symptoms.
Given that 4.5% of Americans suffer from an autoinflam-
matory disease [11], strategies to protect this population
from developing neurological complications, as well as
treat them, are urgently needed.

There are many hypotheses as to why peripheral in-
flammatory disorders and neurological conditions co-
occur; however, there have been few mechanistic studies
demonstrating a causal relationship, and investigations
of these mechanisms have yielded contradictory results
[12-18]. Other studies have utilized models of inflam-
mation induced by large doses of nonspecific stimuli
such as lipopolysaccharide (LPS), which do not closely
mimic human disease [19-24]. Furthermore, neuroin-
flammation can exist in patients with neurological disor-
ders who do not have a diagnosed autoinflammatory
disease [25—29]. Because the vast majority of studies in-
vestigating the occurrence and impact of neuroinflam-
mation on brain function have utilized models of
primary neurological disease, it is difficult to uncouple
the role of the primary neurological pathology from that
of inflammation. To more clearly understand the mecha-
nisms by which peripheral inflammatory disease causes
neurological symptoms, it is therefore necessary to em-
ploy models of peripheral inflammation in which the
brain is not initially involved.

Because intestinal disorders such as inflammatory
bowel disease (IBD) are robustly associated with neuro-
logical symptoms [2, 4, 8, 30—42], we used three differ-
ent mouse models of colitis to investigate the impact of
peripheral inflammatory disease on the brain. We
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focused on measurements of neuronal excitability, since
many neurological and psychiatric symptoms are associ-
ated with neuronal hyperexcitability.

Our experiments show that neuroinflammation and
neuronal hyperexcitability develop in all three colitis
models as a consequence of TNFa-secreting neutrophils
that infiltrate the brain. Moreover, we corroborated our
findings in resected brain tissue from patients with
epilepsy who had no known peripheral inflammatory
disease, suggesting that TNFa-mediated neuroinflamma-
tion contributes to neuronal hyperexcitability of diverse
etiology.

Methods

Animals

C57BL/6], Rag2™'~, and CCR2R*RFP mice were obtained
from The Jackson Laboratory. Rag2”'~ and CCR2RFP/RFP
mice were then bred in-house at the Stanford Blood
Center. Mice were age- and sex-matched for experi-
ments. Experiments were conducted on mice between
the ages of 6-8 weeks.

Seizure threshold measurements

Individual mice were placed in an airtight chamber.
Using a syringe pump, 10% flurothyl (Sigma Aldrich,
#287571) in ethanol was administered at a rate of
100pL/min onto a filter paper placed inside of the cham-
ber, causing the flurothyl to evaporate within the cham-
ber. Latency to both seizure onset and seizure
generalization were measured. Seizure onset was noted
as the first myoclonic jerk. Seizure generalization was
noted as the first loss of posture.

Colitis

We utilized three murine colitis models. For acute
DSS-induced colitis, mice were given 3% DSS (Hard-
man Chemicals, or 3.5% from TdB Labs) in drinking
water for 6 days, followed by 9 days of regular drink-
ing water. For chronic DSS-induced colitis, this cycle
was repeated two more times with an additional 7-
day break between cycles. For TCT-induced colitis,
CD4" T cells were enriched from C57BL/6] spleens.
Enriched cells were then FACS-sorted to obtain naive
CD4" T cells (CD45*CD4*CD45RBMCD25"°) and
Tregs (CD45"'CD4*CD45RB°CD25"™).  Experimental
Rag2™'~ mice received 500,000 naive CD4* T cells,
and control mice received 500,000 naive CD4" T cells
in addition to 100,000 Tregs.

Murine tissue harvesting and processing

Mice were anesthetized using isoflurane and then per-
fused with a minimum of 10mL PBS, until the liver was
fully perfused. Brains were harvested and excluded if
perfusion was incomplete. A GentleMACS dissociator



Barnes et al. Journal of Neuroinflammation (2021) 18:199

was used to homogenize brains in complete RPMI con-
taining 1mg/mL collagenase IV (Worthington Biochem-
ical, #LS004188). Brains were further digested by
shaking inside of a 37°C incubator for 30 min. The tissue
was passed through a 70-um filter and washed in
complete RPMI. Cells were separated using a 30% Per-
coll (GE Healthcare, #17089101) gradient and washed
again in complete RPMI.

Flow cytometry

Single-cell suspensions were generated from harvested
tissue. Cells were washed in PBS and then stained
with 1:1000 Fc blocker and Live/Dead Aqua in PBS
for 10 min at 4°C. At this point, cells were either
stained or fixed in 2% paraformaldehyde for 10 min
at 4°C and stained the following day. For intracellular
stains, cells were fixed and permeabilized using the
Foxp3/Transcription Factor Staining Buffer Kit
(eBioscience) prior to staining. Cells were washed in
FACS buffer (PBS + 10% FBS + 1mM EDTA) and
stained using fluorescently labeled antibodies for 20
min at 4°C. Cells were analyzed using a BD LSR For-
tessa or BD FACS Canto.

In vivo labeling of border-associated leukocytes

Mice were anesthetized using isoflurane and then retro-
orbitally injected with 7.5ug of fluorescently labeled a-
CD45 antibody in PBS. Three minutes later, mice were
immediately perfused with a minimum of 10mL PBS,
until the liver was fully perfused. Single-cell suspensions
were generated from harvested brains and used for flow
cytometry, and tissue sections were obtained for im-
munofluorescence. Cells were stained ex vivo with an a-
CD45 antibody attached to a different fluorophore. Cells
that were labeled with both antibodies were deemed
border-associated, and cells that were labeled only with
the ex vivo-administered antibody were deemed
parenchymal.

Protein and transcript quantification

Plasma was obtained by collecting blood retro-orbitally
with heparin capillary tubes into plasma microtainer
tubes. Tubes were spun at 6000rpm for 6 min. Plasma
cytokine levels were measured using a cytokine bead
array (BD Biosciences). To measure transcript levels,
RNA was obtained from perfused, flash-frozen brains.
Fast SYBR Green PCR mix (Applied Biosystems) and the
7900HT real-time PCR instrument were used to conduct
qRT-PCR.

Immunohistochemistry and H&E staining

Mice were sedated using isoflurane and then perfused
with PBS. Brains were collected and drop-fixed in 2%
paraformaldehyde overnight at 4°C. They were preserved
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in 30% sucrose at 4°C. A freezing microtome
(Microm HM430) was used to collect 40-um sections,
which were stored in a cryoprotectant medium (30%
glycerin, 30% ethylene glycol, 40% 0.5M sodium phos-
phate buffer) at 20°C. A standard immunohistochem-
istry protocol was performed to stain free-floating
sections. Sections were blocked with 3% rabbit serum
for 1 h. The tissue was then incubated at 4°C over-
night in primary o-CD68 antibody (rat, 1:1000,
BioRad MCA1957S). Tissue was incubated for 1 h in
secondary rabbit a-rat IgG antibody (1:500, Vector
Laboratories, #BA-4001). Tissue was then treated with
Avidin-Biotin Complex solution (Vector Laboratories,
#PK-6100) for 1 h and treated for 5 min with filtered
DAB solution (Sigma Aldrich, #D5905). Sections were
mounted onto glass slides, air-dried overnight, and
coverslipped with Entellan (Electron Microscopy Sci-
ences 14,800). Quantification of area stained by CD68
was performed on 2 sections per brain for the cortex
and 1 section per brain for the hippocampus by a re-
searcher blinded to treatment groups using Image]
software (National Institutes of Health). For in vivo
labeling of leukocytes, biotinylated a-CD45 (7.5ug,
BioLegend #103104) was administered in vivo with a
secondary streptavidin-488 stain on tissue sections (1:
200, Thermo Fisher #32354) and a pre-conjugated
CD45-PE antibody (1:500, BD Biosciences #561087)
was used for ex vivo staining. For H&E staining,
brains were harvested as previously described, fixed in
2% paraformaldehyde overnight, and then stored in
70% ethanol. H&E staining was performed by the
Stanford Pathology Department Histology Services
Core. For both ITHC and H&E, slides were imaged
using a Keyence BZ-X700 microscope.

Cellular depletion and cytokine neutralization
Neutrophils were depleted by injecting mice intraperito-
neally once daily with 500pug a-Ly6G antibody (clone
1A8, Bio X Cell) from days 6 to 14 after the onset of
DSS treatment. Control mice received 500ug isotype
control IgG2A (clone 2A8, Bio X Cell) according to the
same treatment schedule. Monocytes were depleted by
injecting mice retro-orbitally once daily with 200uL clo-
dronate liposomes (Clodrosome) from days 6 to 14 after
the onset of DSS treatment. Control mice received
200uL of PBS liposomes (Clodrosome) according to the
same treatment schedule. TNFa was neutralized by
injecting mice intraperitoneally once daily with 500ug o-
TNFa antibody (clone XT3.11, Bio X Cell) from days 6
to 14 after the onset of DSS treatment. Control mice re-
ceived 500ug isotype control IgG1 (clone HRPN, Bio X
Cell). Treatment schedules were determined using longi-
tudinal analysis of immune cell frequencies in the per-
ipheral blood of colitic mice.
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Deconvolution, gene expression, and pathway analysis
Agilent feature extraction files were processed using the
Significance Analysis of Microarrays (SAM) R package
[43]. Deconvolution was performed using CIBERSORTx
[44]. PCA was performed using the Scikit-Learn PCA
package for Python [45]. Differentially regulated genes
were identified as having p-value < 0.05 and log2(fold
change) > 1. Gene ontology analysis was performed
using the Gene Ontology Resource from the GO Con-
sortium. Pathway analysis was performed using Enrichr
[46, 47], and network analysis was performed using
Cytoscape [48]. A p-value < 0.05 was used to determine
significant overlap between upregulated genes and pre-
defined gene sets from the Kyoto Encyclopedia of Genes
and Genomes (KEGG).

Statistical analysis

Unless otherwise specified, experimental data were ana-
lyzed using the Mann-Whitney U test. For seizure
threshold experiments, measurements were acquired
and pooled over 3-4 days. Two-way ANOVAs were
used to identify differences in measurement day as well
as experimental treatment. Simple linear regressions
were calculated to determine goodness of fit and statisti-
cally significant slopes. Longitudinal body weight mea-
surements were compared using the Holm-Sidak
method for performing multiple t-tests. Results are re-
ported as mean with individual data points or mean +
SEM: p < 0.05 =% p < 001 = *; p < 0.001 = *** p <
0.0001 = ****All statistics were calculated using Prism
(GraphPad Software).

Results

Acute and chronic colitis cause a sustained reduction in
seizure threshold

Our studies utilized three mouse colitis models, each of
which is known to recapitulate various aspects of IBD:
acute dextran sodium sulfate (DSS)-induced colitis (Fig.
1la, b), chronic DSS-induced colitis (Fig. 1a), and T cell
transfer (TCT)-induced colitis (Fig. 1c). DSS impairs epi-
thelial barrier function within the gut, resulting in the
entry of intestinal microorganisms into the lamina pro-
pria and subsequent induction of innate and adaptive
immune responses [49]. Although DSS has not been
shown to enter the brain [50], we also utilized the TCT-
induced colitis model to confirm that changes in seizure
threshold were due to inflammation rather than any dir-
ect effects of DSS on the brain. In this model, regulatory
T cell (Treg)-depleted naive CD4" T cells are retro-
orbitally transferred into Rag2™"~ mice, which lack B and
T cells; control mice receive naive CD4" T cells in
addition to Tregs. In the absence of Tregs, naive CD4"
T cells mount an immune response targeting the
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intestinal microbiota, resembling that of patients with
IBD [49].

To measure neuronal hyperexcitability in each of the
IBD models, we measured seizure threshold in response
to flurothyl, a y-aminobutyric acid (GABA) receptor an-
tagonist. The dosage of flurothyl required to induce a
seizure is inversely proportional to neuronal excitability;
mice with hyperexcitability display reduced seizure
thresholds [51]. Flurothyl was chosen for these experi-
ments for three reasons: (1) it is administered via inhal-
ation, which allows for control of dosing and limits
mortality; (2) it is not metabolized and has no known
direct influences on the immune response; and (3) un-
like transgenic spontaneous seizure models, confounding
effects of genetic mutations on immune responses and
seizure-induced inflammation are avoided. We measured
both the time to the first myoclonic jerk (latency to seiz-
ure onset) and the time to loss of posture (latency to
seizure generalization), indicating that the seizure has
spread widely throughout the brain. Regardless of the
modality of colitis induction, mice with colitis displayed
reduced latency to seizure onset and generalization com-
pared to healthy mice (Fig. 1d, e). Notably, seizure onset
and generalization continued to be more rapid in mice
with acute colitis even after 30 days following the onset
of acute colitis (Fig. 1f), indicating a long-lasting neu-
roexcitatory phenotype following acute DSS.

Colitis induces monocyte and neutrophil infiltration of
the brain, increased expression of neuroinflammatory
cytokines, and decreased expression of tight junction
proteins, but minimal microglial activation

In support of the possibility that colitis-associated in-
flammatory factors contribute to neuroinflammation,
we observed increased plasma concentrations of TNFq,
MCP-1/CCL2, IL-6, and IFNy in colitic mice (Fig. 2a,
b), as well as increased transcription of Tnf, Il1b, and
116 in their brains (Fig. 2c). We also observed increased
transcription of the adhesion molecule VCAM-1
(Veaml), a marker of vascular neuroinflammation, and
decreased transcription of the tight junction proteins
ZO-1 (TjplI) and claudin-5 (Cldn5) in the brains of coli-
tic mice, indicative of blood-brain barrier (BBB) disrup-
tion (Fig. 2d). Transcription of Tnuf, Il1b, and Il6 each
correlated with decreased transcription of Tjp1, but not
CldnS, suggesting that these cytokines may reduce BBB
integrity via ZO-1 downregulation (Supplemental Fig-
ure 1). Transcription of Tnf, 1l1b, 1l6, and Vcaml all
remained elevated, and Tjpl and Cldn5 remained de-
creased, for 21 days following initiation of DSS treat-
ment (beyond the point at which plasma cytokine
concentrations had returned to baseline), further indi-
cating that acute colitis induces a sustained neuroin-
flammatory response.
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Because microglia are known to play a central role in
neuroinflammation [22, 24, 52-56], we characterized
these brain-resident myeloid cells using immunohisto-
chemistry and flow cytometry. However, we found no
evidence of microglia activation in colitic mice, as
reflected by unchanged CD68 expression in the cortex
and hippocampus (Fig. 2e, f), reduced microglia fre-
quency (likely attributable to infiltrating cells, Fig. 2g),
and no increases in microglial CD45, TNFa, or MHCII
expression (Fig. 2h). Based on the increased transcrip-
tion of the vascular adhesion molecule VCAM-1 in the
brains of colitic mice (Fig. 2d), we hypothesized that per-
ipheral immune cells adhered to brain vasculature and/
or infiltrated the brains of colitic mice. Flow cytometric
analysis revealed increased frequencies of monocytes
and neutrophils in the brains of colitic mice (Fig. 2i, j),
but no meaningful changes in the frequencies of other
immune cells (Supplemental Figure 2). Frequencies of
monocytes and neutrophils remained elevated 30 days
following the onset of acute colitis, further indicating
that acute colitis induced a sustained neuroinflammatory
response (Fig. 2k). We observed a small increase in T
cell frequency in mice with TCT-, but not DSS-, induced
colitis (Fig. 2j). Despite this increase, T cells were <1% of
total leukocytes, suggesting minimal involvement of
these cells in the colitis-induced neuroinflammatory
process.

To determine the location of these cells in the brain,
we retro-orbitally injected mice with a fluorescently la-
beled a-CD45 antibody; cells in the border regions

(vasculature, perivascular spaces, ventricles, and menin-
ges), but not the parenchyma, were labeled with the a-
CD45 antibody [55]. Using flow cytometry, we observed
that almost all the monocytes and neutrophils in the
brains of healthy control mice stained positive with the
a-CD45 antibody, indicating that they were in border re-
gions (Fig. 2l, Supplemental Figure 4). By contrast,
roughly half of the monocytes and neutrophils present
in the brains of colitic mice did not stain with the a-
CD45 antibody, indicating that they were located in the
parenchyma. Using an H&E stain, we observed leuko-
cytes in both the parenchyma—which does not normally
contain leukocytes—and border regions of the hippo-
campus and cortex in colitic mice (Fig. 2m).

Neutrophils, but not monocytes, contribute to neuronal
hyperexcitability following acute colitis via TNFa

We next investigated the roles of monocytes and neutro-
phils in colitis-induced neuronal hyperexcitability by
measuring seizure threshold following depletion of one
or the other of these cell types. Monocyte depletion
using clodronate had no impact on seizure threshold fol-
lowing acute DSS-induced colitis (Fig. 3a) despite signifi-
cant depletion (Supplemental Figure 3a-b). Additionally,
there was no change in seizure threshold in colitic
CCR2®P/REP mice, in which the Cer2 locus is replaced
with RFP, impairing monocyte migration (Fig. 3b).
CCR2*""* mice were used as controls. This finding con-
firms that monocytes do not play a major pathogenic
role in colitis-induced neuronal hyperexcitability. By



Barnes et al. Journal of Neuroinflammation (2021) 18:199 Page 6 of 13
p
a b d
60 1000—**“ conte 50 Thf 31 —— %%5,1,,,1
—s— TNFa s —a L kS —— 6 § -
g —— IFNy £ 500 \\ Coliis g b 2 =i Gk
B 40 === MCP-1 5 24
= — L6 % Zth, 2 304 £
'g g e p=0.052 % %
£ £ | - € 209 g
§ 20 g 100 E E 13
c s 2 10- =
8 S b &
& &
0 0— 0 0 +—T—
0 5 10 15 20 25 éQO Qe* Q’\ \;ro 0 5 10 15 20 25 0 5 10 15 20 25
Acute DSS Day S SN Acute DSS Day Acute DSS Day
o 20x i 9
4x Hippocampus Cortex Hippocampus
2.5 80— "
2.0 1 2 60—
. " 3
a 8 1.5+ H
(@] O X 40—
3 8 104 o
< < - 5
B B ® 20—
» 0.5 4
a
P 0.0- 0
3 o) % o 1) o] 2
& T P W P M F
¥ 3 3¢
¥ A W
h i j
Microglia Neutrophils Monocytes Neutrophils T Cells
5000 40 1 51 15 1 _ 0.10 1
p— HZO * * p=0.1061 *
4000 == Acute DSS 0.08 1
@ © ) © )
- ° ko, ko ° ©
3000 - et 2 4 o o
g 2 2 2 2 g
= 2000 3] o o o o
k] k] k] k] k<]
1000 = = = = 2
e A
) N & © \»\&
oo\x @bo «V\Q 0°° P
k m Meningeal
Monocytes Neutrophils [l Parenchymal  [JJ] Border Regions
51 . 257 _» 100 100
44 20 1 8 2
P 2 g 75+ 8 75
8 31 O 15+ 5 5
[3) E: S 3
5 ) = =z
g 2 3 10- 5 507 5 %07
o o ) )
= o S S
= R 5 S 25— S 254
g g
. 5 i i
. . 0— 0—
Vv Vv
o o & &
4 3¢ 3
¥ ¥ ¥
Fig. 2 (See legend on next page.)
A\




Barnes et al. Journal of Neuroinflammation (2021) 18:199 Page 7 of 13

(See figure on previous page.)

Fig. 2 Colitis induces neuroinflammation with monocyte and neutrophil infiltration and increased cytokine production. a, b Plasma cytokine
concentrations in mice with acute DSS-induced colitis (a) and TCT-induced colitis (b). ¢, d Transcription of cytokines (c), and Vcaml, Tjp1, and
Cldn5 (d) in the brains of mice with acute DSS-induced colitis. e, f Representative immunohistochemistry stains (e) and quantification (f) of CD68
in hippocampal and cortex sections from mice with acute DSS-induced colitis. g, h Flow cytometric analysis of microglia
(CD45°CX3CR1MCD11b*) showing their frequency (g) and phenotype (h) from mice with acute DSS-induced colitis. i Flow cytometric
quantification of monocytes (CD45"CD11b*Ly6G Ly6C"MHCII™) and neutrophils (CD45"CD11b*Ly6G") in mice with acute and chronic DSS-
induced colitis. j Flow cytometric quantification of monocytes, neutrophils, and T cells (CD457CD11b'CD3™) in mice with TCT-induced colitis. k
Frequencies of monocytes and neutrophils 30 days following initiation of acute DSS-induced colitis. I Distribution of monocytes and neutrophils
in the brains of mice with acute DSS-induced colitis. Single-cell suspensions of harvested tissue were analyzed by flow cytometry. m H&E stain of
brain sections from mice with acute DSS-induced colitis. n = 5-10 mice/group, representative of 3-5 replicate experiments. *p < 0.05, **p < 0.01,

**¥*p < 0.001, ***p < 0.0001

contrast, we observed a strong negative correlation be-
tween blood neutrophil frequency and seizure threshold
in clodronate-treated mice (Fig. 3c). We then directly
evaluated the role of neutrophils by administering o-
Ly6G depleting antibodies intraperitoneally from days 6
to 14 following DSS colitis induction. Control mice re-
ceived equivalent doses of isotype IgG2a antibody on the
same dosing schedule. Despite modest neutrophil deple-
tion of 65% (Supplemental Figure 3c-d), we observed a
50% rescue in seizure threshold following neutrophil de-
pletion (Fig. 3d), demonstrating a neuropathogenic role
for neutrophils. To determine the mechanism by which
neutrophils contribute to colitis-induced neuronal hy-
perexcitability, we evaluated their production of TNFa,
which is known to enhance excitability [57-60]. Based
on flow cytometric analysis, neutrophils produced more
TNFa than blood and brain monocytes and microglia in
colitic mice (Fig. 3e). Furthermore, on a per-cell basis,
brain-infiltrating neutrophils produced more TNFa in
colitic mice than in healthy mice (Fig. 3e). We assessed
the role of TNFa in mediating neuronal hyperexcitability
during colitis by administering neutralizing o-TNFa
antibody intraperitoneally from days 6 to 14 following
DSS colitis induction. Control mice received an equiva-
lent dose of isotype IgG1l antibody on the same dosing
schedule. TNFa neutralization was sufficient to improve
seizure threshold by 55-60% in colitic mice (Fig. 3f).
These findings suggest that the pathogenic role of neu-
trophils in mediating neuronal hyperexcitability follow-
ing acute colitis is attributable to their production of
TNFa.

Deconvolution, gene expression, and pathway analysis of
resected brain tissue from patients with epilepsy reveal
significant overlap between neuronal hyperexcitability
and inflammatory pathologies

Having established that neutrophils and TNFa play a
critical role in neuronal hyperexcitability in colitic mice,
we sought to determine whether this pathophysiology
might generalize to humans with neuronal hyperexcit-
ability. Brain specimens from IBD patients are

unavailable, and it is also unknown which brain regions
are hyperexcitable in IBD patients, so we did not use
them for this analysis. Instead, we analyzed a publicly
available microarray dataset comparing hyperexcitable
brain tissue resected from patients with epilepsy to his-
tologically normal tissue from post-mortem patients
with no known neurological disease [61], which enabled
us to study tissue that is known to be hyperexcitable.
Principal component analysis (PCA) on gene expression
profiles revealed a clear separation between epileptic and
healthy brain tissue (Fig. 4a). Using CIBERSORTx de-
convolution [44], we identified a 2-fold enrichment of
neutrophils in epileptic brain tissue compared to healthy
brain tissue (Fig. 4b). Differential gene expression ana-
lysis (Fig. 4c, Supplemental Table 1) revealed that TNF,
CCL3, IL1B, CCL2, and PTGS2 were among the most
highly upregulated (>8-fold) genes (Fig. 4d). CCL3 is in-
volved in neutrophil chemotaxis, and MCP-1/CCL2 is
involved in monocyte chemotaxis. PTGS2, TNFa, and
IL-1B are highly upregulated by inflammatory neutro-
phils. These findings mirror the neuroinflammatory
phenotype observed in colitic mice. Finally, we used
overrepresentation analysis to compare the upregulated
genes to gene sets from the Kyoto Encyclopedia of
Genes and Genomes (KEGG), which revealed that the
majority of gene sets overrepresented in epileptic brain
tissue were related to those seen in autoinflammatory
diseases (including IBD), immune pathways, and infec-
tion responses (Fig. 4e, Supplemental Table 2). Gene
ontology (GO) analysis confirmed an enrichment in im-
mune pathways (Supplemental Table 3). Network ana-
lysis revealed a high level of connectivity between the
majority of gene sets (Fig. 4f), suggesting that common
pathways underlying many different inflammatory disor-
ders may contribute to neuronal hyperexcitability. TNF
was the most frequently occurring gene on the edges of
the network (Fig. 4f, g, Supplemental Table 4), indicating
that it may be a prime target for the prevention or treat-
ment of neuronal hyperexcitability in the context of, and
potentially independent of, an underlying peripheral
autoinflammatory disease.
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Discussion

Patients with chronic inflammatory disorders frequently
experience neurological symptoms related to neuronal
hyperexcitability such as psychiatric disorders and epi-
lepsy [1-7]. However, the mechanisms by which

peripheral inflammation contributes to the development
of these symptoms are poorly understood. Previous stud-
ies that have attempted to uncover these mechanisms
have largely relied on mouse models of neurological dis-
ease, such as spontaneous seizures, neurodegeneration,
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stroke, and traumatic brain injury [12—18]. These models
do not allow for the uncoupling of the impact of neuro-
logical pathology on inflammation from the role of per-
ipheral inflammation in neurological dysfunction. Other
studies have utilized models of peripheral inflammation
that do not closely mimic human autoinflammatory disor-
ders, such as systemic LPS administration [19-24]. Here,
we instead utilized three mouse models of colitis, as IBD
has been robustly associated with neurological symptoms
[2, 4, 8, 30—42]. We mainly relied on the acute DSS model,
as its short duration enabled mechanistic studies that
would not have been feasible in the chronic models, which
develop over 6—8 weeks. Nonetheless, we observed neur-
onal hyperexcitability in mice with chronic DSS- and
TCT-induced colitis, as well as in mice with acute DSS
colitis. Furthermore, we detected neuroinflammation in
these mice with little to no microglia activation, as well as
the presence of brain-infiltrating monocytes and neutro-
phils. Finally, we discovered a role for neutrophils and

TNFa in mediating neuronal hyperexcitability in mice
with autoinflammation.

Although epithelial barrier disruption and microbial
translocation play key roles in all three models of colitis,
since the downstream inflammatory processes are some-
what distinct, colitis may contribute to neuroinflamma-
tion and neuronal hyperexcitability via distinct
mechanisms in each model. For instance, T cells are not
required for the induction of DSS-induced colitis, but
they are the primary drivers of TCT-induced colitis [49].
While not required for induction, a T helper 1 (Thl)-po-
larized immune response has been observed during
acute DSS-induced colitis, whereas a mixed Th1/Th2 re-
sponse is seen during chronic DSS-induced colitis [49].
Conversely, Thl- and Th17-polarized responses are ob-
served during TCT-induced colitis [49]. Despite these
differences, our study showed that the peripheral inflam-
matory responses they generate in the brain and plasma
are similar.
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While our data point to important roles of neutrophils
and TNFa in colitis-induced neuroexcitability, other
cells and inflammatory mediators likely also contribute.
TNFa may be produced by other leukocytes during col-
itis, and neutrophils may produce additional factors that
contribute to hyperexcitability. For instance, we ob-
served increases in IL-1f and IL-6 in the brains of colitic
mice (Fig. 2c), both of which are produced by neutro-
phils and have been shown to exert neuroinflammatory
and neuroexcitatory effects [59, 62—67]. Notably, IL-1f
was also one of the most highly upregulated genes in the
brains of patients with epilepsy (Fig. 4d). In addition to
the production of neuroexcitatory cytokines, neutrophils
may contribute indirectly to neuronal hyperexcitability
by producing chemokines to recruit other inflammatory
cells. Both CCL2 and CCL3, which were highly upregu-
lated in epileptic brain tissue (Fig. 4d), are produced by
neutrophils and participate in the recruitment of mono-
cytes and other bone marrow-derived cells. Indeed, the
CCL2/CCR2 axis has previously been implicated in
inflammation-induced seizure enhancement [17]. Add-
itionally, our studies do not determine whether neutro-
phils, TNFa, or other mediators are acting exclusively in
the brain parenchyma, or whether their effects on vascu-
lar tissue and interactions with the enteric nervous sys-
tem and/or vagus nerve may also be contributing to
hyperexcitability. Finally, it is possible that other cells,
including microglia, may be involved in spite of the lack
of evidence for this in our experiments. Future studies
investigating additional mechanisms by which colitis in-
duces neuronal hyperexcitability are necessary for a
more complete understanding of the pathological effects
of the gut and other forms of peripheral inflammation
on neuroinflammation and neuronal dysregulation.

Although it is unlikely that neutrophils and TNFa are
the sole mediators of neuronal hyperexcitability in the
setting of inflammatory disease, our findings suggest that
TNFa blocking agents may be beneficial for the large
number of patients with such disorders who experience
neurological and psychiatric symptoms. TNFa enhances
excitability by increasing glutamate release, regulating
AMPA cell surface trafficking to enhance glutamate re-
sponses, and causing endocytosis of GABA, receptors
[57-60]. It also activates vascular endothelial cells [68,
69] and impairs BBB integrity [70, 71], both of which
contribute to neuroinflammation. Furthermore, TNFa
inhibition has been shown to improve the sense of well-
being, sensory function, and cognitive processing in pa-
tients with IBD [72]. Because neuroinflammation occurs
in many neurological and psychiatric disorders in the ab-
sence of a diagnosed inflammatory condition [25-29],
TNFa inhibitors may also prove efficacious in patients
without an underlying autoinflammatory disease. Indeed,
TNFa has been implicated in major depressive disorder
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but has not yet been evaluated therapeutically in patients
with this disorder [73]. Nonetheless, further studies are
essential for understanding the mechanisms by which
TNFa contributes to neuronal hyperexcitability in the
context of colitis, as TNFa inhibition has in some cases
been associated with enhanced excitability and neurode-
generation, especially in the context of demyelinating
disorders [59, 63, 74]. Differences between the central
and peripheral functions of TNF«, as well as signaling
via TNF receptor 1 (TNFR1) versus TNFR2, may be re-
sponsible for the contrasting roles of TNFa in different
neurological diseases [59, 63, 74].

While our studies reveal a mechanism by which intes-
tinal inflammation results in neuronal hyperexcitability,
future studies examining the neuroinflammatory pheno-
type of mice with other models of autoinflammation
such as rheumatoid arthritis or diabetes would be bene-
ficial for understanding whether there is overlap in the
mechanisms by which peripheral inflammation contrib-
utes to neurological dysfunction, or whether neuro-
logical symptoms in different autoimmune disorders are
the result of processes specific to each disease. Our gene
expression and pathway analysis of human epileptic
brain tissue suggests that hyperexcitability of diverse eti-
ology may result from similar inflammatory mechanisms,
as the transcriptional signature of hyperexcitable brain
tissue had significant overlap with gene sets associated
with autoinflammatory disorders. Furthermore, there
was a high level of connectivity between the vast major-
ity of these gene sets, indicating that pathways common
to a large number of autoinflammatory disorders may
contribute to neuronal hyperexcitability, rather than
each disorder causing neurological dysfunction via a
unique mechanism. TNFa was the highest occurring
gene on the edges of the network, highlighting its im-
portant role in immune pathologies associated with
neurological dysfunction.

Conclusions

Our results reveal neutrophils and TNFa as central regula-
tors of neuronal hyperexcitability of diverse etiology. Since
existing treatments for neurological disorders largely target
neurons and not inflammation, these treatments therefore
fail to address this component. Furthermore, these drugs
have serious side effect profiles, and many patients are un-
responsive to them. Because treatments targeting inflam-
matory mediators do not directly target neuronal function
but may address a major component of the underlying
pathology, such treatments would be expected to have su-
perior efficacy as well as side effect profiles. Thus, there is a
strong rationale for evaluating anti-inflammatory agents, in-
cluding TNFa inhibitors, for the treatment of neurological
and psychiatric symptoms present in, and potentially inde-
pendent of, a diagnosed inflammatory disorder.
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