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Abstract

The limited heritability of human life spans suggests an important role for gene–environment (G × E) interactions across the life span (T), 
from gametes to geronts. Multilevel G × E × T interactions of aging phenotypes are conceptualized in the Gero-Exposome as Exogenous and 
Endogenous domains. Stochastic variations in the Endogenous domain contribute to the diversity of aging phenotypes, shown for the diversity 
of inbred Caenorhabditis elegans life spans in the same culture environment, and for variegated gene expression of somatic cells in nematodes 
and mammals. These phenotypic complexities can be analyzed as 3-way interactions of gene, environment, and stochastic variations, the 
Tripartite Phenotype of Aging. Single-cell analyses provide tools to explore this broadening frontier of biogerontology.
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Background

The low heritability of life spans has long perplexed biogerontologists. 
For human twins and the inbred worm, the heritability of life spans 
is less than 35%, and may be below 10% (1–6). Despite their 1000-
fold differences, the variance of human and Caenorhabditis elegans 
life spans is similar when scaled to life span as the coefficient of 
variation (COV) (3). We propose that the limited heritability of 
aging patterns and longevity in humans is an outcome of gene–en-
vironment (G × E) interactions for individual longevity haplotypes, 
together with stochastic (chance) somatic variations. For inbred 
nematodes in the same environment, the individual differences 
represent multilevel stochastic variations (2,7,8). For humans, the 
20-year gap of longevity across socioeconomic status (9) involves 
modifiable environmental factors of diet, physical activity, and in-
haled toxins from air pollution (AirPoll) and cigarette smoke (CigS). 
While many longevity genes are known, their G × E over time (T) 
has received less attention and the contribution of stochastic vari-
ations is undefined. Y chromosome genes also have undefined G × E 
× T interactions on longevity.

The Gero-Exposome

G × E × T is considered during the human life course in the frame-
work of the Gero-Exposome (Figure 1). The exposome concept 
was developed by Wild in 2005 and 2012 for cancer epidemiology 
(10,11) and has been widely applied (12,13). The limitations of 
the “one-by-one” analysis of carcinogens demanded a more com-
prehensive analysis of environmental and lifestyle factors. Wild 
identified 3 domains in the exposome: the Exogenous Macrolevel 
Exposome (rural vs urban; social stratification; ambient toxins 
from CigS and AirPoll); the Exogenous Individual Exposome 
(diet, infections); and the Endogenous Exposome (biomes of gut 
and airways, fat depots, tissue injuries) (10,12). We applied Wild’s 
concept to Alzheimer’s disease (AD) in the “AD-Exposome” (12) 
to analyze multiple levels of pathogenesis for G × E × T (12), 
and in the Paleo-Exposome for G × E in the evolution of human 
longevity (13). We suggest explicit consideration of stochastic 
components that were often understood as implicit within E in 
the traditional binary formulation of G × E.  The Endogenous 
Exposome should also include cell-to-cell variations of gene 
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expression described as “variegated gene expression” (14). This 
innovative study identified human genes that controlled the vari-
ability of expression, measured as COV, for SIRT1, a longevity-
related gene. Future studies of variegated gene expression should 
consider expression of APOE and its neighboring genes, whose 
haplotypes influence heart disease, obesity, hypertension, AD, and 
longevity (15). Age-related increase of somatic cell mutations and 
epigenomic modifications of DNA and histones will add noise to 
G × E × T.

Fat depots are important to the Endogenous Gero-Exposome 
because of their contribution to systemic inflammation: IL-6, 
TNFα, and C-reactive protein are higher in venous blood from 
fat depots than in arterial blood (16–18). Inflammatory secretions 
emanate from the macrophages surrounding adipocytes that in-
crease with obesity (19). Fat depots also secrete C-reactive protein 
(CRP), assessed in obese patients before and after bariatric sur-
gery (20). The antibacterial CRP is also made by the liver during 
acute-phase inflammatory responses. APOE alleles influence 
obesity and neurodegeneration in mouse models, discussed below. 
Both exogenous and endogenous stressors can induce inflam-
matory damage with G × E interactions, as shown for the influ-
ence of APOE allele on vascular and neurodegenerative diseases 
(15,21). Obesity increases the risk of AD (22) and degeneration 
of brain myelin (white matter) (23), and is augmented by APOE4. 
Transgenic mice fed fat show G × E for the human APOE4 with 
accelerated brain amyloid deposits (24,25). The gut biome also 
varies by APOE allele (26).

Environmental toxicants that influence adult health were identi-
fied in the HELIX project (Human Early Life-Exposome). Childhood 
obesity was increased by maternal CigS (27), while children’s telo-
meres were shortened in white blood cells by both elevated urban 
AirPoll (28) and secondhand CigS (29). AirPoll and CigS promote 
obesity and elevated blood glucose and lipids (endogenous indi-
vidual domain) that are risk factors for atherosclerosis, various 

cancers, hypertension, and AD and are preventable causes of pre-
mature aging (30).

Ambient Toxins of the Exogenous Macro 
Exposome: AirPoll and CigS

Inhaled toxins from AirPoll and CigS are associated with excess 
mortality and shortened longevity. In 2019, AirPoll and CigS were 
attributed to 16 million excess deaths worldwide, which is 2-fold 
more than the 8 million deaths attributed to, infections and road in-
juries, the next ranked causes of death (30). Mortality from AirPoll 
and CigS is likely to have increased in 2020 because coronavirus 
disease 2019 (COVID-19) mortality is increased by CigS (31) and 
elevated AirPoll (32).

For AD, CigS accounts for 11% U.S. cases, and 14% worldwide 
(population attributable risk) (33). Cognitively normal smokers 
older than 60 years incur accelerated brain aging from CigS, with 
greater accumulation of brain amyloid (34) and earlier atrophy of 
cerebral cortex (35). Secondhand smoke also increased risk of de-
mentia and accelerated cognitive decline in large population studies 
from the United States (36) and China (37,38). AirPoll accelerates 
brain atrophy and cognitive decline (39,40), and increases the risk 
of AD (39,41,42).

AirPoll and CigS may be considered as gerogens as they pro-
mote pathogenesis of the major morbidities of aging: atheroscler-
osis, cancer, and dementia (43). For heart disease, lung cancer, and 
cognitive decline, AirPoll and CigS synergize with super-additivity 
(44–46). Women have greater neurological vulnerability to AirPoll 
by 3% higher risk than men of AD and Parkinson disease, shown 
for 63 million U.S. Medicare older people in the largest population-
based study to date (42).

AirPoll Neurotoxicity of G × E in 
Mouse Models

Several mouse models of AirPoll show G × E for APOE alleles and 
sex. For Rodent exposures to AirPoll,  our lab has used a nanoscale 
subfraction of particular matter (nPM) collected from a Los Angeles 
freeway designated here as AirPoll-nPM; other labs use direct traffic 
exposure, or AirPoll components such as ozone (O3) or diesel exhaust 
particles (47). Mice transgenic for human familial AD-dominant mu-
tations respond to chronic AirPoll-nPM with increased soluble Aβ42 
peptide and increased plaque load (Figure 2A) (39,48). Subcellular 
mechanisms include increased pro-amyloidogenic processing of the 
amyloid precursor protein (APP) in lipid rafts (Figure 2B).

Older women who carry APOE4 are at higher risk of AirPoll-
associated dementia (39). We find corresponding sex differences for 
APOE alleles in mouse brain transcriptome responses to AirPoll-
nPM (49). Only female APOE3-TR mice responded to AirPoll-nPM 
in genes for production of the amyloid Aβ peptide (APP, Bace11, 
Psen1) and for Aβ phagocytosis (Vav2, Vav3) (Figure 2B). This sug-
gests that APOE3 carriers efficiently clear amyloid oligomers, which 
may counteract AirPoll, consistent with impaired Aβ clearance in 
APOE4 carriers. Male APOE-TR did not respond to AirPoll-nPM 
in amyloid metabolic gene pathways. The female excess risk for AD 
decline may be due to sex differences in brain genomic response to 
AirPoll, with 2-fold more gene responses and different pathways 
in young female mice than in male mice (49). Similarly, ozone ex-
posure caused memory decline in young male APOE3-TR mice, but 
not in APOE4 mice (50). The higher baseline levels of enzymes for 

Figure 1. The Gero-Exposome with exogenous and endogenous components. 
G × E × T =  interactions of gene by environment over age and time, from 
the prefertilization oocyte into later ages; SES = socioeconomic status. Finch 
and Kulminski (12) gives further details of the Exogenous and Endogenous 
Exposomes.
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oxidative stress response in E4 males suggest a ceiling effect for their 
lack of response to ozone. These findings suggest epidemiological 
studies.

Two transcription factors, NRF2 and NFκB, showed the same 
pattern for APOE4-TR of baseline differences and lack of respon-
siveness to AirPoll. More than 80 genes downstream of NRF2 re-
sponded to AirPoll in mouse cerebral cortex. AirPoll-nPM induced 
nuclear translocation of NRF2 in liver and lung, as well as brain 
(51), suggesting bodywide systemic responses. While aging also in-
creased NRF2 expression (51), middle-aged mice had minimal NRF2 
response to AirPoll (52). This apparent ceiling in AirPoll response 
effect extends to neurite atrophy in hippocampal CA1 neurons 
(52,53). The selective neurotoxicity of CA1 neurites to AirPoll-nPM 
parallels the selective CA1 neurodegeneration during AD.

We anticipate complex interactions of sex and aging for APOE 
alleles and other AD risk genes with AirPoll that may differ by age. 
A causal chain of responses to AirPoll across the human life course 
may include the following: (i) high baseline oxidative stress in aging 
or APOE4 individuals; (ii) AirPoll-nPM excessive induction of 
NRF2 antioxidant responses that increase the nuclear NRF2 base-
line; (iii) increase of NFκB baseline; and (iv) increasing neurological 
damage, with diminished response to exogenous and endogenous 
stressors. This pattern occurred in multiple organs of middle-aged 
mice chronically exposed to nPM (51). The developmental impact of 
AirPoll and CigS is discussed below.

Cigarette Smoke

G × E interactions with CigS neurotoxicity are shown in 2 studies. 
Cognitively normal APOE4 smoker aged 56–94 had greater brain 
amyloid and deficits in glucose utilization than E3 smokers; deficits 
in memory and auditory-verbal learning also differed by APOE 
(Alzheimer Disease Neuroimaging Initiative) (34). Middle-aged 
twins also showed G × E for CigS in cerebral cortex area (Veterans 
Twin Study of Aging) (54). Smoking history has been neglected by 
most genetic studies of dementia, and of other genes that influence 
longevity.

Rodents exposed to CigS confirm human findings. Mice trans-
genic for familial AD genes and exposed to chronic CigS accumulated 
50% more brain amyloid and phosphorylated tau (55). Similarly, 
wild-type rats responded to CigS with increased AD biomarkers of 
sAPPa and phospho-tau (56). Reactive glia were increased in both 
models, as observed for AirPoll-nPM.

Sex is a neglected factor in human and rodent studies of CigS. In 
collaboration with demographer Eileen Crimmins, we showed that 
female heavy smokers had a higher risk of earlier age of death and 
stroke than males of the Health and Retirement Study (57). APOE 
alleles were not available.

AirPoll and CigS independently shorten the life span with dose 
dependence and promote many of the same aging processes. We 
asked if these gerogens might share some of the same gene targets 
by comparing gene SNPs of long-lived smokers with genes activated 
in mouse brain responses to AirPoll. In 2016, Levine and Crimmins 
(58) identified 215 SNPs in long-lived smokers of the Health and 
Retirement Study, a U.S.-wide longitudinal study of health and 
aging. The groups compared were smokers who survived to age 80 
versus smokers up to age 70, with Caucasian predominance. The 
long-lived smokers had mortality rates similar to same-age “never 
smokers.” We find considerable overlap of genes identified by SNPs 
in smoking-survivors with AirPoll-nPM-responding genes in mouse 
brain (Figure 3). Initial analysis showed that most (63%, 136/215) 
of the genes with SNPs in cigarette-survivor also respond to AirPoll-
nPM in mouse (49). Functional analysis of genes associated with 
these 215 SNPs shows enrichment for shared pathways associated 
with immune response, oxidative stress, and development. SNPs 
are located near or within known human longevity genes (FOXO3, 
HLADRB1). Twenty shared genes have association with AD (eg, 
GAD2, GRIN2A, and GRIN2B). The 2016 gene database of the 
Health Retirement Survey did not include APOE alleles. Many other 
G × E interactions of airborne toxins with APOE alleles and sex may 
shape the healthspan and life span.

Figure 2.  AirPoll-nPM induces amyloidogenic responses in mouse cerebral 
cortex after exposure for 8–10 wk of high traffic levels. (A) Amyloidogenic 
responses of J20 male mice carrying APPswe (familial AD gene) showing 
increase of soluble Aβ42 and Aβ plaque load (39), and increased lipid raft 
levels of amyloid precursor protein (APP) (39). *p<.05, **p<0.01 (B) Amyloid 
metabolic gene response of APOE-TR mice carrying human APOE3 and 
APOE4 alleles by targeted replacement (no familial AD genes) (49). * p<.05 
in ANOVA test after FDR multiple test correction. AirPoll  =  air pollution; 
nPM = nanoscale subfraction of particular matter.

Figure 3.  Schema for interactions of genetic background, sex, airborne 
toxins, and age on individual health span and longevity. Bolding identifies 
genes that responded to AirPoll in the mouse brain (49,53,60) that are 
shared with older surviving smokers (58). AirPoll transcriptome- and CigS-
associated SNPs show extensive overlap, suggesting shared mechanisms. 
AirPoll = air pollution; CigS = cigarette smoke.
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The APOE gene does not act alone as an AD risk factor on 
chromosome 19.3. Kulminski et al. has identified AD risk-haplotypes 
in more than 5 neighboring genes (59). The APOE gene clusters of 
mouse and human share many genes, but with inverted synteny (60). 
While its genetic variants have received the most attention, little is 
known of how the APOE cluster genes respond to environmental 
factors. Initial studies of mouse brain and archived data show that 
APOE cluster genes are highly responsive to components of AirPoll 
(60). Mouse cerebral cortex responded to AirPoll-nPM with in-
creased Apoe mRNA levels together with various combinations of 
Tomm40, Apoc1, and other gene neighbors (Figure 4A). Human 
brain cDNA libraries also showed co-expression of APOE cluster 
genes, differing by sex (Figure 4B) and age with brain region speci-
ficity (Figure 4C). DNA methylation in the APOE cluster shows a 
complex epigenetic architecture that differs for AD and the cogni-
tively normal participants (61).

The diverse APOE cluster responses to AirPoll components were 
explored with archived data from humans and rodents (60). Mouse 
lung responded differently from brain with other Apoe cluster 
subsets to coal tar and another AirPoll sample different from that 
used in our studies. Coal tar increased mRNAs of Apoc1, Apoe, and 
Nectin2, while AirPoll induced Apoc1, but not Tomm40. Antioxidant 
and inflammatory responses of other chromosomal genes include the 
expressions of Nqo1 and Il1b, which also responded to AirPoll-PM 
in Nrf2-regulated phase II gene expression in lung and brain (51). 
These findings give insights for the heterogeneity of AD risk from 
APOE4. Divergent patterns of co-expression of APOE cluster genes 
to the above AirPoll may arise from variations in local AirPoll chem-
istry for oxidative activity, despite the same density of AirPoll par-
ticles (62,63).

Developmental Impact of AirPoll and CigS

The Gero-Exposome (Figure 1) includes developmental exposures in 
the Exogenous domain. The analysis is necessarily multigenerational 
because human primary oocytes are fully formed before birth; thus, 

our prenatal oocyte was exposed to our grandmaternal environ-
ment (64). Multigenerational toxic influences are documented for 
CigS and lead (Pb) gestational exposure in rodent models (43,65). 
Robust effects in the first generation include elevated brain cyto-
kines, neuronal deficits, and impaired glucose metabolism, together 
with increased depressive behaviors shown by us (66) and others 
(67,68). The male bias of many rodent gestational exposures par-
allels the male bias of autism, which is increased by early exposure 
to AirPoll (69). These sex differences anticipate other G × E ×  
T interactions for the impact of childhood obesity on later-life car-
diovascular and neurodegenerative diseases. APOE alleles have not 
been studied for the impact of CigS or AirPoll on pre- or postnatal 
development. Several examples illustrate the developmental harm of 
CigS and AirPoll. Fetal growth is consistently impaired by maternal 
smoking. Third-trimester exposure to maternal smoking shortened 
femur length and skull width (biparietal diameter; meta-analysis of 
10 000 pregnancies in 16 studies) (70). In turn, maternal smoking is 
associated with higher adult body mass index (71), a risk factor in 
many age-related pathologies. There is a likely convergence of CigS 
and AirPoll in fetal growth retardation (72).

Epigenetic effects of maternal smoking include postnatal DNA 
methylation, robustly shown for GFI1, a transcriptional repressor 
which was hypomethylated at 8 CpG sites in adult children of ma-
ternal smokers (meta-analysis of 18 212 individuals from 17 popu-
lations) (73). Several hypomethylated GFI1-CpGs are associated 
with low birth weight, and adult adiposity and hypertension, which 
are AD risk factors. Whole-genome methylomes (bisulfite cleavage) 
show additional DNA methylation responses to maternal smoking 
in enhancers and other gene regulatory domains (74,75). Similarly, 
the gene promoter of SLC7A8, an amino acid transporter, had par-
allel changes of DNA-CpG sites in cord blood and adults of the 
Maternal and Child Health Study (75). Placental DNA methyla-
tion of CYP1A1 (detoxification gene) may also respond to maternal 
smoking (76,77).

The risk of childhood obesity is increased by maternal smoking. 
A meta-analysis of 236 687 children worldwide showed robust as-
sociations of maternal smoking during pregnancy with overweight 
(odds ratio [OR] 1.37) and obesity (OR 1.55) (78). Moreover, the 
combination of secondhand CigS and AirPoll promotes childhood 
obesity (44). In turn, childhood obesity increases risk for adult 
dyslipidemias that promote cardiovascular disease (79). As noted 
above, fat depots secrete inflammatory proteins, worsened by 
obesity. APOE alleles were not included in these studies.

Resolving the complex G × E relationships of AirPoll would be 
facilitated with a high-throughput, short-duration screening model. 
We developed the nematode C elegans as a new model for devel-
opmental influences of AirPoll (80). Concentrations of AirPoll-nPM 
in culture media were identified that did not alter survival curves. 
Initial studies showed responses of C elegans to AirPoll-nPM in the 
culture media that corresponded to findings in rodents. For example, 
rapid responses to 1 hour of nPM exposure induced genes for oxi-
dative stress responses (eg, gst-4), inflammation (eg, tol-1), and of 
the human AD pathway (eg, apl-1/APP homolog, and sel-12/PSEN1 
homolog) (80). These rapid responses paralleled the rapid increase of 
Aβ42 in mouse brain from 3-hour exposure to nickel nanoparticles 
in FVBM mice (47,81). RNAi knockdown of the NRF2 homolog 
skn-1 eliminated the long-term developmental and life-span hormetic 
effects of early-life acute exposure to AirPoll-nPM (80). One-hour 
exposure of young adult worms to 50  µg/mL AirPoll-nPM in L1 
and day 1 adulthood increased life span by 1.1  days, which was 
blocked by skn-1 RNAi (Figure 5A). Developmental exposure at L1 

Figure 4.  APOE gene cluster expression in mouse and human brain. (A) Heat 
maps showing transcriptional response of the mouse Apoe gene cluster to 
AirPoll-nPM in cerebral cortex, for C57BL/6J (B6) and transgenic for human 
APOE allele, APOE3-TR and APOE4-TR, both sexes. Principal component 
analysis of human APOE cluster expression for 5 brain regions (321 
individuals, GTEx data) shows APOE PC1 differed by sex (B) and age (C) with 
brain region specificity. Figure adapted from Haghani et al. (60). AirPoll = air 
pollution; CigS = cigarette smoke.
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caused smaller-sized adults. Again, the developmental effect of nPM 
was blocked by skn-1 knockout (Figure 5B). The pleiotropic effect 
of SKN-1 activation by AirPoll-nPM is consistent with the metabolic 
reallocations of skn-1 gain-of-function mutants that increased lon-
gevity at the expense of decreased resistance to pathological bacteria 
(82). Because oxidative stress from paraquat decreased pathogen re-
sistance, AirPoll may also impair immunity, as indicated by covari-
ance of elevated AirPoll with risk of COVID-19 infections.

These findings merit extension to mouse models of Nrf2 manipu-
lation by drugs and inducible gene knockdown to attenuate AirPoll 
toxicity. The hsp-16.2 and skg genes are interesting prospects for 
interactions with AirPoll, and for genes that alter the variability of 
stem cell number (83). The temperature dependence of life span in 
sgk-1(ok538) (84) would be interesting to study for interactions 
with AirPoll-nPM. Transgenerational effects of AirPoll may be an-
ticipated from the growing list of environmental toxins and stressors 
with multigenerational effects that extend 3 or more generations, 
for example, for maternal exposure of mice to the flame retardant 
tetrabromobisphenol (85) or Pb (65,86). Mechanisms include altered 
methylation of DNA in mice (86) and of histones in C elegans (87). 
Other toxicants with experimentally reported transgenerational 
effects include vinclozolin (88) and other endocrine disruptors. 
Vinclozolin exposure can also cause “tertiary epimutations” by al-
tering germline DNA methylation and somatic mutations that per-
sist at least 3 generations (88). We anticipate other examples of 
epimutations from environment toxicants with transgenerational 
persistence and complex G × E interactions that will threaten future 
global health.

Stochastic Variation in the Total Phenotype

The unexplained heritability of life spans may also arise from inter-
actions of environmental and stochastic factors with the genome, 
which we summarize as the Tripartite Phenotype of Aging (Figure 
5). Bidirectional arrows indicate their interactions and plasticity of 
overlap, and extend earlier analyses (2,89,90).

Life span of C elegans varies as widely as humans when ex-
pressed as COV (3). Despite their isogenic status in the same 
culture dish, young worms swim at different rates, lay different 
numbers of eggs, and vary widely in their loss of these functions 
during aging. The loss of locomotion is attributed to sarcopenia 
from scattered myocyte cytopathology with loss of myofibrils, 
while neurons apparently remain intact (7). While these variations 
remain undefined for sarcopenia, stochastic variations of life 
spans are better understood for the heat shock gene promoter hsp-
16.2 in benchmark studies by Tom Johnson, Alex Mendenhall, 

and colleagues (91). The life spans of individual worms scaled 
with hsp-16.2 gene expression over a 2-fold range. In contrast, 
2 other stress inducible genes (myo-2 and mtl-2) lacked associ-
ation of expression levels with longevity (92). Locomotor activity 
paralleled the longevity trends (93), confirming a prior study (7). 
Genetic manipulations that decreased insulin signaling also de-
creased life-span COV (94,95).

Subcellular analysis of stochasticity by Mendenhall’s group 
showed cell-to-cell differences in hsp-16.2 protein levels of in-
testine cells of young worms (8). The scale of differences in cell 
expression for this key chaperone greatly exceeded the intrinsic 
noise in gene expression, as determined by reporters for each 
gene. The “variegated gene expression” of mammalian genes 
in vitro described above was associated with SIRT1, a human 
longevity gene (14). There may be stochastic components in the 
sex-APOE differences of Sirt1 expression in brain, which was 
50% lower in APOE3 females than for other sex-APOE geno-
types (49). A  physiology of stochasticity is suggested by the 
regulation of intestinal cell variations by neurosecretions from 
thermosensory neurons (94). Further variations may be found 
in neuronal contacts of C elegans. While worms are known 
for (almost) identical numbers of each cell type, nonetheless, 
adult individuals vary widely in subcellular location and type 
of motor neuron synapses, implying variations during develop-
ment (96,97). Subcellular mechanisms of stochasticity include 
gene silencing through small RNAi that are transmitted at least 
3 generations (98). Stochastic processes have been modeled for 
individual trajectories of aging (99) and G × E (100) that confirm 
the large scale of stochastic epigenetic variations during devel-
opment with later consequences to adult health and aging (3). 
Lastly, we recall Gärtner’s pioneering studies from 3 decades ago, 
which compared of twins derived from separate ova of inbred 
mice with those from artificially cleaved single ova. More than 
70% of postnatal growth variance preexisted in oocytes at or be-
fore fertilization (101).

Figure 5.  Caenorhabditis elegans impact of SKN-1 perturbation on AirPoll-
nPM exposure during development. (A) Survival curves showing increased 
longevity from nPM exposure (hormesis) and its abrogation by skn-1 
knockdown. (B) Body size (area, arbitrary units) of adult day 1 wild-type 
(N2) and skn-1(zu135) mutant. Adapted from Haghani et al. (80). AirPoll = air 
pollution; CigS = cigarette smoke.

Figure 6.  The Tripartite Phenotype: G, heritable genes with variable impacts 
from the environment (E), in both the Exogenous and Endogenous domains 
of the Gero-Exposome (Figure 1), and from stochastic variations (SVs) during 
individual development and stochastic anomalies resulting in postnatal 
molecular damage, both intracellular and extracellular.
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Concluding Perspectives

The search for individual determinants of health and longevity can 
be expanded to include environmental factors across the life 
span, from gametes to geronts.

Environmental interactions with genes over the lifetime (G × E × T) 
should consider interactions of the Exogenous and Endogenous 
domains of the Gero-Exposome, for example, adiposity from 
gestational exposure to CigS and AirPoll.

The Tripartite Phenotype of Aging includes cell heterogeneity that 
arises from developmental variations and variegated gene expres-
sion. The next phase of Systems Gerontology could include sto-
chastic features of aging organ and cell data for modeling.

The frontier of stochastics in biogerontology can be explored with 
single-cell transcriptomes and ChIPseq.
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