
Tissue-specific distribution of legacy and novel per- and 
polyfluoroalkyl substances in juvenile seabirds

Anna R. Robuck1,*, James P. McCord2, Mark J. Strynar2, Mark G. Cantwell3, David N. 
Wiley4, Rainer Lohmann1

1University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882

2US Environmental Protection Agency, Center for Environmental Measurement and Modeling, 
Durham, NC 27709

3US Environmental Protection Agency, Center for Environmental Measurement and Modeling, 
Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882

4National Oceanic and Atmospheric Administration Stellwagen Bank National Marine Sanctuary, 
Scituate, MA 02066

Abstract

Of the thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, few have 

been investigated in detail. In this study, we analyzed 36 legacy and emerging PFAS in multiple 

seabird tissues collected from individuals from Massachusetts Bay, Narragansett Bay and the Cape 

Fear River Estuary. PFOS was the dominant compound across multiple tissues, while long-chain 

perfluorinated carboxylic acids (PFCAs) dominated in brain (mean = 44% of total concentrations). 

Emerging perfluoroalkyl ether acids (PFEAs)—Nafion byproduct-2 and PFO5DoDA – were 

detected in greater than 90% of tissues in birds obtained from a nesting region downstream 

from a major fluorochemical production site. Compound ratios, relative body burden calculations, 

and electrostatic surface potential calculations were used to describe partitioning behavior of 

PFEAs in different tissues. Novel PFEAs preferentially partition into blood compared to liver, 

and were documented in brain for the first time. PFO5DoDA showed a reduced preference for 

brain compared to PFCAs and Nafion BP2. These results suggest future monitoring efforts and 

toxicological studies should focus on novel PFAS and long-chain PFCAs in multiple tissues 

beyond liver and blood, while exploring the unique binding mechanisms driving uptake of multi­

ether PFEAs.
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Introduction

Per- and polyfluoroalkyl substances (PFAS) are manmade chemicals associated with adverse 

effects in biota; global biomonitoring studies document the pervasive accumulation of these 

compounds in wildlife1–4. The majority of these studies measured PFAS in select matrices 

only, such as serum, liver, feather, or egg5–7. These studies provide snapshots of PFAS levels 

in single tissue compartments but cannot assess total exposure across multiple tissues and 

organs.

Some research has recognized this shortcoming by measuring PFAS within multiple tissues 

of wild organisms, including tissues such as brain, lungs, heart, muscle, kidney, gonads, 

and adipose tissue (fat) 8–14. Such work demonstrates highly unique partitioning behavior 

of PFAS. Verreault et al. (2005) examined plasma, liver, egg, and brain from glaucous 

gull (Larus hyperboreus) adults and eggs from the Norwegian Arctic and determined 

perfluorooctanesulfonic acid (PFOS) concentrations were greatest in plasma, followed by 

approximately equal concentrations in liver and egg9. Investigations in herring gull (Larus 
argentatus) female adults and eggs from the Great Lakes (US) and common guillemot (Uria 
aalgae) adults, chicks, and eggs from the Baltic Sea subsequently found adult and chick 

liver to contain higher concentrations of PFOS compared to plasma or muscle10,15. Results 

from other taxa also suggest blood, liver, and kidney contain the highest concentrations 

of multiple perfluoroalkyl acids (PFAAs), with some indication of preferential uptake of 

long-chain perfluoroalkyl carboxylic acids (PFCAs, CnF2n+1COOH, n ≥ 7) in the brains 

of marine mammals8,14,16. This is in stark contrast to the behavior of hydrophobic organic 

chemicals like polychlorinated biphenyls (PCBs), which prefer fatty tissue storage.

Tissue-specific measurements also help constrain drivers of PFAS uptake and internal 

distribution. Empirical data from tissue-specific studies, modeling efforts, and data from 

controlled laboratory studies indicate interactions with specific proteins like albumin and 

liver fatty acid binding protein (L-FABP) determine the partitioning of PFAS in liver, 
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kidney, and blood matrices17,18. Non-specific phospholipid-mediated pathways have also 

been hypothesized to drive PFAA uptake in brain and liver18–20. These mechanisms are 

poorly described empirically and mechanistically across different taxa.

Notably, little or no information exists evaluating tissue-specific behavior of novel and 

replacement PFAS 11,12, such as per- and polyfluoroalkyl ether acids (PFEAs) 21. We hence 

analyzed legacy and novel PFAS in 8 different tissues in seabirds from the U.S. Atlantic 

Coast to conduct the first study examining the tissue-specific distribution of select PFEAs. 

The aims of this study were to (i) derive the tissue distributions of 36 legacy and emerging 

PFAS in birds from three habitats and (ii) evaluate partitioning behavior of PFEAs, relative 

to PFAAs in different tissues. We hypothesized that novel ether-containing PFAS would be 

detected less frequently and at lower concentrations in all tissue matrices compared to legacy 

PFCA and PFSA homologs.

Materials and Methods

Sample Collection

Deceased immature seabirds including Royal Terns, Sandwich Terns, Laughing Gulls, and 

Brown Pelicans were collected from the Cape Fear River Estuary (CFRE) in southeastern 

North Carolina (n = 12), downstream from a major fluoropolymer production facility. 

Herring Gulls (n = 4) were obtained from urbanized Narragansett Bay and Great 

Shearwaters (n = 6) were obtained from offshore Massachusetts Bay. All birds were freshly 

or recently deceased, with little or no apparent decomposition. These species generally rely 

on small forage fish and marine invertebrates for food. All individuals were less than six 

months old, aged 1 – 5 months. The total sample set (n = 20 individuals), while seeemingly 

small, is larger than the number of individuals used in prior tissue-specific work (e.g. 

522, 810, 5–1015, or 413 individuals). More details about the appropriateness of our unique 

sample set, and particulars about each seabird species, individual, and location are provided 

in the Supplementary Information (SI) and in previous work (Tables S1, S2, Fig. S1)9,15. 

Tissues or samples collected included heart, brain, kidney, lungs, adipose fat, liver, whole 

blood, and pectoral muscle. 11/160 tissue samples (livers from CFRE individuals) were also 

reported in previous work from our group, but over 93% of the sample set is investigated 

here for the first time23.

PFAS analysis via HRMS

A total of 36 PFAS were assessed in 160 seabird tissue samples from 20 immature seabird 

individuals via targeted and suspect screening (Table S4). PFAS were extracted and analyzed 

following a previously described HRMS workflow23–26 using a Thermo Orbitrap Fusion 

mass spectrometer (ThermoFisher Scientific, Waltham, MA). Further details about sample 

preparation, analysis, quantification, and quality control are available in the SI.

Data treatment, statistical analysis, and structural comparison

Data manipulation and statistical analyses were performed in R version 3.6.1 (R Core 

Team, 2020)27. Concentrations were converted to a wet weight, per gram basis for ease 

of comparability. Reporting limits (RLs) were determined by comparison to process blank 
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values plus three times the standard deviation; in the absence of blank concentrations, the 

lowest calibration curve point was used. Responses below RLs were considered zero for 

summation purposes. Summary statistics, compound ratios, tissue-blood ratios, and relative 

body burdens were calculated for compounds found in greater than 50% of samples in at 

least one tissue as described in the SI; non-detects were substituted with zeros to avoid 

artificial inflation of derived statistics and ratios given the small sample size per tissue and 

habitat. As a result, ratio calculations are conservative and may underestimate true values. 

Compound ratios in multiple tissues of CFRE birds (n = 12, 96 tissues) were compared 

using ANOVA with post hoc application of Tukey’s test with Bonferroni correction 

for multiple testing. Additionally, TURBO-MOLE software included in the COSMOconf 

software suite was used to evaluate differences in electrostatic surface potential between 

the lowest energy conformers of PFOS, PFOA, Nafion BP2 and PFO5DoDA. These 

visualizations portray a molecule’s probable surface charge as a three-dimensional surface, 

providing insight about likely molecular interactions 28.

Results and Discussion

Detection of PFAS by tissue and region

17 of 36 analytes were detected in at least one seabird tissue (Fig. 1, Table S3). The 

largest number of analytes and the highest detection frequencies across each tissue type were 

observed in individuals from the Cape Fear sample set (Fig. 1).

PFOS and PFCA concentrations across multiple tissues

PFOS was detected at the highest mean concentration in most tissues when it was detected, 

and dominated sum totals in most tissues (Fig. S4, Tables S5, S7). Considering birds from 

all habitats, the highest mean concentrations of PFOS were observed in liver, kidney, lungs, 

and blood across all habitats (Fig. S2, Tables S5). High PFOS abundances in these relative to 

other tissues have been reported in wildlife from regions unimpacted by PFOS point sources 
9,10,15. PFOS was found in all CFRE tissues examined, and at the highest concentrations (up 

to 480 ng/g in blood) (Tables S5). High levels of PFOS have also been observed in fish and 

human serum samples from the wider Cape Fear region 26,29,30.

CFRE birds displayed the largest number of PFCA detections across multiple tissues (Fig. 

1). PFUdA was the most abundant PFCA in liver, with a mean concentration of 10, 10, and 5 

ng/g in CFRE, Massachusetts Bay, and Narragansett Bay livers, respectively (Fig. S2, Tables 

S5). PFTrDA was the most abundant PFCA detected in the lungs and brain of Massachusetts 

Bay individuals, at a mean concentration of 19 ng/g in both tissues, higher than or similar to 

concentrations observed in other tissue-specific research involving seabirds9,10,15.

PFEA concentrations across multiple tissues of CFRE birds

PFEAs were detected in multiple tissues in birds from two habitats but were by far most 

abundant in CFRE birds. PFEAs made up the largest single proportion of total PFAS 

in fat (54% in CFRE birds), dominated by Nafion BP2, but concentrations were lower 

in fat compared to other tissues (Fig. S4, Tables S5). The highest PFEA levels were 

found in brain of CFRE individuals, with a maximum of 360 ng/g Nafion BP2 (Tables 
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S5). Mean concentrations of Nafion BP2 in blood from CFRE individuals (mean = 21 

ng/ml) were approximately 70 times higher than Nafion BP2 levels observed in striped 

bass from the Cape Fear River (mean = 0.3 ng/ml)26, and about 7 times higher than 

Nafion BP2 concentrations observed in human serum from Wilmington, NC (median = 

2.7 ng/ml), a community where upstream industrial PFAS discharges in the Cape Fear 

River are known to impact finished drinking water31. Mean PFO5DoDA concentrations 

in blood of CFRE chicks (mean = 27 ng/ml) were about 90 times higher than in human 

serum from Wilmington residents (median = 0.3 ng/ml). PFEA concentrations in CFRE bird 

blood are also approximately two orders of magnitude higher than concentrations observed 

in humans surrounding a fluoropolymer production site in China (Nafion BP2 median = 

0.097 ng/ml, PFO5DoDA median = 0.987 ng/ml), which were found to be associated with 

altered glucose, cholesterol, and other enzymes and proteins in human serum32. The higher 

observed concentrations in birds may be related to dose as a function of body weight and 

maternal offloading, with the smaller birds evidencing higher tissue concentrations when 

subjected to the same air/water dose.

Relative body burdens by tissue and body weight

We derived relative body burdens (RBBs) as the product of PFAS concentrations, organ 

weights, and total body weight (Eq. S1). The highest RBB of PFOS was found in liver, 

followed by blood and muscle (Fig. 2, Fig. S3).

In muscle, the high RBB of PFOS is likely driven by the large mass fraction of this 

component (~15 – 20% of body weight) whereas in blood (~10%) and liver (4 – 6%) the 

large RBB also results from the increased PFOS affinity for these tissues via specific uptake 

mechanisms including albumin, L-FABP, and membrane phospholipids17,33,34. RBBs also 

suggest a chain-length dependence of PFCA accumulation in liver and brain (Fig. 2). C9 

PFNA had the highest relative mass in liver, with decreasing relative mass with increasing 

chain length (Fig. 2). C12 PFDoDA and C13 PFTrDA showed significantly decreased relative 

masses in liver and increased mass in brain compared to C9 – C11 PFCAs. These trends 

were likely driven by relative binding affinity of PFCAs with specific proteins in brain 

and blood-brain membrane transport pathways 14,17,34. The largest RBBs of Nafion BP2, 

PFO4DA, PFO5DoDA were found in blood of CFRE individuals, driven by the large mass 

fraction of this compartment coupled with relatively high concentrations of PFEAs in whole 

blood (Fig. 2).

Legacy and novel PFAS in brain

10 compounds were detected in at least one brain sample and 8 detected in at least 50% of 

brain samples, demonstrating that multiple PFAS can migrate across the blood-brain barrier. 

PFOS displayed the highest mean concentration in brain, and PFCAs made up the largest 

fraction observed in brain (44% of total concentration across all birds), with PFUdA found 

at mean concentrations of 13, 8, and 3 ng/g in brains from CFRE, Massachusetts Bay, 

and Narragansett Bay individuals, respectively. The dominance of PFCAs was particularly 

notable in brains from Massachusetts Bay and Narragansett Bay individuals in which 

[PFOS] was lower, with PFCAs constituting a mean of 57% of total concentrations observed 

in brains (n = 6) (Tables S5). Pairwise concentration comparison suggests PFTrDA is 
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preferentially taken up into the brain compared to structurally analogous C9 – C12 PFCAs 

(Table S6). Similar results for long-chain PFCAs in marine mammals brain14 have been 

hypothesized to be driven by phospholipid-mediated uptake.

Nafion byproduct-2, PFO4DA, and PFO5DoDA were all detected in brain tissue of 

individuals from the CFRE, with detection frequencies of 80%, 60%, and 100%, 

respectively. Migration across the blood-brain barrier (BBB) is highly restricted for ionic 

species like PFAAs and PFEAs, and is thought to occur via active transport pathways.35 

Empirical observations in marine mammals and birds demonstrate the presence of long­

chain PFCAs, PFOS, and PFDS in brain tissue, suggesting BBB transport of PFCAs with C 

>9 or PFSAs with C ≥ 8 is possible, whether by OATP1A2 or another unspecified transport 

pathway related to or mediated by phospholipid interactions9,13,14.

Our results indicate that ether-based PFAS chemistries readily migrate across the highly 

selective blood-brain barrier in vertebrate wild animals subject to environmentally relevant 

PFEA exposures. Data from polar bears16, frogs36, and mice37 suggest some legacy PFAS 

(PFOS, PFCAs) are associated with alterations of neurochemical signaling and proteins 

critical for brain development, with uncertain long-term implications. Modeling suggests 

ether-based PFAS have similar or higher toxic potency compared to PFAAs38. Further 

research is required to examine PFEA impacts in the brain, given their proven ability to 

migrate into this tissue compartment.

Decreased preference of PFO5DoDA for brain

Concentration ratios facilitate the evaluation of compound partitioning between different 

tissues, as compounds subject to similar exposure and distribution pathways across 

multiple tissues likely share similar ratios between different tissues and vice versa. Using 

concentration ratios, we note that PFO5DoDA, a PFOA substitute with a backbone 

incorporating multiple ether linkages, partitions differently into brain than in other tissues 

compared to PFUdA, PFTrDA, PFOS, and Nafion BP2 (Fig. 3, Table S6).

This suggests a combination of structural features, such as the inclusion of multiple 

ether linkages (>2) that increase backbone flexibility, the molecular size of PFO5DoDA 

(11-member backbone), and/or the -COOH head group, reduce transport across the BBB 

compared to other examined PFAAs and the PFESA Nafion BP2. We consider the ether­

linkages, molecular size, and/or increased backbone flexibility of PFO5DoDA to be the most 

important features for its accumulation in brain, given that the -COOH functional group 

is also present in long-chain PFCAs that preferentially partition to brain. The ether-based 

chemicals distribute across most other tissues in a similar manner as long-chain PFAA 

analogues, with a preference for blood and kidney apparent in some comparisons (Table S6).

Relative sorption strength of PFEAs to proteins

The high PFAS concentrations observed in blood suggests albumin may offer increased 

binding opportunity for PFEAs via its multiple binding sites with distinct binding 

affinities that favor a range of PFAS chain lengths and functional groups28,39. We used 

quantum chemical calculations performed via COSMOconf/TURBOMOLE to explore this 

hypothesis; these calculations allowed the comparison of electrostatic surface potential 
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between the lowest energy PFEA conformations and their respective PFAA homologues 

(Table S9). Nafion BP2 possessed increased probabilities of positive surface charge density 

compared to PFOS, and reduced probabilities of neutral surface charge. Given the sensitivity 

of binding cavity interactions to charge, we hypothesize that these aberrations in charge 

potential between PFEAs and PFAAs may result in a reduced ability for Nafion BP2 to 

engage in hydrophobic interactions in the L-FABP active site. This could help explain 

the reduced presence of Nafion BP2 in liver compared to blood. However, PFO5DoDA 

possessed an increased probability of neutral surface charge compared to PFOA, but 

was found at higher concentrations in blood compared to liver. Steric effects may drive 

differences in binding of PFO5DoDA to L-FABP compared to C8 - C10 PFAAs, which were 

found at higher concentrations in liver compared to blood in CFRE individuals. Sheng et al. 

(2018) found that several ether- and chlorine-containing emerging PFAS were structurally 

distorted during the binding process in orientations distinct from the “head-out” binding 

observed for PFAAs; they also interacted with a different suite of amino acid residues40.

Based on calculated and observational results observed across this study, we suggest multi­

ether PFEAs engage with the L-FABP active site in a way distinct from the structural 

deformation and binding interactions observed between L-FABP and long-chain PFAAs. 

These differences may reduce the favorability of interaction in the primary L-FABP cavity, 

leading to reduced liver concentrations compared to blood (Figs. S3, S4). Alternatively, 

phospholipid binding is an additionally important mechanism driving PFAS accumulation 

in liver, in tandem with L-FABP interactions18. The multi-ether PFAS, with altered electron 

densities or conformational behavior compared to PFAAs, may be less likely to engage with 

uptake pathways that favor phospholipid-like species with a distinctly hydrophobic tail and a 

hydrophilic head group.

Implications

This study is the first to document the internal distribution behavior of PFEAs in any 

vertebrate organism, and details the presence of PFAAs and PFEAs in multiple tissues 

and organs of young seabirds. Multi-ether PFEAs were generally most abundant in blood 

rather than liver; we suggest compounds containing multiple ether linkages may find more 

flexible binding sites within serum albumin compared to the primary active site of L-FABP. 

Little research to date has examined the binding behavior of multi-ether PFEAs, which is 

needed considering their burgeoning environmental relevance and continued incorporation 

in industrial processes. Overall, we note that continued reliance on ether-based PFAS may 

not translate to reduced tissue accumulation of PFAS as our work indicates ether-based 

chemicals are readily transported to multiple body compartments such as the brain, with 

unknown biological consequences. Our results also reinforce the utility of birds to better 

understand environmental distributions and internal partitioning of PFAS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Detection frequencies by habitat and tissue type, including 15 compounds that were found at 

least two samples. Nine PFAS (Nafion BP2, PFO5DoDA, PFO4DA, PFOS, PFNA, PFDA, 

PFUdA, PFDoA, and PFTrDA) were found in ≥ 50% of at least two tissues from at least one 

habitat, marked with a red star in the figure. See SI for compound abbreviations.

Robuck et al. Page 11

Environ Sci Technol Lett. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Relative body burdens (RBBs) of each PFAS detected in more than 50% of samples in at 

least one tissue of CFRE individuals, stratified by tissue compartment. RBB data from other 

habitats is limited by lower detection frequencies, and is presented in Fig. S3.
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Figure 3. 
Ratios of PFAS concentrations in seven tissues from all CFRE individuals, with 

A) presenting concentrations of PFO5DoDA divided by PFUdA and B) presenting 

concentrations of Nafion BP2 divided by concentrations of PFO5DoDA. Fat was excluded 

due to the very low detection frequency of PFO5DoDA and PFUdA in fat. The blue line 

within each box plot indicates the arithmetic mean while the black line indicates the median. 

The box hinges represent the first and third quartiles, and the whiskers indicate 1.5 times 

the interquartile range. Outliers are indicated by black dots. The red line indicates the 

mean of each concentration ratio including all tissues except brain. Common letters above 

each boxplot indicate tissues that share statistically indistinguishable concentration ratios as 

determined using Tukey’s post-hoc test.
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