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Abstract17 
COVID-19 has been threatening human health since the late 2019, which has significant impact 18 
on human health and economy. Understanding the SARS-CoV-2 and other coronaviruses is 19 
important to develop effective treatments for COVID-19 and other coronaviruses-caused 20 
diseases. In this work, we applied multi-scale computational approaches to study the electrostatic 21 
features of spike (S) proteins for SARS-CoV and SARS-CoV-2. From our results, we found that 22 
SARS-CoV and SARS-CoV-2 have similar charge distributions and electrostatic features when 23 
binding with the human angiotensin-converting enzyme 2 (hACE2). The energy pH-dependence 24 
calculations revealed that the complex structures of hACE2 and the S proteins of SARS-25 
CoV/SARS-CoV-2 are stable at pH values ranging from 7.5 to 9. Molecular dynamics 26 
simulations were performed using NAMD to investigate the hydrogen bonds between S proteins 27 
and hACE2. From the MD simulations it was found that SARS-CoV-2 has four pairs of essential 28 
hydrogen bonds (high occupancy, >80%), while SARS-CoV has three pairs, which indicates the 29 
SARS-CoV-2 S protein has relatively more robust binding strategy than SARS-CoV S protein. 30 
Four key residues forming essential hydrogen bonds from SARS-CoV-2 are identified, which are 31 
potential drug targets for COVID-19 treatments. The findings in this study shed lights on the 32 
current and future treatments for COVID-19 and other coronaviruses-caused diseases. 33 

34 



1 Introduction 35 

The ongoing COVID-19 pandemic is changing human society significantly and causing both 36 
economic and social consequences all over the world [1]. Coronaviruses are named for their 37 
crown-like spikes on their surface, and they are commonly found in many mammal species [2]. 38 
Human coronaviruses were firstly identified in the mid-1960s. There are four main sub-39 
groupings of coronaviruses, known as alpha, beta, gamma, and delta [3]. Among all the 40 
coronaviruses, there are seven known types of coronaviruses that can infect human beings. 41 
People around the world commonly get infected by human coronaviruses 229E, NL63, OC43, 42 
and HKU1 [4, 5]. And some coronaviruses that infect animals are able to evolve and infect 43 
humans, among which the three recent cases are SARS-CoV-2, SARS-CoV, and MERS-CoV[6]. 44 
The SARS-CoV-2 virus is the novel coronavirus that causes coronavirus disease 2019, or 45 
COVID-19. Other than COVID-19, coronaviruses have caused several pandemics before, 46 
including severe acute respiratory syndrome (SARS) which was caused by SARS-CoV and the 47 
Middle East respiratory syndrome (MERS) which was caused by MERS-CoV. To end the 48 
current pandemic soon and be prepared for the future similar challenges for human society, it is 49 
essential to understand the binding mechanisms of SARS-CoV-2 infecting human cells. This is 50 
achievable by studying the stabilities of SARS-CoV-2 at different pH conditions, and identify the 51 
key residues that play significant roles in the binding processes. 52 

53 
Coronaviruses contain membrane glycoprotein (M), nucleocapsid protein (N), spike protein (S), 54 
envelope protein (E) and an RNA single chain[7]. For all enveloped viruses, one of the most 55 
important steps during the binding process is membrane fusion, which allows viruses to get into 56 
host cells [8]. For coronaviruses, the fusion protein is the S protein that leads the binding process 57 
to attack human cells through the host cell receptor angiotensin-converting enzyme 2 (hACE2) 58 
[9]. Human hACE2 (hACE2) is an enzyme located widely in the human body, including the 59 
lungs, kidneys, adipose tissue, central nervous system and cardiovascular system [9-11] and it 60 
has multiple essential functions such as the regulation of amino acid transport in the kidney 61 
controlling the blood pressure, and viral receptors including both SARS-CoV-2 and SARS-CoV 62 
[11]. Since it is of extreme importance to human health, there are numerous research groups have 63 
been or are currently working on S proteins and hACE2 using various approaches.   64 

65 
The traditional process of the de novo drug design is a challenging task which consumes 66 
resources and time significantly. With the fast developments of computing technology, 67 
computational methods have been widely used to drug-related research[12], including protein-68 
protein interactions[13, 14], MD simulations[15], coarse-grained models[16], pH dependence of 69 
protein-protein interactions[17-20], etc. Our previous studies have applied multi-scale 70 
computational methods to study several pathogens [21-25] including the SARS-CoV-2 viruses 71 
[26, 27], which revealed some mechanisms of the SARS-CoV-2 S protein. Besides, many other 72 
research groups have made successful progress to understand the SARS-CoV-2 using 73 
computational methods [28, 29].  74 



75 
In this work, we first calculated the electrostatic potentials on the surface of S proteins from both 76 
SARS-CoV and SARS-CoV-2, followed by the electric field line comparison between SARS-77 
CoV and SARS-CoV-2 when they bind to hACE2. We found that the two viruses have similar 78 
pH responses: The pH-dependence of folding energies for S protein receptor binding domains 79 
(RBDs) demonstrated that both the S protein RBDs of these two viruses are at the most stable 80 
status when pH values ranging from 6 to 9. Also, the pH-dependence of binding energies for S 81 
protein RBDs and hACE2 RBD showed that the complex structures of the two viruses are at the 82 
most stable status at pH values ranging from 7.5 to 10.5. Therefore, SARS-CoV and SARS-CoV-83 
2 survive in a similar pH environment. The pH 7.5 to 9 is the best condition for both SARS-CoV 84 
and SARS-CoV-2 to best perform their functions to bind with hACE2. Also, we analyzed the 85 
trajectories from 100ns MD simulations using NAMD [30] and identified hydrogen bonds with 86 
the involved key residues using VMD [31]. It is shown that for the high-frequency (>80%) 87 
hydrogen bonds, SARS-CoV-2 has four pairs while SARS-CoV has three pairs, which indicates 88 
that the S protein of SARS-CoV-2 uses more residues to form strong hydrogen bonds. The key 89 
residues forming essential hydrogen bonds from SARS-CoV-2 are ARG-121, TYR103, THR182 90 
and TYR171, which are potential drug targets for COVID-19 treatments. Using multiple 91 
computational approaches, the findings in this work pave the way for the current and future 92 
treatment development of COVID-19 and other coronaviruses-caused diseases. 93 

94 

2 Methods 95 

2.1 Structure Preparation 96 

The complex structures of SARS-CoV/hACE2 and SARS-CoV-2/hACE2 were downloaded 97 
from the Protein Data Bank (PDB ID 6ACG [32] and 7AD1 [33], respectively) . Please note that 98 
in 7AD1, the mutations that the authors made during their experiments are not on the interface 99 
area. Since we only focus on the interface area between S proteins and hACE2, the mutations do 100 
not affect our results. In this work, we used the complex structures to study the electrostatic 101 
binding interactions and the relative binding energies in different pH environments between S 102 
proteins and hACE2 RBDs. For the missing loops in proteins, we used MODELLER [34] to 103 
model the structures based on the sequences. To understand the mechanisms of S protein binding 104 
to hACE2 at the interface particularly, S protein RBDs were separated from the hACE2 binding 105 
domain by a distance of 10Å for the best results and visualization.  106 

107 

2.2 Electrostatic Potential Calculation 108 

In order to study the electrostatic features, DelPhi [35, 36] was utilized to calculate the 109 
electrostatic potential for the S proteins and hACE2 RBDs. In the framework of continuum 110 
electrostatics, DelPhi calculates the electrostatic potential ϕ (in systems comprised of biological 111 



macromolecules and water in the presence of mobile ions) by solving the Poisson-Boltzmann 112 
equation (PBE):  113 𝛁 ∙ [𝛜(𝐫)𝛁𝛟(𝐫)] = −𝟒𝛑𝛒(𝐫) + 𝛜(𝐫)𝛋𝟐(𝐫) 𝐬𝐢𝐧𝐡(𝛟(𝐫) 𝐤𝐁𝐓⁄ )         (𝟏)114 

where ϕ(r) is the electrostatic potential, ϵ(r) is the dielectric distribution, ρ(r) is the charge 115 
density based on the atomic structures, κ is the Debye-Huckel parameter, kB is the Boltzmann 116 
constant, and T is the temperature. Due to the irregular shape of macromolecules, DelPhi uses a 117 
finite difference (FD) method to solve the PBE. 118 

119 
Before the DelPhi calculations, the PQR file of each trimer was generated by PDB2PQR [37]. 120 
We used AMBER [38]force field for PDB2PQR calculation, and removed water molecules. For 121 
the better results, we ensured the new atoms are not rebuilt too close to existing atoms and 122 
optimized the hydrogen bonding network.  123 

124 
 During DelPhi calculations, the resolution was set as 0.5 grids/Å. The dielectric constants were 125 
set as 2.0 for protein and 80.0 for the water environment, respectively. The pH value for the 126 
solvent environment was set to be 7.0. The probe radius for generating the molecular surface was 127 
1.4 Å. Salt concentration was set as 0.15 M. The boundary condition for the Poisson Boltzmann 128 
equation was set as a dipolar boundary condition. The calculated electrostatic potential on the 129 
surface was visualized with Chimera (figure 2). VMD was used to illustrate electric field lines 130 
between S protein and hACE2 (figure 3). Finally, the color scale range was set to be from -1.0 to 131 
1.0 kT/e for the best visual presentation. Besides the calculations of electrostatic potentials, we 132 
also used DelphiForce [39] to calculate the electrostatic binding forces between each S protein 133 
and hACE2 while separating them in the direction of the mass center connection line (figure S2). 134 
Besides the net forces between each S protein and hACE2, the X, Y, Z components of the net 135 
forces are also calculated and shown in figure S2. 136 

137 

2.3 Relative Folding Energy Calculation  138 

We used DelPhiPKa [40, 41] to calculate pKa values of DNA and UDG, given the pH ranging 139 
from 0 to 14 with the pH interval of 0.5. During the calculations, we used AMBER force field, 140 
and removed water molecules and HETATM. For the hydrogen of ASP and GLU attached atom, 141 
we used OD1 and OE1, respectively. Variance of Gaussian Distribution was set to be 0.7, salt 142 
concentration was 0.15, reference dielectric was 8.0, and external dielectric was 80.0.   143 

144 

The net charges of proteins at the unfolded state were calculated using this equation: 145 

𝑸𝒖(𝒑𝑯) = ∑ 𝟏𝟎−𝟐.𝟑𝒚(𝒊)(𝒑𝑯−𝒑𝑲𝒂(𝒊))𝟏 + 𝟏𝟎−𝟐.𝟑𝒚(𝒊)(𝒑𝑯−𝒑𝑲𝒂(𝒊))

𝑵
𝒊=𝟏          (𝟐)146 



where the summation is of all the titratable groups, y(i) value is -1 for acidic groups and +1 for 147 
basic groups, respectively. As for the folding free energy, we used this equation: 148 𝚫𝐍(𝐩𝑯𝒇𝒐𝒍𝒅𝒊𝒏𝒈) = 𝟐.𝟑𝐑𝐓∫ (𝑸𝒇(𝒑𝑯) − 𝑸𝒖(𝒑𝑯)𝒅(𝒑𝑯))

𝒑𝑯𝒇𝒑𝑯𝒊        (𝟑)149 

where  𝑄𝑓(𝑝𝐻) and 𝑄𝑢(𝑝𝐻) stand for the net charge of folded and unfolded state, respectively. 150 

R is the universal gas constant taken as  1.9872 × 10−3 𝑘𝑐𝑎𝑙𝑀𝑜𝑙∗𝐾 . T is the temperature with the 151 

value of 300 K.  152 

Please note that the algorithms we applied to calculate the folding energies are for the relative 153 
values, that is, at pH=0 the folding energy is 0 and at any other pH values the folding energies 154 
are the relative values to the pH=0 condition. 155 

156 

2.4 Relative Binding Energy Calculation 157 

For the binding energy calculation, we involved two methods, which are DelPhiPKa and 158 
MM/PBSA[42]. To calculate binding energy using DelPhiPKa, the following equation was used: 159 ∆𝑵(𝒑𝑯𝒃𝒊𝒏𝒅𝒊𝒏𝒈) = 𝟐.𝟑𝑹𝑻∫ (𝑸𝒕(𝒑𝑯) − 𝑸𝒏(𝒑𝑯) − 𝑸𝒓(𝒑𝑯))𝒅(𝒑𝑯)

𝒑𝑯𝒇𝒑𝑯𝒊         (𝟒)160 

where ∆𝑁(𝑝𝐻𝑏𝑖𝑛𝑑𝑖𝑛𝑔) is the the binding free energy at different pH values, 𝑄𝑡(𝑝𝐻), 𝑄𝑛(𝑝𝐻) , 161 

and 𝑄𝑟(𝑝𝐻) are the net charges of complexes of each model. R is the universal gas constant 162 

taken as 1.9872 × 10−3 𝑘𝑐𝑎𝑙𝑀𝑜𝑙∗𝐾 . T is the temperature with the value of 300 K. 163 

164 

Please note that the algorithms we applied to calculate the binding energies are for the relative 165 
values, that is, at pH=0 the binding energy is 0 and at any other pH values the binding energies 166 
are the relative values to the pH=0 condition. 167 

168 

2.5 Molecular Dynamic (MD) Simulations 169 

To simulate the dynamic interactions between S proteins RBD and hACE2 protein, MD 170 
simulations [15] were carried out using NAMD [30] with the help of GPUs on Lonestar5 clusters 171 
at the Texas Advanced Computing Center (TACC https://www.tacc.utexas.edu/). A 2000-step 172 
minimization was performed for each simulation, followed by a 100 million steps, during which 173 
20,000 frames were saved from two 100ns simulations of both SARS-CoV and SARS-CoV-2 174 
separately (1.0 fs per step, 1 frame at each 5000 steps, 100 million steps in total). The RMSDs of 175 
the SARS-CoV and SARS-CoV-2 trajectories are about 3.4Å and 1.1 Å, respectively (figure S1). 176 
During the MD simulations, we used CHARMM [43] force field, the temperature was set to be 177 



300 K, and the pressure was set to be standard using the Langevin dynamics. For PME, which is 178 
set for full-system periodic electrostatics, with the grid size (86, 88, 132) as (x, y, z) value 179 
respectively. In those two simulations, atoms that are not located in binding domains were 180 
constrained within a margin of 10.0 Å of their natural movement maximum length values. In 181 
order to get a more accurate result of the simulation, data of the last 50 ns of simulations were 182 
selected and used for data analysis, since the structure of the first 50 ns is not as stable as the last 183 
50 ns of simulations. The simulation processes are visualized in movies 4 and 5, generated by 184 
VMD.   185 

186 
To analyze the interaction between S proteins and hACE2, the hydrogen bonds that formed 187 
within the distance of 4 Å were extracted from the last 10,000 frames (50 ns) of simulations. The 188 
several top-strongest hydrogen bonds in each binding domain were determined by calculating 189 
their formation frequency (the frequency in figure of essential hydrogen bonds is shown in figure 190 
7. 191 

192 

3 Results and Discussions 193 

First of all, the electrostatic features of SARS-CoV and SARS-CoV-2 S proteins were 194 
investigated, including electrostatic potential and electric field lines. Secondly, the relative 195 
binding energies of complex structures and folding energies of S proteins at different pH values 196 
were analyzed. Finally, the hydrogen bonds and related key residues in each complex structure 197 
were obtained using MD simulations.  198 

199 

3.1 S Protein Trimer Structure 200 

201 



202 
203 

Figure 1. SARS-CoV S protein structure. Only the SARS-CoV S protein structure is illustrated 204 
in this figure, because SARS-CoV and SARS-CoV-2 S proteins are very similar (the RMSD 205 
between two S protein RBDs is 0.973 Å). (A) The S protein is a homotrimer (orange, blue, pink), 206 
of which one chain (pink) flips out when it binds to hACE2 (gray). The hinge connecting the 207 
RBD and the other part of S protein is shown in a black circle; (B) The closeup view of binding 208 
domains when S protein RBD (pink) binds to hACE2 RBD (gray). 209 

210 

The RMSD between the S proteins of SARS-CoV and SARS-CoV-2 is 0.973 Å, showing that 211 
the S proteins of SARS-CoV and SARS-CoV-2 are very similar. The S proteins of SARS-CoV 212 
and SARS-CoV-2 are both homotrimers. Each monomer contains an RBD which connects the 213 
other part of the monomer via a hinge composed by two flexible loops (as shown in the black 214 
circle of figure 1A). The RBD is in closed configuration when there is no hACE2 binds to the S 215 
protein. When binding to hACE2, the RBD of one monomer flips out as open configuration and 216 
it binds to the RBD of hACE2.  217 

218 

3.2 Electrostatic Potential on Surfaces 219 



To study the electrostatic features, DelPhi was utilized to calculate the electrostatic potential on 220 
surfaces of the S protein trimer (full structure) and hACE2 RBD. The electrostatic potential 221 
distribution on SARS-CoV S protein trimer structure is showed in figure 2BEH and movie 1, 222 
which were rendered by Chimera with a color scale from -1.0 to 1.0 kT/e. The charge 223 
distribution on SARS-CoV-2 S protein trimer structure is shown in figure 2CFI and movie 2, 224 
which were rendered by Chimera with a color scale from -1.0 to 1.0 kT/e as well, for the 225 
comparison. Negatively and positively charged areas are colored in red and blue, respectively.  226 

227 
By comparing the electrostatic potential on surfaces of two trimer structures, it is obvious that 228 
the charge distribution of SARS-CoV and SARS-CoV-2 S proteins are different. From the top 229 
view (figure 2A-C) and the bottom view (figure 2G-I), we noticed that SARS-CoV has slightly 230 
more positively charged area (blue), compared to SARS-CoV-2. It indicates that the SARS-CoV 231 
may attract the hACE2 more easily, since the hACE2 binding interface is overall negatively 232 
charged (movie 3). Such finding supports the previous studies of our research group [26, 27]. 233 
The electrostatic distribution differences observed from front views (figure 2D-F) of the S 234 
proteins demonstrate that the electrostatic features may have impacts on the stabilities of the 235 
trimers. Here it was not investigated several details about the binding stabilities among 236 
monomers in an S protein, due to the scope of this work that mainly focusses on the binding 237 
between S protein and hACE2. The electrostatic distributions on S protein RBDs show that the 238 
SARS-CoV RBD is more positive, which is consistent with the top view (figure 2BC). The 239 
bottom of the SARS-CoV (Figure 2EH) has more positive potential than SARS-CoV-2 (figure 240 
2FI). 241 

242 



243 

Figure 2. Electrostatic potential on surfaces of SARS-CoV and SARS-CoV-2 S proteins. (A) 244 
Top view of S protein structure; (B-C) Top views of electrostatic potential on surfaces of SARS-245 
CoV and  SARS-CoV-2 S protein, respectively; (D) Front view of S protein structure; (E-F) 246 
Front views of electrostatic potential on surfaces of SARS-CoV and SARS-CoV-2 S protein, 247 
respectively; (G) Bottom view of S protein structure; (H-I) Bottom views of electrostatic 248 
potential on surfaces of SARS-CoV and SARS-CoV-2 S protein, respectively. Negatively and 249 
positively charged areas are colored in red and blue respectively, with the color scale from -1.0 250 
to 1.0 kT/e. 251 

252 

3.3 Electric Filed Lines  253 

Electric field lines surrounding the two complex structures were calculated. To better visualize 254 
the field lines between interfaces, the S protein RBDs are separated from hACE2 RBDs by 10Å 255 
(figure 3). The field lines confirmed that both the SARS-CoV and SARS-CoV-2 S protein RBDs 256 
have attractive forces to hACE2 protein. In the analysis of field lines, the density of field lines 257 



indicates the strength of binding force, which means the denser area has the stronger interactions. 258 
The electric field lines demonstrate that when hACE2 is away from S protein, all the three S 259 
protein monomers provide attractive interactions to the hACE2. This is expected because the S 260 
protein RBDs are positively charged while the hACE2 is negatively charged, as shown in figure 261 
2 and movie 3, respectively. When hACE2 binds to S proteins (as shown in figure 1), the hACE2 262 
only binds with one S protein RBD, which is in open state. Combining the information from 263 
figure 1 and 3, it demonstrates that all the three S protein RBDs generate attractive forces to 264 
hACE2. However, when hACE2 gets closer to S protein, one S protein RBD flips out and binds 265 
to the hACE2 tightly, while the other two S protein RBDs stay in closed state. Even though the 266 
monomer with flipped-out S protein RBD is the closest to hACE2 and forms most of the salt 267 
bridges and hydrogen bonds, the other two monomers also provide dense field lines and show 268 
strong attractive interactions between S proteins and hACE2.   269 

270 



271 

272 

Figure 3. Electrostatic filed lines at the interfaces of S protein and hACE2. (A) Electrostatic 273 
filed lines between SARS-CoV S protein and hACE2; (B) A closeup view of binding domain 274 
between SARS-CoV S protein and hACE2 (C) Electrostatic field lines between SARS-CoV-2 S 275 
protein and hACE2; (D) A closeup view of binding domain between SARS-CoV-2 S protein and 276 
hACE2. Negatively and positively charged areas are colored in red and blue, respectively. Color 277 
scale is -1.0 to 1.0 kT/e. Yellow square areas are the RBD of S proteins at open state to reach the 278 
hACE2, cyan square areas are the the RBD of S proteins at closed state.  279 

280 



3.4 pH-Dependence of Relative Folding Energies 281 

The folding energy of SARS-CoV and SARS-CoV-2 complexes were calculated using 282 
DelPhiPKa at different pH values ranging from 0 to 14 with an interval of 0.5 (Figure 4). We 283 
observed that SARS-CoV and SARS-CoV-2 have the same trend of folding energy with the 284 
change of pH values, which is decreasing from 0 to 6, then becoming stable from 6 to 9, and 285 
increasing from 10 to 14. Other than the trend, the optimal values locate between 6 to 9 for both 286 
of the viruses.  287 

Please note that the folding energies in figure 4 are relative values because we set the reference 288 
energy to be 0 kcal/mol when pH is equal to 0. We did not calculate the absolute values of 289 
folding energies since we focused on the pH dependency of the folding energies.  290 

291 

292 

Figure 4. pH-dependence of the relative folding energy of S protein RBDs of SARS-CoV and 293 
SARS-CoV-2.  294 

295 



3.5 pH-Dependence of Relative Binding Energies 296 

DelPhiPKa was implemented to calculate the binding energies of two complex structures at 297 
different pH values. The results are presented in figure 5, where we noticed that the binding free 298 
energies of both SARS-CoV and SARS-CoV-2 complexes are stable at the pH values ranging from 299 
7.5 to 10.5, which indicates that both SARS-CoV and SARS-CoV-2 have a slight preference of 300 
weakly basic environment. Note that the method implementing DelPhiPKa calculates the relative 301 
folding and binding energies rather than absolute energies. The folding/binding energy at pH 0 is 302 
set as reference, which is 0 kcal/mol. The relative energy profile is used to study the 303 
folding/binding energy dependence on pHs. The absolute binding energies was calculated in later 304 
section using MM/PBSA method. Combine the folding and binding energy profiles, it is concluded 305 
that the best pH environment for both the SARS-CoV and SARS-CoV-2 is from pH 7.5 to 9. Please 306 
note that the binding energies in figure 5 are relative values because we set the reference energy 307 
to be 0 kJ/mol when pH is equal to 0. We did not calculate the absolute values of binding energies 308 
since we focused on the pH dependency of the binding stability.  309 

310 

311 

Figure 5. The relative binding energies of complexes at different pH values.  312 



313 

3.6 Hydrogen Bonds Analysis 314 

To analyze the hydrogen bonds distributions on both S proteins RBDs and hACE2 RBD, we 315 
colored the residues forming hydrogen bonds which are over 50% frequency during the MD 316 
simulations in figure 6. It’s obvious that the SARS-CoV S protein has more residues involved in 317 
the hydrogen bonds which are over 50%. Accordingly, the hACE also has more residues forming 318 
hydrogen bonds (over 50% frequency) with SARS-CoV S protein.  319 

320 
In order to consider the most essential hydrogen bonds, which are the hydrogen bonds with 321 
relatively high frequencies, we took 80% as a cutoff, which means those hydrogen bonds with 322 
80% or higher frequency are considered as the relatively more essential ones. By comparing the 323 
figure 7A and 7B, SARS-CoV-2 RBD forms one more essential hydrogen bonds than SARS-324 
CoV RBD when binding to hACE2. The residues involved in forming hydrogen bonds over 50% 325 
frequency were colored with their side chains, in which the residues with over 80% frequency 326 
hydrogen bonds were labeled and highlighted in grey squares (figure 8CF). From the analyses of 327 
figure 6-8, it is revealed that SARS-CoV uses more hydrogen bonds to bind with hACE2. 328 
However, more high frequency hydrogen bonds are formed in the SARS-CoV-2/hACE2 329 
complex. The key residues forming essential hydrogen bonds from SARS-CoV-2 are: ARG-121, 330 
TYR103, THR182 and TYR171. Such residues have significant contributions to the binding of 331 
SARS-CoV-2 and hACE2. Therefore, these residues have higher potential to be targets for future 332 
drug design.  333 

334 



335 
336 

Figure 6. Hydrogen bonds distributions at the binding interfaces. (A) Hydrogen bonds 337 
distribution (blue) on the interface of SARS-CoV RBD (orange); (B) Turn (A) for 90 degree for 338 
the top view, which is the interface that faces hACE2; (C) The hydrogen bonds distribution 339 
(pink) at the interface of hACE2 (grey) where SARS-CoV binds; (D) Hydrogen bonds 340 
distribution (blue) on the interface of SARS-CoV-2 RBD (orange); (E) Turn (D) for 90 degree 341 
for the top view, which is the interface that faces hACE2; (F) The hydrogen bonds distribution 342 
(pink) at the interface of hACE2 (grey) where SARS-CoV-2 binds.  343 

344 



345 
346 

Figure 7. Essential Hydrogen bonds at the interfaces between SARS-CoV/SARS-CoV-2 RBDs 347 
and hACE2 RBD with the frequency above 80%. 348 

349 
350 

351 
352 

Figure 8. Key residues involved in essential hydrogen bonds at the interfaces between SARS-353 
CoV/SARS-CoV-2 RBDs and hACE2 RBD with the frequency above 80%. (A) SARS-CoV S 354 
protein single chain binds to hACE2; (B) A closeup view of (A) at the binding interface; (C) 355 



Labelled key residues that form essential hydrogen bonds (frequency over 80%) at the interface; 356 
(D) SARS-CoV-2 S protein single chain binds to hACE2; (E) A closeup view of (D) at the 357 
binding interface; (F) Labelled key residues that form essential hydrogen bonds (frequency over 358 
80%) at the interface.  359 

360 

4 Limitation 361 

The limitation for this work is that we used relative folding energy and binding energy to analyze 362 
rather than the absolute values. Since our work is focused on the relative stability under the pH 363 
effects, the relative energy calculations do not affect our conclusions.  364 

365 

5 Conclusion 366 

In this work, we applied several computational methods, including MD simulations, DelPhi, 367 
DelPhiForce and DelPhiPKa to study the electrostatic features of S proteins for SARS-CoV and 368 
SARS-CoV-2. From our results, SARS-CoV and SARS-CoV-2 S protein RBDs both have 369 
positively charged interfaces, which provides attractive interactions to hACE2 as hACE2 has 370 
negatively charged surface.  371 

372 
Also, we revealed the pH-dependence calculations of relative folding energy for SARS-CoV and 373 
SARS-CoV-2 S protein RBDs. The best pH to stabilize SARS-CoV and SARS-CoV-2 S protein 374 
RBDs is in the range of 6 to 9. The study on pH dependence of binding energies revealed that the 375 
complex structures of hACE2 and S proteins of SARS-CoV/ SARS-CoV-2 are stable from pH 376 
7.5 to 10.5. Therefore, SARS-CoV and SARS-CoV-2 survive in a similar pH environment. The 377 
pH 7.5 to 9 is the best condition for both SARS-CoV and SARS-CoV-2 to best perform their 378 
functions to bind with hACE2.  379 

380 
Besides, based on 100ns MD simulations, we found that for the essential hydrogen bonds (>80% 381 
frequency), SARS-CoV-2 has four pairs while SARS-CoV has three pairs, which indicates the 382 
relatively more robust binding strategy of SARS-CoV-2 compared to SARS-CoV. The key 383 
residues forming essential hydrogen bonds from SARS-CoV-2 are ARG-121, TYR103, THR182 384 
and TYR171, which are potential drug targets for COVID-19 treatments. By using multiple 385 
computational approaches, the findings in this work shed light on the current and future 386 
treatments of COVID-19 and other coronaviruses-caused diseases. 387 

388 
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