Table 2.
Class | Metabolite | spec90 | Δspec90 | PΔs | AUC | ΔAUC | PΔA | |
---|---|---|---|---|---|---|---|---|
1 | DAG | DAG(16:1/18:1) | 0.79 | 0.19 | 0.04 | 0.92 | 0.06 | 0.02 |
2 | CE | CE(18:1) | 0.67 | 0.07 | 0.08 | 0.87 | 0.00 | 0.38 |
3 | CE | CE(17:0) | 0.69 | 0.09 | 0.11 | 0.88 | 0.01 | 0.31 |
4 | DAG | DAG(20:0/20:0) | 0.71 | 0.10 | 0.13 | 0.88 | 0.01 | 0.26 |
5 | TAG | TAG52:2-FA20:2 | 0.81 | 0.21 | 0.17 | 0.91 | 0.05 | 0.06 |
6 | TAG | TAG54:3-FA20:3 | 0.79 | 0.19 | 0.20 | 0.91 | 0.04 | 0.08 |
7 | PE | PE(P-16:0/20:3) | 0.74 | 0.14 | 0.20 | 0.88 | 0.01 | 0.32 |
8 | DAG | DAG(18:0/18:2) | 0.76 | 0.16 | 0.22 | 0.90 | 0.03 | 0.10 |
9 | TAG | TAG56:4-FA18:0 | 0.81 | 0.21 | 0.23 | 0.90 | 0.04 | 0.12 |
10 | CE | CE(20:0) | 0.67 | 0.07 | 0.23 | 0.87 | 0.01 | 0.38 |
Using data from the RP cohort, logistic regression was used to model the log odds of case status as a linear function of log2 CA125, age, and BMI, with or without a given lipid metabolite (M), after imputing missing values for each species to ½ the minimum concentration detected for that species across all participants. Receiver operating characteristic (ROC) curve analysis was conducted to estimate area under the curve (AUC) and specificity at 90% sensitivity (spec90) conferred by the joint model (with M) versus the base model (without M: AUC = 0.865, spec90 = 0.603). Lipids with Δspec90 > 0.05 were selected and ranked by corresponding P value (PΔs). Performance metrics listed for top 10 lipid species.