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ABSTRACT
In cervical cancer treatment, radiation therapy is selected based on the degree of tumor progression, and radiation
oncologists are required to delineate tumor contours. To reduce the burden on radiation oncologists, an automatic
segmentation of the tumor contours would prove useful. To the best of our knowledge, automatic tumor contour
segmentation has rarely been applied to cervical cancer treatment. In this study, diffusion-weighted images (DWI) of
98 patients with cervical cancer were acquired. We trained an automatic tumor contour segmentation model using
2D U-Net and 3D U-Net to investigate the possibility of applying such a model to clinical practice. A total of 98 cases
were employed for the training, and they were then predicted by swapping the training and test images. To predict
tumor contours, six prediction images were obtained after six training sessions for one case. The six images were
then summed and binarized to output a final image through automatic contour segmentation. For the evaluation, the
Dice similarity coefficient (DSC) and Hausdorff distance (HD) was applied to analyze the difference between tumor
contour delineation by radiation oncologists and the output image. The DSC ranged from 0.13 to 0.93 (median 0.83,
mean 0.77). The cases with DSC <0.65 included tumors with a maximum diameter < 40 mm and heterogeneous
intracavitary concentration due to necrosis. The HD ranged from 2.7 to 9.6 mm (median 4.7 mm). Thus, the study
confirmed that the tumor contours of cervical cancer can be automatically segmented with high accuracy.

Keywords: cervical cancer; automatic tumor contour segmentation; radiation therapy; diffusion-weighted imaging
(DWI); Dice similarity coefficient (DSC)

INTRODUCTION
In recent years, the development of artificial intelligence (AI) has made
it possible to utilize various technologies such as image recognition,
speech recognition, natural language processing and predictive pro-
cessing. AI has made significant advancements in the medical field,
where optimal medical care must be provided sustainably and effi-
ciently. AI has the potential to be utilized in diagnostic imaging support,
treatment support, drug development, nursing care, dementia support
and surgical support. In the field of radiotherapy, AI can be used for
automatic contour segmentation, treatment planning and selection of
individual treatments for patients based on treatment outcome predic-
tions.

Automatic contour segmentation is a technique wherein an object
of interest is imaged by separating it from the background [1]. This

technique is currently used not only in general applications, such as
in extracting images of people from backgrounds and separating land-
scapes, but also in medical applications. In the research stage, clinical
applications of this method have been reported for various cases, such
as classification of the inside of glioblastoma in the brain using deep
learning, classification of lung lobes in normal lungs, recognition of
upper and lower limb bones and extraction of gas in the intestinal tract
[2–6].

Cervical cancer can be treated by surgery, chemotherapy, radio-
therapy or a combination of the two, depending on the degree of
tumor progression [7]. When radiation therapy is the treatment of
choice, computed tomography (CT) and magnetic resonance imaging
(MRI) are used to perform three-dimensional conformal radiother-
apy (3D-CRT) planning. The 3D-CRT planning requires on average
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approximately one hour of work, with the contouring of the tumor and
organs at risk (OARs) being essential aspects [8, 9]. In clinical practice,
radiation oncologists perform contouring during treatment planning,
in addition to other tasks such as medical examinations and reviewing
receipts. There is an inter-observer variation in the contour delineation
during treatment planning; an inter-observer variation in the contour
delineation influence can be reduced using automatic contour segmen-
tation. In recent years, the burden of planning work has increased given
the high number of cancer patients associated with aging and the com-
plexity of planning work associated with high-precision technologies
employed for irradiation. AI technology can be applied to reduce inter-
observer variation while contouring—which is a time consuming and
laborious part of radiotherapy planning—and help improve medical
practice in this area.

Automatic contour segmentation for prophylactic clinical target
volume (CTV) and OARs has been clinically applied using atlas-based
and model-based segmentation methods, which are part of commer-
cial radiotherapy planning devices [10, 11]. However, it is difficult to
extract the gross tumor volume (GTV) that is ubiquitous in the human
body using these segmentation methods, with no clinical applications
reported thus far. On the other hand, deep learning has been applied to
various cases. For example, in gynecology, Wang et al. [12] reported
a study on automatic contour segmentation using CT images of the
CTV, including prophylactic lymph nodes in cervical cancer. However,
to the best of our knowledge, there is no clinical application involving
AI-based automatic contour segmentation for the GTV of cervical
cancer. The accuracy of GTV contour segmentation in radiotherapy is
another essential treatment planning factor because it directly affects
the treatment outcome. The automatic contour segmentation of cer-
vical cancer GTVs using deep learning would require GTV contour
data for training. Such contour data, which are essential for training,
are known to have individual differences depending on the personnel
performing the contour delineation [13]. If the contours of the GTV
of cervical cancer can be obtained with high accuracy and precision
using automated contour segmentation, the artificial influence of the
contours of the GTV in the institution can be eliminated. Eliminating
the contoured human influence will improve clinical outcomes by
reducing the variability in tumor control rates and OAR side effects
among patients. Moreover, if automated contour segmentation can be
used within and across institutions, it will provide helpful information
for treatment facilities in Japan and help to equalize treatment facilities
for cervical cancer. Furthermore, application of the findings of this
research to other parts of the body, as a pilot study, can be an excellent
AI research achievement.

MRI can show the boundaries of cancer more clearly than CT
because of the former’s higher intensity resolution. Groupe Européen
de Curiethérapie (European Society for Therapeutic Radiology and
Oncology) recommends MRI for contouring of the primary tumor
volume of cervical cancer in the radiation treatment planning [14].
We focus on diffusion-weighted imaging (DWI) as the first step of
our study of auto-contouring since DWI shows the most amount
of contrast between tumor and normal tissue in any MRI sequence.
Therefore we applied DWI, which is a form of MRI, with high
contrast between the GTV and the surrounding OARs to reduce the
individual differences in the contours. We collected DWIs of cervical
cancer patients undergoing radiotherapy and performed automatic

contour segmentation of the GTV using U-Net, a type of deep
learning [15, 16].

The learning model used in this study is a combined model of 3D
U-Net and 2D U-Net. The 3D U-Net has only one learning model for
each case since the number of cases in this study is 98. Therefore, the
3D U-Net model alone cannot be used with the learning model data
from many cases. Therefore, we combine 3D U-Net with 2D U-Net
to increase the number of target slices for the learning model data.
However, in the case of 2D U-Net, the data on continuity due to tumor
are lost, which is another reason to combine 3D U-Net with 2D U-
Net. Moreover, by using k-fold cross-validation for each model, we can
create unbiased teacher data. Furthermore, by using bagging, which
is one of the ensemblelearning methods, we can expect to output the
final region with high confidence from multiple predictions. To the best
of our knowledge, no extant study has attempted automatic contour
extraction for the GTV of cervical cancer using a combination of 3D U-
Net and 2D U-Net. In this study, we compared the results obtained by
bagging with the proposed multiple k-fold verification technique with
those of automatic contour segmentation obtained through the k-fold
verification of a single model. We evaluated the accuracy of the images
outputted by the automatic contour segmentation by comparing them
with the contour images obtained by manual contour delineation by
radiation oncologists. Thus, we investigated the possibility of applying
the automatic contour segmentation to clinical practice.

MATERIALS AND METHODS
Patients

The study design was approved by the Clinical Research Ethics Review
Committee of our hospital (Approval No. 3081). Ninety-eight patients
with stage IB to IVA cervical cancer (FIGO: International Federation
of Gynecology and Obstetrics, 2008) who underwent axial-section
DWI using MRI at our hospital between January 2005 and November
2013 were included. The patients provided written consent for the use
of imaging data for research purpose.

Outline of this study
The study performed automatic contour segmentation of primary cer-
vical cancer based on MRI DWI. First, we preprocessed the images
of the 98 cases acquired in the Digital Imaging and Communications
in Medicine (DICOM) format, including image formatting, raw data
conversion, image cropping and normalization. Next, we created a
learning model for the automatic contour segmentation. We used 2D
U-Net and 3D U-Net as the learning models. Six learning models were
created by combining the two U-Net models and three learning models
with k-fold cross-validation, and six prediction images were acquired
per case. The final output image is the model average of the six acquired
images. Fig. 1 shows the outline of this study.

Object images
The images of the object were axial sections of the DWI taken using
the SIGNA HDx 3 T and SIGNA EXCITE 1.5 T (General Electric
Medical Systems, Waukesha, WI, USA). The breakdown of the number
of cases for each MR scanner was as follows: 67 cases for SIGNA
HDx 3 T and 31 cases for SIGNA EXCITE 1.5 T. For the initial cases,
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Fig. 1. Outline of our study on automatic contour segmentation of cervical cancer sites based on diffusion-weighted MRI.

SIGNA EXCITE 1.5 T was used; when the equipment was upgraded,
SIGNA HDx 3 T was used. The imaging parameters were as follows: a
slice thickness range of 5–8 mm, b value of 800 s/mm2, matrix size of
256 × 256 and pixel size range of (1.25 × 1.25) to (1.6406 × 1.6406)
mm2. These images were extracted in the DICOM format for each case
and outputted in raw format with the image size (number of images
× height × width) set to 64 × 128 × 128 and 16-bit signed integer.
In this study, a radiation oncologist, having 31 years of experience,
contoured the GTV of cervical cancer and defined the tumor area
using the Eclipse (Varian Medical Systems, Inc., Palo Alto, CA, USA)
treatment planning system. During the contouring process, the GTV
was delineated by checking the three sections of the MRI DWI and
T2-weighted images for each case. The contoured image was created
by binarizing the tumor area information from the DICOM structure
format, i.e. the pixel values corresponding to the tumor and other areas
were set to 1 and 0, respectively. The contour image was outputted as
raw data in the same manner as the original DWI. This contour plotting
image is the same size as the DWI, with good correspondence between
geometric position and cross-section.

Image preprocessing
The DWI and raw data, which serve as contour information, were
cropped in terms of both the length and width to reduce the computa-
tional cost. Fig. 2 shows an overview of the cropping process. As shown,
the transverse DWI is rotated 90◦ to the left, and the input and output
images in the figure are the images taken before and after cropping,
respectively. The DWI and contouring images per case were resized to
64 × 64 × 64 using this process. The resized images were used for the
automatic contour segmentation. The conversion from the DICOM

format and DICOM structure format to raw format was performed
using MATLAB (2016b) (MathWorks, Natick, MA, USA).

The region of interest (ROI) for the cropping area was set by
adopting a range that would include the tumor in all cases. By setting
the ROI of the trimming region, the calculation cost for automatic
contour segmentation can be reduced.

For the resized DWI, equation (1) was used to normalize the pixel
values of each case. The normalization process was performed on 3D
voxel data for each case. Here, pixelin is the pixel value before process-
ing, pixelout is the pixel value of the image after processing, mean is the
mean value of the pixel values in the image data and σ is the standard
deviation:

Pixelout = pixelin − mean
σ

(1)

U-net structure
The automatic contour segmentation in the 2D U-Net was performed
on a per-image basis. We used one 2D image for the input images, each
DWI was resized to 64 × 64 in height and width in ‘Object images.’
Fig. 3 shows the structure of the 2D U-Net used in this study. The 2D
U-Net structure includes a convolutional layer [17], a reverse convo-
lutional layer [17], a rectified linear unit (ReLU) layer [18], a leaky
rectified linear unit (LeakyReLU) layer [19], a batch normalization
layer [20] and a dropout layer [21]. The left half of the U-Net structure
is called the reduced path, and the right half of the U-Net structure is
called the extended path, where the image is reduced and extended,
respectively.

We mainly performed operations using the batch-normalization
layer, LeakyReLU layer, and convolutional layer of the reduced path. In
the batch-normalization layer, the pixel values of the feature map were
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Fig. 2. Flow of raw DWI data and contour information trimmed horizontally and vertically to reduce the computational cost.

Fig. 3. Structure of the 2D U-Net model.

normalized for each batch. In the LeakyReLU layer, activations using
LeakyReLU were performed on the pixel values of the feature map. The
alpha value of the LeakyReLU was set to 0.2. The convolutional layer
is computed with a filter size of 4 × 4, stride 2, and padding (1, 1) such
that the size of the output is set to half the size of the input image in
terms of the height and width. In the reduction pass, the convolution
operation was repeated six times to reduce the output image size from
64 × 64 to 1 × 1.

The extended path uses a batch-normalization layer, an ReLU layer
and a reverse convolutional layer. In the expansion pass, after the nor-
malization process in the batch-normalization layer, we concatenated

the feature maps of the same size from the reduction pass and then
operated using ReLU. Thereafter, the output aspect size is expanded to
twice the input aspect size by computing it in the reverse convolution
layer with a filter size of 2 × 2 and a stride of 2. By repeating this inverse
convolution operation six times, the image size was reduced to 1 × 1 in
the reduction pass and was expanded to 64 × 64 pixels. A dropout layer
was set in the expansion pass to suppress overtraining. The ratio in the
dropout layer was set to 0.5. The final image with a size of 64 × 64 was
used as the predicted image for the 2D U-Net.

In 3D U-Net, an automatic contour segmentation was performed
on a voxel-by-voxel basis. The DWI were used as input for each case,
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Fig. 4. Outline of the selection process of training and test images for the three learning models (two types of 3-fold
cross-validation methods and 9-fold cross-validation methods).

with the image size set to 64 × 64 × 64 in object images—the 3D U-
Net structure is used as a 3D extension of the 2D U-Net structure
[15, 22]. The convolutional layer was computed with a filter size of
4 × 4 × 4, stride 2 and padding (1, 1, 1), so that the number of images
and the height and width of the output were each set to half the
input. The image size was reduced from 64 × 64 × 64 to 1 × 1 × 1 by
repeating the convolution operation six times in the reduction pass.

In the expansion pass, the number of images and the height and
width of the output were set to twice the input by computing with a
filter size of 4 × 4 × 4 and a stride of 2 in the inverse convolution layer.
In the expansion pass, the image size was increased from 1 × 1 × 1 to
64 × 64 × 64 by repeating the inverse convolution operation six times.
The final image with a size of 64 × 64 × 64 was used as the predicted
image for the 3D U-Net.

Learning method
The DWI and GTV contour images used for the automatic contour seg-
mentation were divided into training and testing images for subsequent
prediction, respectively, for each case. For DWI, the images used for
training were designated as training images and those used for testing
were designated as test images. The GTV contour image was used as the
correct answer image for the training and evaluation of the automatic
contour segmentation. The correct answer images were divided into
the correct answer images used for training, which corresponded to the
training target images. The correct answer images for testing were used
to evaluate the prediction accuracy after predicting the test images.

In the k-fold cross-validation, the used images are divided into k
groups, of which k-1 are used for training, and the remaining one
is used for training verification or prediction [23]. The k-fold cross-
validation method has an advantage in the small cohort size because
all the used images can be verified by swapping the training and ver-
ification images k times. In this study, we used a total of 98 cases.
The k-fold cross-validation method was used for training models to
predict all the 98 cases. Sixty-five cases were used as training images
and 33 cases were used as test images in the two training models using
the 9-fold cross-validation method. The two models with the 9-fold
cross-validation method used 65 training images and 33 test images,
whereas the two models with the 3-fold cross-validation method used
87 training images and 11 test images. The two models with the 3-
fold cross-validation method differ in their selection of the training and
test images. Fig. 4 shows an overview of the selection methods for the
training and test images employed by the three training models.

During training, the training image and the corresponding correct
image were augmented, and a quarter of them were used as images for
training validation. In this training model, the data were augmented
54 times by combining the translation of 2 pixels each in the vertical
and horizontal directions, rotation of 5◦ in the image center axis in the
clockwise–counterclockwise directions and left–right flipping. Fig. 5
shows an overview of the data augmentation in the training image.

After automatic contour learning, the image obtained by automatic
contour segmentation using the test image was regarded as the pre-
dicted image. The batch size was set to 70 epochs and 64 batch sizes
for the 3D U-Net, and five epochs and 64 batch sizes for the 2D U-
Net. For all the training models, Adam [24] was used as the optimizer,
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Fig. 5. Overview of data expansion for training images and corresponding correct images. In this training model, the data were
augmented 54 times by combining the translation of 2 pixels each in the vertical and horizontal directions, rotation of 5◦ in the
image center axis in the clockwise–counterclockwise directions and left–right flipping.

Fig. 6. Flow to final image output by model averaging. The threshold value was set to 3 for this process. That is, if the summed
values exceeded 3, the pixel was regarded as within gross tumor volume (GTV), and the total value is less than 3, the pixel was
regarded as the outside of GTV.

and the learning rate was set to 0.001. The computer used for the
automatic contour segmentation had a GeForce RTX 2080 graph-
ics processing unit (GPU) (NVIDIA Corporation, Santa Clara, CA,
USA). Python 3.6 was used as the programming language, and Keras
2.3.1 and TensorFlow-GTP 1.15 were used.

We used the Dice similarity coefficient (DSC):

Dice = 2 × |A ∩ B|
|A| + |B| (2)

as the objective function, where Dice denotes the DSC, and A and
B denote the predicted and correct image tumor regions, respectively

[25]. The DCS has been used in many automatic contour segmentation
studies [25]. For the 2D U-Net, the objective function was evaluated
using the 2D image data of one image unit of the predicted image and
the correct image. For the 3D U-Net, that was evaluated from the 3D
image data of one case of the predicted image and the correct image.
The DSC was also used as the index of the prediction accuracy for the
evaluation of the test data.

Model average
In this study, six predictive images per case were obtained by applying
three different learning models to both 2D U-Net and 3D U-Net for
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Fig. 7. Box plots results of the DSC comparison between single model and model average with three k-fold validation models for
2D U-Net and 3D U-Net.

the output images. Model averaging was performed on the six pre-
dicted images of the GTV contours obtained. Specifically, each pixel
was summed and thresholder. The threshold value was set to 3 for
this process. That is, if the summed values exceeded 3, the pixel was
regarded as within GTV, and the total value is less than 3, the pixel
was regarded as the outside of GTV. The image obtained by the model-
averaging process was used as the final output image. Fig. 6 shows the
process of outputting the final image by model averaging.

Single model
The output of the final image was obtained by three k-fold validation
models using 2D U-Net and 3D U-Net as a single model separated from
the model average, which was obtained by the proposed multiple k-fold
validation technique. Three k-fold validation models were used for 2D
U-Net and 3D U-Net: two models with 3-fold cross-validation and one
model with 9-fold cross-validation.

Evaluation method
As described above, to evaluate the agreement between the predicted
and correct images, we used the DSC. The DSC calculation for the final
output image and the correct answer image were performed on the 3D
image data per case.

Since an evaluation based on DSC alone would result in evaluation
bias, we used Hausdorff distance (HD) to evaluate the result. Any point
A on the correct image can reach any point B on the predicted image
by advancing along with the least HD, and any point B on the solution
image can reach any point A on the predicted image by advancing along
with the least HD, which is expressed by equation 3. HD [mm] was
calculated by multiplying the result obtained from the equation by the

pixel size [mm/pixels] for each case.

HD (A, B) [pixels] = maxa∈A (minb∈B (d (a, b))) (3)

Comparison between single model and model average
To evaluate the usefulness of the automatic contour segmentation of
cervical cancer by model averaging with the proposed multiple k-fold
validation technique, we used the DSC results of automatic contour
segmentation, which were obtained by three k-fold validation models
based on 2D U-Net and 3D U-Net.

RESULTS
The computational time required in the training was approximately 6 h
for training using the 2D U-Net and approximately 15 h for training
using the 3D U-Net. In the prediction step, it took approximately 5 min
including the summation up the six predicted images to obtain the final
output image after the binarization process.

Comparison by single model and model average
Fig. 7 shows the box plots of DSC comparison between the single
model with three k-fold validation models for 2D U-Net and 3D
U-Net and model average. The 25th percentile, median and 75th
percentile DSC of the model average are better than all single
model results. In addition, there were fewer outliers in the model
average.

Model average results
Fig. 8 shows the DSC and HD results of the model averages of the
output image and the correct answer image for all the 98 cases studied.
The first (left) vertical axis represents the DSC, whereas the second
(right) axis represents the HD [mm]. Tumor volume was defined as the
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Fig. 8. Results of the model averages of DSC and HD for the output and correct images for all 98 cases studied.

sum of the cross-sectional areas of the tumor at each cross-section, and
relative volume [%] was defined as the normalized value of 100% for
the case with the largest tumor volume (the maximum absolute volume
of the tumor is 3500 mm2 with a relative volume of 100%). The DSC
ranged from 0.13 to 0.93 (median 0.83, mean 0.77). Among these, 84
had DSC ≥ 0.65, and the remaining 14 had a DSC range of 0.13–0.64.
Fourteen cases included those with a small maximum cross-sectional
area of the tumor, retained uterine hematoma associated with the
tumor and heterogeneous intracavitary concentration due to necrosis.
A radiation oncologist made the diagnosis of a retained hematoma and
necrosis inside the uterus. Cases with a small maximum cross-sectional
area included those with a maximum diameter < 40 mm. Fig. 9 shows
the output images obtained. The values of HD obtained from this
study ranged from 2.7 to 9.6 mm, with a median of 4.7 mm and 90th
percentile of 6.8 mm.

DISCUSSION
This study incorporated k-fold cross-validation and model averaging
into the learning model for automatic contour segmentation [26]. To
the best of our knowledge, no study has applied automatic contour
segmentation with model averaging to a GTV training model. The
advantage of the k-fold cross-validation used in this study is that, as
mentioned earlier, the study images can be replaced and automatic
contour segmentation can be performed. Therefore, it could predict all
the 98 acquired cases. Because more cases can be handled as the final
output image, the overall trend of the learning model can be checked
and evaluated. Therefore, it can be extended to a more general model.
As shown in Fig. 7, the25th percentile, median and 75th percentile
DSC and variability of the model averages increased from all the single
model results. In addition, outliers and variability were reduced using
the model adopted in this study, unlike when using the single model.

Therefore, it is possible to achieve highly accurate automatic contour
segmentation by using multiple k-fold validation, and the usefulness of
the model developed in this study is demonstrated.

A disadvantage is that the number of training sessions for auto-
matic contour segmentation increases, ultimately increasing the train-
ing time. Ensemble learning is a method that uses multiple learning
models to produce an output while, bagging based on the random
samplings combines the results of multiple learning models in parallel.
From the results of multiple predictions, a region with a high degree of
confidence can be outputted, and the effects of random noise can be
removed. However, it is challenging to remove errors when the output
images of many of the training models used for bagging contain the
same errors. In this study, the colorectal region in the image shown in
Fig. 9(c) was misrecognized as a tumor region by many of the learning
models, resulting in a deviation from the correct image and a decrease
in the DSC. In the future, in addition to U-Net, we plan to build a
learning model that obtains predictive images from multiple networks,
such as SegNet [27] and PSPNet [28] and perform merging and
binarization.

The median DSC of the output images of all 98 cervical cancer cases
was 0.83. In a study on automatic contour segmentation using U-Net,
Wang et al. [12] used 100 CT images of 125 cervical cancer cases as
training images and the remaining 25 as test images. They reported
that the DSC of preventive CTV was approximately in the range of
0.8–0.9 (mean value: 0.86). Although it is necessary to consider the
differences in the images used and the segmentation regions, one of the
DSC characteristics of the output images in this study in comparison
with previous studies is that there are several cases whose values were
significantly lower than the average case. The cases with low DSCs
tend to have small tumor cross-sectional areas, uterine hematoma and
necrosis inside the tumor. For cases with a small tumor cross-sectional
area, a slight deviation or noise can cause a significant decrease in the
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Fig. 9. Example of the output image. On the left side is the original image. At the center is the correct image superimposed on the
original image. On the right side is the output image superimposed on the original image. The DSC and HD are 0.88 and 4.1 mm
for case (a), 0.91 and 5.4 mm for case (b), 0.13 and 6.1 mm for case (c), 0.41 and 9.6 mm for case (d) and 0.14 and 9.0 mm for case
(e). In case (d) there is severe necrosis in the tumor, and in case (e) there is a uterine retained blood cell.

DSC based on the calculation method employed [25]. Based on the
results of some of the output images from this study, there were several
cases where normal tissue near the uterus and stools in the colon were
misidentified as tumor areas. It was difficult to separate the hematoma
in the tumor area because its pixel value was close to the tumor area.
In the image shown in Fig. 9(e), a part of the retained hematoma was
misidentified as a tumor, and the tumor area was not recognized; the
DSC was 0.13, which is much lower than those in other cases. In the
case of necrosis, the pixel values of the necrotic areas inside the tumor
were not uniform, making it difficult to obtain accurate output in some
cases. In particular, the hollow region inside the necrosis was depicted
as a tumor in the correct image. However, it was not recognized as a
tumor in the output image because of the low pixel values. Although
there were some cases where the DSC was low due to certain factors,
50 out of the 98 outputs had a DSC accuracy ranging from 0.7 to 0.9.

The HDs reported by Wang et al. [12] ranged from 10 to 20 mm for
CTVs of cervical cancer, including the prophylactic lymph node region,
and approximately 3–10 mm for OARs of the bladder, femoral head,
colon and other regions. Because prophylactic CTVs are, by definition,
larger than GTVs and have different shapes, it is not easy to compare
the evaluation of HD for automatic contour segmentation in the same
way for both. Therefore, we do not compare the results of automatic
contour segmentation of the GTVs in this study with the HD results
of Wang et al. [12] for CTVs. The HD in this study showed that 90%
of all cases fell within the range of 2.7–6.8 mm; however, there were
nine cases with an HD value greater than 6.8 mm. The OARs of the
bladder, femoral head, colon, reported by Wang et al., were relatively
similar in size to the GTV in this study; therefore, we compared them
with the results of HD. The evaluation of HD in the automatic contour
segmentation accuracy of GTV obtained in this study was comparable

to the OAR of the bladder, femoral head and colon reported by Wang
et al [12].

Four of these nine cases had DSCs in the range of 0.73 to 0.86,
and the DSCs of these cases were highly consistent. These four cases
were characterized by misidentification of normal tissues such as those
of the uterus in the cross-section of the limbic area of the tumor
and insufficient segmentation of the limbic area of the tumor, which
resulted in low evaluation accuracy when considering HD. In contrast,
near the center of the tumor, the segmentation accuracy was high
and the evaluation accuracy when using DSC was high. Contrary to
the four cases described above, we found six cases in which the DSC
was below 0.65 and the HD match rate was higher than average. This
suggests that in cases with a small relative volume of tumor, a small
deviation in automatic contour segmentation caused a decrease in
DSC, which is a measure of overall agreement; however, this decrease
was not significant for HD, which evaluates the deviation in terms of
distance. In the learning model used in the study, an averaging model
was adopted to prioritize the removal of the effects caused by noise.
However, we believe that when the relative volume of the tumor is
small, the overlapping area in the averaging process becomes smaller,
resulting in automatic contour segmentation with a smaller volume.

Therefore, although some corrections, such as noise, are necessary,
this learning model can be useful in actual clinical practice as a tool
to support radiation oncologists’ contouring work while significantly
reducing their work time.

There are several limiting factors in this study. As the goal is to
achieve highly accurate automatic contour extraction using AI, the
number of contour extractors was limited to one to reduce the effect of
inter-contour variation in the correct image. However, as the contour
extraction performed by a single radiation oncologist may contain
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potential bias, future investigations will therefore implement contour
extraction by multiple radiation oncologists.

In previous studies on tumor prediction using U-Net, approxi-
mately 100–300 cases were used as training images for automatic con-
tour segmentation [2, 3, 12]. However, in this study, since cases were
collected from a single institution, only a total of 98 cases, including
training images and test images, were included. The numbers of cases
including necrosis and retained uterine hematoma were only 27 and
16, respectively. The number of cases used for training was even lower
when the training and test images were separated. To obtain more
versatile and accurate automatic contour segmentation, it is necessary
to collect and train many diverse cases, including these cases. Based
on the above considerations and the actual number of cases collected
for research in Japan, we believe that 200–300 cases should be used
for an automatic contour segmentation of cervical cancer GTVs in the
future. Multicenter studies can be considered to increase the number
of cases. However, in the case of a multicenter study, doctors other
than radiation oncologists may perform contouring work. In this case,
individual differences in GTV contouring may occur depending on
the person performing the work. In automatic contour segmentation,
the individual differences in contour delineation reduce the training
accuracy and affect the output [13].

In this study, we used DWI, which delineates tumor contours, to
prevent the influence of individual differences in contour delineation
in anticipation of future multicenter studies. In addition to the contour
mentioned above, it is important to note that various parameters, such
as MRI model, magnetic field strength and b-value, at the time of DWI
may change the images and affect the learning prediction. It is necessary
to set specific standards for imaging, such as those mentioned above.

This study evaluated the accuracy of automatic contour segmenta-
tion for cervical cancer tumors using 2D U-Net and 3D U-Net. The
results suggest that the use of AI for GTV contouring in 3D-CRT
planning has a high potential in assisting treatment planners.

CONFLICT OF INTEREST
The authors declare no conflicts of interest regarding the publication
of this paper.

PRESENTATION AT A CONFERENCE
A part of this work is submitted to the 34th annual meeting of Japan
High-precision Beam Radiotherapy Group.

CLINICAL TRIAL REGISTRATION NUMBER
The Institutional Review Board approved this retrospective study of
our institution (Approval No. 3081).

REFERENCES
1. Long J, Shelhamer E, Darrell T. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, IEEE Aerospace
and Electronic Systems Society: New York and USA. 2015, pp.
3431–40.

2. Hasan MSK, Linte CA. A modified U-Net convolutional net-
work featuring a nearest-neighbor re-sampling-based elastic-
transformation for brain tissue characterization and segmen-
tation. In Proceedings IEEE West N Y Image Signal Process
Workshop IEEE Aerospace and Electronic Systems Society: New
York and USA. 2018.

3. Baid U, Talbar S, Rane S et al. A novel approach for fully auto-
matic Intra-tumor segmentation with 3D U-Net architecture for
Gliomas. Front Comput Neurosci 2020;14:1–11.

4. Park J, Yun J, Kim N et al. Fully automated lung lobe segmentation
in volumetric chest CT with 3D U-net: validation with intra- and
extra-datasets. J Digit Imaging 2020;33:221–30.

5. Wakamatsu Y, Kamiya N, Zhou X et al. Semantic segmentation of
eight regions of upper and lower limb bones using 3D U-Net in
whole-body CT Images. Jpn J Radiol Technol 2020;76:1125–32.

6. Miura H, Ozawa S, Doi Y et al. Automatic gas detection in prostate
cancer patients during image-guided radiation therapy using a
deep convolutional neural network. Phys Med 2019;64:24–8.

7. National Cancer Center Information Service. https://ganjoho.jp/
public/cancer/cervix_uteri/treatment.html (22February 2021,
date last accessed).

8. Young AV, Wortham A, Wernick I et al. Atlas-based segmentation
improves consistency and decreases time required for contour-
ing postoperative endometrial cancer nodal volumes. Int J Radiat
Oncol Biol Phys 2011;79:943–7.

9. Ramadaan IS, Peick K, Hamilton DA et al. Validation of Varian’s
SmartAdapt® deformable image registration algorithm for clinical
application. Radiat Oncol 2015;10:73.

10. Walker GV, Awan M, Tao R et al. Prospective randomized double-
blind study of atlas-based organ-at-risk autosegmentation-assisted
radiation planning in head and neck cancer. Radiother Oncol
2014;112:321–5.

11. Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-
guided and controlled radiotherapy. Semin Radiat Oncol
2014;24:196–9.

12. Wang Z, Chang Y, Peng Z et al. Evaluation of deep learning-
based auto-segmentation algorithms for delineating clinical
target volume and organs at risk involving data for 125
cervical cancer patients. J Appl Clin Med Phys 2020;21:
272–9.

13. Chao KS, Bhide S, Chen H et al. Reduce in variation and improve
efficiency of target volume delineation by a computer-assisted sys-
tem using a deformable image registration approach. Int J Radiat
Oncol Biol Phys 2007;68:1512–21.

14. Pötter R, Tanderup K, Kirisits C et al. The EMBRACE
II study: the outcome and prospect of two decades of
evolution within the GEC-ESTRO GYN working group
and the EMBRACE studies. Clin Transl Radiat Oncol 2018;9:
48–60.

15. Ronneberger O, Fischer P, Brox T. U-Net: convolutional net-
works for biomedical image segmentation, MICCAI 2015. Part
III, LNCS 2015;9351:234–41.

16. Çiçek Ö, Abdulkadir A, Lienkamp SS et al. 3D U-Net: learn-
ing dense volumetric segmentation from sparse annotation. Proc.
Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2016;424–32.

https://ganjoho.jp/public/cancer/cervix_uteri/treatment.html 
https://ganjoho.jp/public/cancer/cervix_uteri/treatment.html 


944 • Y. Kano et al.

17. Dumoulin V, Visin F. A guide to convolution arithmetic for deep
learning arXivpreprint arXiv:1603.07285. 2016 January 12, 2018;
preprint: not peer reviewed.

18. Agarap AF. Deep learning using rectified linear units (ReLU)
arXiv preprint arXiv:1803.08375. 2018 February 08, 2019;
preprint: not peer reviewed.

19. Xu B, Wang N, Chen T et al. Empirical evaluation of
rectified activations in convolutional network arXiv preprint
arXiv:1505.00853. 2015 November 30, 2015; preprint: not peer
reviewed.

20. Ioffe S, Szegedy C. Batch normalization: accelerating
deep network training by reducing internal covariate shift
arXiv:1502.03167. 2015 March 03, 2015; preprint: not peer
reviewed.

21. Srivastava N, Hinton G, Krizhevsky A et al. Dropout: a simple
way to prevent neural networks from overfitting. JMLR 2014;
15:1929–58.

22. Ye R, Liu F, Zhang L. 3D depthwise convolution: reducing model
parameters in 3D vision tasks arXiv:1808.01556. 2018 August 07,
2018; preprint: not peer reviewed.

23. Blum A, Kalai A, Langford J. Beating the hold-out: bounds
for k-fold and progressive crossvalidation. In Proceedings of

the International Conference on Computational Learning Theory,
International Conference on Computational Learning Theory:
Nordkirchen, Germany 1999.

24. Kingma D, Ba J. Adam: a method for stochastic optimization. In
Proceedings of International Conference on Learning Representations,
3rd International Conference on Learning Representations: San
Diego, CA, USA. 2015.

25. Brock KK, Mutic S, McNutt TR et al. Use of image registration
and fusion algorithms and techniques in radiotherapy: Report of
the AAPM Radiation Therapy Committee Task Group No. 132.
Med Phys 2017;44:e43–76.

26. Breiman L. Bagging predictors. Machine Learning 1996a;26:
123–40.

27. Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep con-
volutional encoder-decoder architecture for image segmentation
arXiv:1511.00561. 2015 October 12, 2016; preprint: not peer
reviewed.

28. Zhao H, Shi J, Qi X et al. Pyramid scene parsing network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Conference on Computer Vision
and Pattern Recognition (CVPR): Honolulu, HI, USA.
2017.


	Automatic contour segmentation of cervical cancer using artificial intelligence
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS
	DISCUSSION
	CONFLICT OF INTEREST
	PRESENTATION AT A CONFERENCE
	CLINICAL TRIAL REGISTRATION NUMBER


