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Abstract

Tandem duplication gives rise to copy number variation and subsequent functional

novelty among genes as well as diversity between individuals in a species. Functional

novelty can result from either divergence in coding sequence or divergence in pat-

terns of gene transcriptional regulation. Here, we investigate conservation and diver-

gence of both gene sequence and gene regulation between the copies of the α-zein

gene family in maize inbreds B73 and W22. We used RNA-seq data generated from

developing, self-pollinated kernels at three developmental stages timed to coincide

with early and peak zein expression. The reference genome annotations for B73 and

W22 were modified to ensure accurate inclusion of their respective α-zein gene

models to accurately assess copy-specific expression. Expression analysis indicated

that although the total expression of α-zeins is higher in W22, the pattern of expres-

sion in both lines is conserved. Additional analysis of publicly available RNA-seq data

from a diverse population of maize inbreds also demonstrates variation in absolute

expression, but conservation of expression patterns across a wide range of maize

genotypes and α-zein haplotypes.
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1 | INTRODUCTION

Gene duplications introduce functional novelty to populations.

Duplication events may result in the subfunctionalization (the

compartmentalizing of a gene function), neofunctionalization (the

development of new gene function), or loss of genes (Conant &

Wolfe, 2008; Ohno, 2013). The genomes of many plant species,

including maize, contain tandem duplications. In B73, the reference

genome line of Zea mays, 11.3% of total genes, result from tandem

duplication events (Kono et al., 2018). Gene duplication is a poten-

tial source of evolutionary novelty. However, successful duplication

of a gene and associated regulatory sequence will often result in

increased gene product dosage. Different classes of genes appear to

encode dose sensitive and dose insensitive products, with dose

insensitive genes being more likely to be duplicated in tandem.

Duplication of dose sensitive genes will frequently be deleterious

with the haplotype containing the duplication being lost from the

population (Freeling, 2009). However, selection for increased gene

product abundance can produce positive selection for increased

copy number at either linked or unlinked positions in the genome,

as seen in the case of the evolution of glyphosate resistance in

water hemp (Gaines et al., 2010). In other cases, an initial mutation

of a neutral gene duplication can confer novel function. An example

of neofunctionalization by gene duplication is the independent
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evolution of venomous compounds in eukaryotes such as venomous

members of Arachnida (Wong & Belov, 2012).

One particular family of maize genes, the zeins, have been a focus

of long-term sustained research efforts due to their function as the

main storage proteins in maize kernels (Holding & Messing, 2013).

The zein proteins can be grouped into four families, α, β, γ, and

δ, based on amino acid sequence (Esen, 1987; Thompson &

Larkins, 1994). The α-zein family contains the highest number of

genes and is composed of two subfamilies defined by mobility on pro-

tein gels: the 19-kDa (Song & Messing, 2002) and 22-kDa (Song

et al., 2001) α-zein families. Although the β, γ, and δ families consist of

low copy numbers or single genes, the number of α-zein gene copies

ranges from 40 to 48 depending on the specific maize genotype

tested.

The products of the α-zein gene family are the most abundant

zein proteins, and the family has been studied extensively. Although

α-zeins make up 70% of endosperm protein content, they lack lysine

and tryptophan. The lack of lysine in α-zein, combined with the high

abundance of α-zein in maize kernels, has a major and detrimental

impact on the protein quality of maize grain (Holding, 2014).

Maize-based feed requires lysine supplementation when feeding

monogastric livestock, such as swine and poultry. In addition, lysine is

an essential amino acid in human diets. As a result, maize is not a

complete protein source for humans or livestock. The OPAQUE2

(O2) transcription factor regulates expression of the α-zein gene fam-

ily (Schmidt et al., 1990; Vicente-Carbajosa et al., 1997). o2 mutant

kernels have reduced zein accumulation resulting in a higher lysine

content, thus improved nutritional quality for animal consumption.

However, o2 mutants also have negative agronomic effects such as a

chalky kernels and disease susceptibility (Mertz et al., 1964). To cir-

cumvent the negative pleiotropy associated with o2 knock-outs,

researchers at CIMMYT developed modified o2 mutants known as

quality protein maize (QPM) (Bjarnason & Vasal, 1992). While still an

o2 mutant, QPM recovers the pleiotropically affected phenotypes via

modifier genes at loci unlinked to o2. The o2 modifiers result in

increased expression of the 27-kDa γ-zein gene, which is under rela-

tively lower transcriptional control by O2 (Geetha et al., 1991;

Holding et al., 2008; Wu et al., 2010). It was previously shown that

dosage of 27-kDa γ-zein protein is directly proportional to kernel

vitreousness (Liu et al., 2016). This variable expression dosage was

subsequently shown to result from 27-kDa γ-zein duplication and trip-

lication events, the latter of which was superior for modification (Liu

et al., 2019). The O2 transcription factor has minimal involvement in

27-kDa γ-zein gene expression, rather the ZmbZIP22 transcription

factor plays a larger role (Li et al., 2018). Of the two inbred lines used

in this study, B73 has the single copy 27-kDa allele, whereas W22 has

the duplicated allele. In addition to O2 and bZIP22, other transcription

factors regulate zein expression. Prolamine-box binding factor

1 (PBF1) binds to a conserved region 20 bp upstream of the O2

binding site and interacts with O2 to facilitate α-zein expression

(Vicente-Carbajosa et al., 1997). MADS47 also interacts with O2 to

facilitate α-zein expression (Qiao et al., 2016). PBF1 and MADS47

contribute to 27-kDa γ-zein expression as well (Li & Song, 2020),

interacting with the O2 homologs OHP1 and OHP2 (Xu &

Messing, 2008; Zhang et al., 2015).

Previous studies have compared the differential expression of

individual α-zeins between different maize inbreds at a single develop-

ment stage (Miclaus et al., 2011; Song & Messing, 2003) or observed

how zein expression changes over seed development in a single

inbred (Feng et al., 2009). Inbred line B73 has been shown to contain

40 α-zein gene copies (Song & Messing, 2003), whereas inbred W22

contains 43 (Dong et al., 2016) and inbred line BSSS53 contains

48 (Song et al., 2001; Song & Messing, 2002). Here, we sought to

track patterns of transcriptional regulation across developmental time

resolved at the level of individual α-zein gene copies. We employed

two maize inbreds, B73 and W22, which vary in α-zein content and

for which independent genome assemblies and gene model

annotations have been generated (Schnable et al., 2009; Springer

et al., 2018). The use of RNA-seq data made it feasible to track

expression of individual gene copies in each inbred over time. The

assembly and annotation of tandem α-zein repeats in published

genome assemblies was imperfect; however, it was possible to com-

pensate using previously published manually improved assemblies

and/or annotations for the α-zein regions in B73 and W22 (Dong

et al., 2016; Song et al., 2001; Song & Messing, 2002).

2 | MATERIALS AND METHODS

2.1 | Zein extraction and SDS-PAGE

Zeins were extracted according to the method of Wallace et al 1989

(Wallace et al., 1990). For developing kernel samples, single whole

kernels, previously flash frozen in liquid N2 and stored at �80�C,

were weighed and ground with a mortar and pestle in liquid N2 before

addition of extraction buffer. Loading was standardized based on ker-

nel fresh weight to account for minor differences in kernel weight.

For mature kernel samples, single whole kernels were pulverized to a

fine flour using a dental amalgamator, 50 mg (�0.1 mg) of flour was

extracted for B73 and W22, and a common volume was loaded. Zeins

are labeled as the size in kDa of each respective protein.

2.2 | Determining zein gene model sequence and
phylogenetic analysis

In order to compare the expression of homologous duplicates, the

α-zein genes from each inbred were matched with their respective

homolog. Prior research had identified the α-zein gene models for

W22 (Dong et al., 2016). In addition, sequenced and assembled BAC

contigs containing the B73 α-zein gene models had been previously

described (Song et al., 2001; Song & Messing, 2002). In order to

determine the α-zein sequences for B73, the W22 gene models were

aligned to the B73 BAC contigs with Bowtie2v2.3 (Langmead &

Salzberg, 2012). When conflicts occurred between alignments, the

conflict was resolved in favor of the alignment with the highest
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MAPQ score. In the case of conflicting alignments with equal MAPQ

scores, the assignment was determined by reported physical order of

zeins (Dong et al., 2016; Song et al., 2001; Song & Messing, 2002,

2003) as well as exclusivity of the respective B73 homolog being con-

sidered. Phylogenetic trees produced by MUSCLE (Edgar, 2004) were

used to determine the accuracy of homologous pair assignment.

2.3 | Simulation study

Simulated gene expression data were generated by generating 10 k

pseudofragments each of 50, 200, or 300 base pairs from each

annotated α-zein gene copy in W22. The combined set of

psuedofragments of a given length generated for all α-zein gene

copies were aligned to a reference containing the complete set of

α-zein gene copies from W22 using HISAT2 v2.1 (Kim et al., 2019) to

a reference containing the full set of W22 zein family members.

2.4 | Plant materials and RNA extraction

Maize seed of inbred lines B73 and W22 were planted at the

University of Nebraska—Lincoln East Campus research farm in

Lincoln, NE during the 2019 growing season. Plants were self-

pollinated, and developing seeds were harvested at 10, 18, and

24 days after pollination (DAP). RNA was extracted from three biolog-

ical replicates at each of the three timepoints. Each biological replicate

consisted of a pool of four randomly selected whole kernels from the

same ear.

2.5 | RNA-seq and qPCR

All 18 samples were subjected to Ribozero rRNA reduction and

converted to dual-indexed TruSeq stranded RNA-seq libraries. An

insert size of 300 bp was used. All libraries were combined in a single

pool and sequenced in 1 lane of a NovaSeq SP 2 � 150-bp run.

Expression differences of zeins and zein related genes were

validated with real-time quantitative polymerase chain reaction

(qRT-PCR). qRT-PCR was conducted on the same whole kernel RNA

samples used for RNA-seq and incorporated three biological

replicates and two technical replicates. cDNA synthesis and PCR

was conducted similar to a previous study (Holding et al., 2011).

Briefly, qRT-PCR primers are shown in Table S1. The cDNA was

synthesized from 1-μg samples of DNase 1-treated total RNA using

IScript plus (Bio-Rad, Hercules, CA), according to the manufacturer’s

instructions. The cDNAs were diluted tenfold in water and amplified

using iQ SYBR green super mix (Bio Rad, Hercules, CA) according

to the manufacturer’s instructions. A My iQ Real-time PCR

thermocycler (Bio Rad, Hercules, CA) was used with the following

program: 95�C for 5 min, followed by 45 cycles of 95�C (10 s) and

60�C (10 s) with 20�C per second ramp rates. Melting curves were

obtained by heating from 65�C to 95�C with a 0.1�C per second

ramp rate. Expression levels of genes were calculated as fold

changes in W22 relative to B73 � standard deviation at each time-

point using the maize gene Zm00001d018145 as an internal control

because it was found to have invariant Ct values between all

samples. For each gene tested, the average cycle threshold

(Ct) value was calculated for the three biological replicate ears of

each genotype. The relative expression at each timepoint was calcu-

lated using the following equation, where X = gene of interest,

C = control gene, W = average Ct of three B73 samples,

G = average Ct of W22 samples: 2[(WX-WC)-(GX-GC)].

2.6 | Read alignment and transcript quantification

RNA-seq reads were aligned to reference genomes of B73v5 and

W22v2 (Schnable et al., 2009; Springer et al., 2018) using HISAT2

v2.1 (Kim et al., 2019). Reads from B73 and W22 were each aligned

to their own reference genome and their counterparts’ reference.

Both reference genomes associated genomic feature files (GFF) were

modified in order to integrate the individual α-zein gene models with-

out encountering redundancy when quantifying reads. The modifica-

tion consisted of aligning α-zein gene models from B73 and W22 to

their respective reference, then removing features from the GFF that

fall within those alignments. For example, some α-zein genes are

described as multiple exons of a single gene in the reference annota-

tion. Twenty-seven genomic features were removed from the W22

GFF. Twenty-four genomic features were removed from the B73

GFF. The modified GFFs and HISAT2 output were used in conjunction

with StringTie2 v2.1 (Kovaka et al., 2019) to quantify transcript abun-

dance. Transcript abundance was calculated at the gene level, due to

the overall focus of this study being the α-zein gene family in particu-

lar, which lack introns.

2.7 | Cross-referencing of B73 v5 and W22 v2

In order to reduce mapping bias that may occur when comparing two

different genotypes to the same reference, equivalent gene models

were cross-referenced between the two genome assemblies. Version

4 of the B73 maize genome (Jiao et al., 2017) had previously been

cross-referenced to W22v2 by MaizeGDB. MaizeGDB has made

available chain files between B73v4 and B73v5. These chain files

were used in conjunction with CrossMap (Zhao et al., 2014) to create

a v5 GFF with v4 genome coordinates. The B73v5 and W22v2 GFF

files, cross-referenced to v4, were compared with one another.

Genomic features that contained 50% overlapped coordinates in both

references were deemed equivalent to one another.

2.8 | Differential expression analysis

In order to determine which genes were differentially expressed

between W22 and B73, DESeq2 was used (Love et al., 2014). In order
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to determine which genes were differentially expressed between the

two lines at each timepoint, B73 and W22 were compared by GLM at

each of 10, 18, and 24 DAP (y = genotype). Another model, defined

as y = genotype + DAP + genotype � DAP, was used to identify

genes that are divergent in temporal patterns between each line. This

group of genes is referred to below as differentially temporally

regulated.

2.9 | Deriving α-zein expression estimates from
NAM founder line RNA-seq data

The two maize inbreds included in this study represent only one

example of the diversity that exists in maize. A publicly available RNA

expression dataset was utilized to better assess the generality of the

data. The nested association mapping (NAM) founder lines are a set of

maize inbreds spanning a large amount of the diversity of the species

(Yu et al., 2008). Liu et al., 2020 extracted RNA from endosperm

tissue at 16 days after self-pollination (Liu et al., 2020). One hundred

and fifty-base pair cDNA fragments were sequenced via 75-bp paired

end reads. This read size is half the size of the current studies’ reads,

and therefore, alignment to the α-zein gene copies may be less

accurate than our B73 and W22 data. However, there are also many

more samples, thus averaging transcripts per million (TPM) values may

alleviate some of this limitation. Reads were aligned with HISAT2 and

quantified with StringTie2, in the same fashion as the previously

described W22 and B73 data. Zein TPM values for each of the NAM

founder samples have been uploaded to https://github.com/jhurst5/

W22/_B73/_RNAseq/_paper.

2.10 | α -Zein nomenclature

α -Zein genes are described using a nomenclature consistent

with Dong et al.’s annotation of the W22 α-zein gene family

(Dong et al., 2016). The gene name follows a pattern of z1 (Family)

(Sub-Family, if necessary)_(Individual Copy). For example, copy 3 of

subfamily 2 of family A would be z1A2_3.

2.11 | Code availability

Python scripts used for the simulation study and GFF modification as

well as RNAseq library information are available at https://github.

com/jhurst5/W22_B73_RNAseq_paper.

3 | RESULTS

3.1 | Zein extraction and SDS-PAGE

As a prelude to detailed examination of zein transcript abundance, zein

protein abundance in developing kernels at different stages of develop-

ment was semi-quantitatively analyzed using SDS-PAGE in both B73

and W22 (Figure 1). Little zein protein is observed at 10 DAP, although

W22 appears to be slightly advanced over B73 with respect to total

zein accumulation. This W22 advancement is more pronounced at

18 DAP, although the two zein profiles appear similar at 24 DAP and at

seed maturity. The 15-kDa β-zein, a transcriptional target of O2, and

the 10-kDa δ-zein appear more abundant in W22 at 24 DAP.

3.2 | Matching homologous duplicates and
alignment simulation

In order to directly compare homologous gene copies, α-zein dupli-

cates from W22 were matched to their B73 counterpart based on

amino acid alignment. Phylogenetic analysis showed that 35 of the

40 α-zein genes clustered with their expected counterpart, and zero

clustered with duplicate homologs of a non-expected duplicate

(Figure S1 through Figure S5). Of the five that did not cluster as

expected, three were on the same node. The two genes that were

divergent by phylogenetic analysis were z1B_8 and z1B_9, which

paired with each other in their respective genotypes (Figure S3).

Because z1B_8 and z1B_9 paired with each other in their respective

genotypes, our results indicate that they are more similar to their own

genotype than they are to homologs in the other’s genotype, poten-

tially as a result of gene conversion.

F I GU R E 1 SDS-PAGE analysis of zein
fraction from whole developing kernels [days after
pollination (DAP)] and mature kernels of B73 and
W22. Each lane for developing kernels represents
zeins from 3 mg fresh weight of frozen kernel.
Each lane for mature kernels represents zeins
from 1 mg of kernel flour
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An in-silico simulation approach was used to determine the feasi-

bility of uniquely assigning short-read cDNA sequences to α-zein gene

models. In many cases, simulated reads 50 bp in length could not be

confidently and uniquely assigned to a single gene copy of origin.

Ninety-eight percent of 200-bp fragments could be assigned accu-

rately, with all exceptions resulting from a confusion of z1A1_5, and

z1A1_7. For each gene copy, it was possible to correctly identify the

origin of 300-bp simulated reads. It was possible to correctly identify

the origin of 99% of 300-bp simulated reads, with all exceptions

resulting from confusion between a conserved region of z1A1_5 and

z1A1_7. Based on these results, a sequencing strategy was designed

employing 2 � 150 bp sequencing of RNA-seq libraries constructed

using an average fragment length of 300 bp.

3.3 | Read alignment and transcript quantification

When reads from B73 and W22 samples were aligned to their respec-

tive references, 93.76% of reads aligned (93.42% B73 reads; 94.09%

W22 reads). When the reads were aligned to the reference of the

other genotype, only 75.23% of reads aligned (75.18% B73 reads;

75.27% W22 reads) (Figure 2). To better account for this bias, a cross-

reference was made between B73v5 and W22v2 reference genomes.

Gene-level transcript abundance was calculated for each sample,

across alignments against both references as well as the cross-

referenced gene model set. The cross-referenced gene model set con-

tained 40% of the B73v5 gene models and 41% of the W22v2 gene

models, and consisted of 16,681 total gene models. There are 41,577

gene models in the B73 reference genome, 887 more than the 40,690

in the W22 reference. When B73 samples were aligned to the W22

reference, a 7.56% loss in gene model coverage was observed relative

to alignment to the B73 reference. For W22 samples, a 10.56% loss in

gene model coverage was observed when aligned to the B73 refer-

ence versus the W22 reference. Given the higher alignment rate of

the samples to their respective genomes, as well as the loss of gene

model coverage when aligned to the non-origin genome, it is expected

that the more accurate calculation of TPM values would occur when

using the genome of the sample origin. The drawback of employing

alignments to independent reference genomes is that transcriptional

regulation patterns of only the subset of 16,681 gene models that

could be confidently cross-referenced between the B73 and W22

genome assembly can be accurately compared. However, as 35 of

40 pairs α-zein genes could indeed be confidently assigned reciprocal

relationships between the B73 and W22 genomes, we chose to pro-

ceed with the strategy of quantifying gene expression by aligning

RNA-seq data from a given genetic background to the independent

genome assembly generated for that same genetic background.

3.4 | Differentially expressed genes at each
timepoint

Differential expression was tested at each timepoint sampled to

determine expression differences between the two lines. Across

10, 18, and 24 DAP, 7900 gene models were differentially expressed

between W22 and B73 at least once. This contains about 47% of the

cross referenced gene list. The two largest categories of differentially

expressed genes were shared by all three timepoints, 33% of those

differentially expressed genes were significant at all three timepoints.

A 25.7% of all DE genes were significant at 10 DAP exclusively

(Figure 3a). The number of genes differentially expressed

exclusively at a single timepoint decreased with each sampling.

Whereas the total number of differentially expressed genes decreased

with each timepoint, some genes not differentially expressed at one

timepoint became significant at the next timepoint (Figure 3b).

At 10 DAP, 13 α-zein genes were differentially expressed

between the two lines. Thirty-two α-zein genes were differentially

expressed at 18 DAP, and 23 α-zeins at 24 DAP. Eight α-zein genes

were differentially expressed at all three timepoints. The 19- and

22-kDa subfamilies were similiar in that only a subset of each group

was expressed (Figures 4 and 5). Despite detecting transcripts for

almost all of the α-zein genes, 50% of the total zein transcripts in B73

and W22 were related to five or six individual zein genes, respectively.

W22 consistently showed higher α-zein expression, which was con-

firmed by RT-PCR (Table S1).

3.5 | Differences in temporal patterns of zein
expression between W22 and B73

Genes that were determined statistically significant in a linear model

that included both genotype as well as all three timepoints and the

interaction term were defined as differentially temporally regulated.

Although several α-zein genes were differentially expressed at a given

timepoint, few were differentially temporally regulated. Five α-zein

genes were determined to be differentially temporally regulated:

z1B_3, z1B_5, z1C1_3, z1C1_13, and z1C1_20. All five differentially

temporally regulated genes are expressed at low levels relative to the

F I GU R E 2 Effect of reference genome on alignment and
transcript quantification. The percentage of RNA-seq reads aligned by
HISAT2 differs depending on the reference genome used
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highly expressed α-zeins. Interestingly, z1C1_14 is one of the most

highly expressed α-zeins in W22, yet is one of the α-zein duplicates

not found in B73.

3.6 | β -, γ-, and δ-zein expression, opaque2, and
other prolamin related genes

Consistent with the overlaps in transcriptional control of the entire

zein gene family, differential expression of other zein genes (Figure 6)

and their related transcription factors was also observed (Figure 7).

The 27-kDa γ-zein is differentially expressed at 10 and 18 DAP. This

is expected, due to the duplication allele present in W22. At 18 DAP,

the 50-kDa γ-zein was significantly upregulated in W22. The 15-kDa

β-zein was differentially expressed at all timepoints. The expression

differences of these non-α-zeins were valiated by qRT-PCR

(Table S1).

Transcription factor O2, involved in transcription of the zein fam-

ily, was differentially temporally regulated, as well as differentially

expressed at 10 and 24 DAP. O2 was upregulated in W22. PBF1, also

essential to α-zein expression, is upregulated in W22. The differences

in O2 and PBF1 expression were validated by RT-PCR (Table S1).

F I GU R E 3 Summary of genes differentially
expressed between B73 and W22. (a) Overlap of
differentially expressed genes among the three
sampling points. (b) Changes in upregulated genes
over the course of kernel development. Blue
represents genes upregulated in B73. Red
indicates genes upregulated in W22. Gray
indicates genes not differentially expressed

F I GU R E 4 Comparison of transcripts per million (TPM) values of the 19-kDa α-zeins between W22 and B73. The bars in this graph are
overlapped, not stacked. DAP, days after pollination
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3.7 | Comparison of zein expression in a diverse
population

As the two lines compared here, B73 and W22, are only a small repre-

sentation of maize diversity, publicly available expression data from

the NAM founder lines was utilized to get a broader representation of

α-zein expression. To generalize the transcript quantification, the

mean TPM across 43 biological reps from 23 NAM genotypes was

taken. After aligning to both the B73 and W22 reference genomes,

the Spearman correlation of the NAM mean and both W22 and B73

was .9 (p < .0001) (Figure 8). This indicates that the pattern of zein

expression is conserved across diverse maize inbreds.

F I GU R E 5 Comparison of transcripts per million (TPM) values of the 22-kDa α-zeins between W22 and B73. The bars in this graph are
overlapped, not stacked. DAP, days after pollination

F I GU R E 6 Expression
patterns of the non-α-zeins in the
cross referenced gene set. Values
are in transcripts per million

(TPM). Error bars are standard
deviation. Blue represents B73.
Red indicates W22

F I GU R E 7 Expression patterns of three key transcription factors that regulate zein gene expression, O2, PBF1, and bZIP22. Values are in
TPM. Error bars are standard deviation. Blue represents B73. Red indicates W22
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In order to account for differences in insert size between the

current RNAseq data and the published NAM data, the B73 and W22

reads were trimmed to 75 bp and aligned to their respective genomes.

Comparisons of zein TPM between trimmed and nontrimmed libraries

showed a Pearson coeffecient >.98 (p < .0001) indicating the

read-length had minor effect on measured expression values. This is

contrast to the previous simulation study, likely due to similar gene

models being expressed at low levels. In addition to read length differ-

ences between the two datasets, differences in library size were also

present. To determine the effect that library size has on zein transcript

quantification, the correlation between library size and measured zein

expression was taken. Ten gene models were shown to have a statisti-

cally significant Pearson correlation. However, when running the

analysis without the library size-affected zein gene models, the

resulting Spearman correlation stayed significant and .91 for both B73

and W22.

4 | DISCUSSION

Duplicated genes serve as the primary source of new genetic

material that can develop new functions in an organism (Moore &

Purugganan, 2003). The present study looked into the expression of a

tandem duplicate gene family in two separate, recently diverged hap-

lotypes. These results indicate disparity in the overall expression of

both homologous α-zein gene copies between two maize lines, as well

as among copies in a single genotype. Also observed was variation in

other zeins and in the transcription factors related to prolamin gene

F I GU R E 8 The correlation of α-zein
expression between the nested association
mapping (NAM) founder lines and B73 or W22.
Each point represents a single α-zein gene copy.
(a) B73, Spearman’s R = .91 (p < .001) (b) W22,
Spearman’s R = .90 (p < .001)
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expression. Finally, α-zein expression in a diverse pool of maize

inbreds indicate that that although absolute levels of expression vary,

the general pattern is largely conserved.

4.1 | RNA-seq confirms a wide variety of α-zein
gene copies are expressed

Early studies had utilized PCR-based approaches to measure tran-

script abundance of α-zein genes, which may have been unsuitable for

detecting the gene copies with lower amounts of transcripts. Dong

et al. (2016) utilized an endosperm capillary-sequencing dataset (Lai

et al., 2004) to observe which gene copies were expressed. This analy-

sis revealed that a wider range of α-zein gene copies are expressed

than was previously thought.

A challenge to using modern short-read RNA-seq for separating

transcripts in a highly similar gene family is whether an aligner is able

to accurately assign sequencing reads to the correct gene copy. By

aligning a set of simulated read sets to the entire gene family, it was

determined that reads could be aligned accurately if a larger read

length (300 bp) was used. Short-read RNA-seq confirms a wide vari-

ety of α-zein gene copies are expressed. However, most of the tran-

scripts come from a subset of gene copies in both haplotypes.

4.2 | Disparity between protein profile and
transcript abundance

Based solely on transcript abundance, it may be expected that W22

grain contains a different zein protein profile from B73. However,

SDS-PAGE performed on the two inbreds does not suggest drastic

differences at the protein level. Although the protein profile

was consistent with transcript abundance at 10 and 18 DAP, by

24 DAP, it appeared that B73 and W22 were not much different in

protein profile despite the higher zein expression in W22. A similiar

zein protein abundance was also observed in fully mature kernels.

This indicates substantial transcriptional plasticity exists in zein

accumulation and that processes that occur during or after transla-

tion, as opposed to during transcription, is the limiting factor of

kernel protein content.

Prior work has identified genes that play post-transcriptional roles

in zein accumulation or indirectly affect zein accumulation. For exam-

ple, mutations in members of the arogenate dehydrogenase gene fam-

ily, involved in amino acid synthesis, reduce translation of α-zein

protein (Holding et al., 2010). Mutants of an acyl-CoA synthetase-like

gene display reduced α-zein accumulation, likely due to posttransla-

tional modification (Miclaus, Wu, et al., 2011). The Floury1 protein

regulates zein localization in the protein body. Mutants of the Fl1

gene have altered accumulation of 22-kDa α-zeins, whereby they are

not deposited in their usual ring on the outer portion of the protein

body (Holding et al., 2007). Opaque10 encodes a protein that interacts

with the 22-kDa α-zeins during formation of the PB. Mutants of O10

ultimately alter the localization of 22-kDa α-zeins (Yao et al., 2016).

4.3 | W22 expresses α-zeins at a higher level than
does B73 yet the temporal pattern is mostly
conserved

Inbred line W22 expressed α-zeins at a higher TPM than did B73. In

each of the four α-zein subfamilies, there appeared to be a few domi-

nant copies responsible for most of the transcripts. One of these,

z1C1_14, only exists in the W22 haplotype, indicating it is a recently

duplicated gene copy that is responsible for a substantial amount of

α-zein expression. Interestingly, z1C_14 appears to be a copy of

z1C_4, another highly expressed zein.

The pattern of expression is similar in both lines. At 10 DAP, only

low levels of expression were seen in both lines. This is a contrast to

the overall set of common gene models, where over a third of all dif-

ferentially expressed genes were differentially expressed at 10 DAP.

This may indicate that α-zein expression is more conserved than other

genes; however, as genes with low levels of expression (such as trun-

cated zein copies) produce less transcripts and thus have less statisti-

cal power to detect differences, this cannot be inferred from the

current results. Major differences in α-zein transcript abundance were

not apparent until after the first sampling date. Five α-zein genes

were identified as differentially temporally regulated. One other,

z1C1_14, is a dominantly expressed duplicate that is only present in

W22 and not in B73. Of the five differentially temporally regulated

α-zeins found in both haplotypes, none are the top 50% highest

expressed α-zeins.

Based on these observations, it appears that expression of the

dominant α-zeins is conserved. The exception is z1C1_14, one of

the most highly expressed zeins in W22 though not found in the B73

haplotype. Additionally, comparing B73 and W22 to patterns of α-zein

expression in diverse maize appears to confirm these results.

4.4 | Differences in transcription factor regulation
may drive the difference in overall expression

Although the general pattern and dominant gene copies is largely

conserved, the overall zein expression was higher in W22. A dispar-

ity is also observed in the levels of gene expression among prolamin

related transcription factors (Figure 7). Three transcription factors

interact to express the α-zein gene family: O2, MADS47, and PBF1

(Li & Song, 2020). Although no difference was seen in MADS47

expression, O2 and PBF1 were both differentially temporally regu-

lated. Whereas O2 is expressed at roughly 50% higher TPM in W22

compared with B73, PBF1 is expressed at nearly 2000% higher

TPM in W22. Given the substantial increase in PBF1 over O2

between each line, it may indicate that PBF1 is a significant limiting

factor in zein expression.

A similar observation is made when comparing expression of the

27-kDa γ-zein between B73 and W22 (Figure 6). W22 had statistically

significant higher expression of the 27-kDa γ-zein, which is not sur-

prising given that W22 allele is duplicated. However, ZmbZIP22 is also

expressed at much higher levels in W22. ZmbZIP22 is involved, along
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with O2 and PBF1, in regulation of the 27-kDa γ-zein. Although the

duplication of the 27-kDa γ-zein locus has widely been assumed to be

responsible for the higher expression of γ-zein in the W22 back-

ground, the results presented here suggest the potential of role for

increased expression of upstream regulators contributing to the

higher expression of γ-zein observed in W22.

5 | CONCLUSION

Previous studies have shown that multiple α-zein haplotypes exist in

maize (Dong et al., 2016; Song & Messing, 2003), their expression

changes over time (Feng et al., 2009), and that the expression patterns

are similar between two inbreds (Miclaus et al., 2011). In this study,

an additional inbred, W22, was directly compared with B73 using

RNA-seq reads mapped to their precise haplotype at different devel-

opmental stages. The current study found that although temporal reg-

ulation of the dominant α-zeins does not change between the two

inbred lines, W22 has greater expression of both the α-zein gene fam-

ily and the transcription factors responsible for regulating their

expression.

As the number of inbred lines with assembled genomes grows

(Liu et al., 2020), future steps will be to index the zein haplotypes in

diverse maize genomes. After identifying the α-zein haplotype diver-

sity, a broader observation of gene copy divergence will become

accessible.
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