Skip to main content
. 2021 Sep 14;17(9):e10079. doi: 10.15252/msb.202010079

Table 1.

SARS‐CoV‐2 minimal models used in Fig 1.

Statea 3D Model Identityb Eb Sourcec
NSP1 (NTR) https://aquaria.ws/P0DTC1/7k3n 100% SARS‐CoV‐2 (Semper et al, 2021)
NSP1 (CTR) hijacks 40S, 43S, and 80S https://aquaria.ws/P0DTC1/6zlw 100% SARS‐CoV‐2 (Thoms et al, 2020)
NSP3 (Ubl1) https://aquaria.ws/P0DTC1/2gri 77% 10–21 SARS‐CoV (Serrano et al, 2007)
NSP3 (macro) https://aquaria.ws/P0DTC1/6woj 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6WOJ/pdb)
NSP3 (macro) mimics GDAP2 https://aquaria.ws/P0DTC1/4uml 20% 10–15 Human (https://doi.org/10.2210/pdb4UML/pdb)
NSP3 (macro) mimics MACROD1 https://aquaria.ws/P0DTC1/2x47 27% 10–160 Human (Chen et al, 2011)
NSP3 (macro) mimics MACROD2 https://aquaria.ws/P0DTC1/4iqy 28% 10–16 Human (Jankevicius et al, 2013)
NSP3 (macro) mimics MACROH2A1 https://aquaria.ws/P0DTC1/1zr5 19% 10–13 Human (Kustatscher et al, 2005)
NSP3 (macro) mimics MACROH2A2 https://aquaria.ws/P0DTC1/2xd7 18% 10–12 Human (https://doi.org/10.2210/pdb2XD7/pdb)
NSP3 (macro) mimics PARP9 https://aquaria.ws/P0DTC1/5ail 23% 10–10 Human (https://doi.org/10.2210/pdb5AIL/pdb)
NSP3 (macro) mimics PARP14 https://aquaria.ws/P0DTC1/3q6z 29% 10–12 Human (Forst et al, 2013)
NSP3 (SUD‐N) + PAIP1 https://aquaria.ws/P0DTC1/6yxj 69% 10–21 SARS‐CoV (https://doi.org/10.2210/pdb6XYJ/pdb)
NSP3 (SUD‐M) https://aquaria.ws/P0DTC1/2jzd 80% 10–23 SARS‐CoV (Chatterjee et al, 2009)
NSP3 (SUD‐C) https://aquaria.ws/P0DTC1/2kqw 78% 10–34 SARS‐CoV (Johnson et al, 2010a)
NSP3 (PL‐Pro) https://aquaria.ws/P0DTC1/6wrh 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6WRH/pdb)
NSP3 (PL‐Pro) hijacks ISG15 https://aquaria.ws/P0DTC1/6xa9 100% SARS‐CoV‐2 (Klemm et al, 2020)
NSP3 (PL‐Pro) hijacks UBA52 https://aquaria.ws/P0DTC1/4rf0 31% 10–31 MERS‐CoV (Bailey‐Elkin et al, 2014)
NSP3 (PL‐Pro) hijacks UBB https://aquaria.ws/P0DTC1/4wur 30% 10–30 MERS‐CoV (Lei & Hilgenfeld, 2016)
NSP3 (PL‐Pro) hijacks UBC https://aquaria.ws/P0DTC1/4mm3 83% 10–30 SARS‐CoV (Ratia et al, 2014)
NSP3 (PL‐Pro) hijacks UBB + UBC https://aquaria.ws/P0DTC1/5e6j 82% 10–30 SARS‐CoV (Békés et al, 2016)
NSP3 (PL‐Pro) binds inhibitory peptides https://aquaria.ws/P0DTC1/6wuu 99% SARS‐CoV‐2 (Rut et al, 2020)
NSP3 (NAB) https://aquaria.ws/P0DTC1/2k87 82% 10–19 SARS‐CoV (Serrano et al, 2009)
NSP4 https://aquaria.ws/P0DTC1/3vcb 59% 10–37 MHV‐A59 (Xu et al, 2009)
NSP4 binds NSP5 https://aquaria.ws/P0DTC1/7kvg/C 99% SARS‐CoV‐2 (https://doi.org/10.2210/pdb7KVG/pdb)
NSP5 (3CL‐Pro) https://aquaria.ws/P0DTC1/5rfa 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb5RFA/pdb)
NSP5 binds inhibitory peptides https://aquaria.ws/P0DTC1/7bqy 100% SARS‐CoV‐2 (Jin et al, 2020)
NSP7 https://aquaria.ws/P0DTC1/2kys 98% 10–33 SARS‐CoV (Johnson et al, 2010b)
NSP7 binds HLA https://aquaria.ws/P0DTC1/7lg3 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb7LG3/pdb)
NSP7 binds NSP8 https://aquaria.ws/P0DTC1/6m5i/A 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6M5I/pdb)
NSP7 binds NSP8 + NSP12 https://aquaria.ws/P0DTC1/6m71/C 100% SARS‐CoV‐2 (Gao et al, 2020)
NSP7 binds NSP8 + NSP12 + vRNA https://aquaria.ws/P0DTC1/7aap/C 100% SARS‐CoV‐2 (Naydenova et al, 2021)
NSP7 binds NSP8 + NSP12 + vRNA + NSP13 https://aquaria.ws/P0DTC1/6xez/C 95% SARS‐CoV‐2 (Chen et al, 2020)
NSP7 binds NSP8 + NSP12 + vRNA + NSP13 + NSP9 https://aquaria.ws/P0DTC1/7cyq/C 100% SARS‐CoV‐2 (Yan et al, 2021a)
NSP8 https://aquaria.ws/P0DTC1/6m5i/B 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6M5I/pdb)
NSP8 binds NSP12 https://aquaria.ws/P0DTC1/6nus/B 97% 10–76 SARS‐CoV (Kirchdoerfer & Ward, 2019)
NSP8 binds HLA https://aquaria.ws/P0DTC1/7lg2 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb7LG2/pdb)
NSP9 https://aquaria.ws/P0DTC1/6wxd 98% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6WXD/pdb)
NSP10 https://aquaria.ws/P0DTC1/2g9t 96% 10–72 SARS‐CoV (Su et al, 2006)
NSP10 binds NSP14 https://aquaria.ws/P0DTC1/5c8u/A 95% 10–68 SARS‐CoV (Ma et al, 2015)
NSP10 binds NSP16 https://aquaria.ws/P0DTC1/6w61/B 99% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6W61/pdb)
NSP12 https://aquaria.ws/P0DTD1/6yyt 100% SARS‐CoV‐2 (Hillen et al, 2020)
NSP12 binds vRNA https://aquaria.ws/P0DTD1/3koa 15% 10–14 FMDV (Ferrer‐Orta et al, 2010)
NSP13 https://aquaria.ws/P0DTD1/6jyt 100% 10–63 SARS‐CoV (Jia et al, 2019)
NSP13 mimics AQR https://aquaria.ws/P0DTD1/4pj3 20% 10–27 Human (De et al, 2015)
NSP13 mimics AQR + spliceosome https://aquaria.ws/P0DTD1/6id0 20% 10–27 Human (Zhang et al, 2019)
NSP13 mimics UPF1 https://aquaria.ws/P0DTD1/2wjy 24% 10–53 Human (Clerici et al, 2009)
NSP13 mimics UPF1 + UPF2 https://aquaria.ws/P0DTD1/2wjv 24% 10–53 Human (Clerici et al, 2009)
NSP13 mimics IGHMBP2 https://aquaria.ws/P0DTD1/4b3f 25% 10–32 Human (Lim et al, 2012)
NSP13 mimics IGHMBP2 + hRNA https://aquaria.ws/P0DTD1/4b3g 26% 10–31 Human (Lim et al, 2012)
NSP13 binds vRNA https://aquaria.ws/P0DTD1/4n0o 21% 10–19 Arterivirus (Deng et al, 2014)
NSP13 binds HLA https://aquaria.ws/P0DTD1/7lfz 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb7LFZ/pdb)
NSP14 https://aquaria.ws/P0DTD1/5nfy 95% 10–142 SARS‐CoV (Ferron et al, 2018)
NSP15 https://aquaria.ws/P0DTD1/6wxc 97% SARS‐CoV‐2 (Kim et al, 2021)
NSP15 binds vRNA https://aquaria.ws/P0DTD1/6x1b 97% SARS‐CoV‐2 (Kim et al, 2021)
NSP16 https://aquaria.ws/P0DTD1/6w4h 99% SARS‐CoV‐2 (Rosas‐Lemus et al, 2020)
NSP16 mimics CMTR1 https://aquaria.ws/P0DTD1/4n49 14% 10–11 Human (Smietanski et al, 2014)
NSP16 mimics MRM2 https://aquaria.ws/P0DTD1/2nyu 22% 10–11 Human (https://doi.org/10.2210/pdb2NYU/pdb)
NSP16 mimics CMTR1 + hRNA https://aquaria.ws/P0DTD1/4n48 14% 10–11 Human (Smietanski et al, 2014
NSP16 binds vRNA + NSP10 https://aquaria.ws/P0DTD1/7jyy/A 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb7JYY/pdb)
Spike glycoprotein https://aquaria.ws/P0DTC2/6vxx 97% SARS‐CoV‐2 (Walls et al, 2020)
Spike glycoprotein hijacks ACE2 https://aquaria.ws/P0DTC2/7ct5 100% SARS‐CoV‐2 (Guo et al, 2021)
Spike glycoprotein hijacks ACE2 + SLC6A19 https://aquaria.ws/P0DTC2/6m17 100% SARS‐CoV‐2 (Yan et al, 2020)
Spike glycoprotein hijacks NRP1 https://aquaria.ws/P0DTC2/7jjc 100% SARS‐CoV‐2 (Daly et al, 2020)
Spike glycoprotein binds antibodies https://aquaria.ws/P0DTC2/6w41 100% SARS‐CoV‐2 (Yuan et al, 2020a)
Spike glycoprotein binds inhibitory peptides https://aquaria.ws/P0DTC2/5zvm 88% 10–33 SARS‐CoV (Xia et al, 2019)
ORF3a https://aquaria.ws/P0DTC3/6xdc 100% SARS‐CoV‐2 (preprint: Kern et al, 2020)
ORF3a binds APOA1 https://aquaria.ws/P0DTC3/7kjr 100% SARS‐CoV‐2 (preprint: Kern et al, 2020)
Envelope protein https://aquaria.ws/P0DTC4/5x29 85% 10–35 SARS‐CoV (Surya et al, 2018)
Envelope protein hijacks MPP5 https://aquaria.ws/P0DTC4/7m4r 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb7M4R/pdb)
ORF7a https://aquaria.ws/P0DTC7/6w37 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6W37/pdb)
ORF8 https://aquaria.ws/P0DTC8/7jtl 99% SARS‐CoV‐2 (Flower et al, 2021)
Nucleocapsid protein (NTD) https://aquaria.ws/P0DTC9/6yi3 96% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6YI3/pdb)
Nucleocapsid protein (NTD) binds antibody https://aquaria.ws/P0DTC9/7cr5 100% SARS‐CoV‐2 (Daly et al, 2020)
Nucleocapsid protein (NTD) binds HLA https://aquaria.ws/P0DTC9/7kgr 100% SARS‐CoV‐2 (Szeto et al, 2021)
Nucleocapsid protein (NTD) binds vRNA https://aquaria.ws/P0DTC9/7acs 96% SARS‐CoV‐2 (Dinesh et al, 2020)
Nucleocapsid protein (CTD) https://aquaria.ws/P0DTC9/6yun 98% SARS‐CoV‐2 (Zinzula et al, 2021)
Nucleocapsid protein (CTD) binds HLA https://aquaria.ws/P0DTC9/7kgo 100% SARS‐CoV‐2 (Szeto et al, 2021)
ORF9b https://aquaria.ws/P0DTD2/6z4u 100% SARS‐CoV‐2 (https://doi.org/10.2210/pdb6Z4U/pdb)
ORF9b hijacks TOMM7 https://aquaria.ws/P0DTD2/7kdt 100% SARS‐CoV‐2 (Gordon et al, 2020)
a

This table lists 79 distinct protein structural states found in this work, each with details on one representative minimal model, indicated using an Aquaria identifier. The indicated models correspond to those used to generate representative images and hyperlinks in the online version of Fig 1.

b

In cases showing potential mimicry, the identity scores and E‐values indicate similarity between the SARS‐CoV‐2 viral protein and a human protein.

c

Indicates the organism used to derive the corresponding PDB structure as well as the publication associated with the PDB entry; where no publication is yet available, the DOI for the dataset is given. Organism names are abbreviated as follows: FMDV (foot‐and‐mouth disease virus); MERS‐CoV (Middle East respiratory syndrome coronavirus); MHV‐A59 (mouse hepatitis virus A59); SARS‐CoV (severe acute respiratory syndrome coronavirus); SARS‐CoV‐2 (severe acute respiratory syndrome coronavirus 2).