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Abstract

Background: Zebrafish is a popular animal model used for high-throughput screening of chemical hazards,
however, investigations of transcriptomic mechanisms of toxicity are still needed. Here, our goal was to identify
genes and biological pathways that Aryl Hydrocarbon Receptor 2 (AHR2) Activators and flame retardant chemicals
(FRCs) alter in developing zebrafish. Taking advantage of a compendium of phenotypically-anchored RNA
sequencing data collected from 48-h post fertilization (hpf) zebrafish, we inferred a co-expression network that
grouped genes based on their transcriptional response.

Results: Genes responding to the FRCs and AHR2 Activators localized to distinct regions of the network, with FRCs
inducing a broader response related to neurobehavior. AHR2 Activators centered in one region related to chemical
stress responses. We also discovered several highly co-expressed genes in this module, including cyp1a, and we
subsequently show that these genes are definitively within the AHR2 signaling pathway. Systematic removal of the
two chemical types from the data, and analysis of network changes identified neurogenesis associated with FRCs,
and regulation of vascular development associated with both chemical classes. We also identified highly connected
genes responding specifically to each class that are potential biomarkers of exposure.

Conclusions: Overall, we created the first zebrafish chemical-specific gene co-expression network illuminating how
chemicals alter the transcriptome relative to each other. In addition to our conclusions regarding FRCs and AHR2
Activators, our network can be leveraged by other studies investigating chemical mechanisms of toxicity.

Keywords: Zebrafish, Gene co-expression, Transcriptomics, Aryl hydrocarbon receptor, Flame retardant chemicals,
Network, Development

Background
With advancements in technology and medical science,
various types of chemicals (xenobiotics, drugs, etc) are
being applied to both the natural environment and hu-
man body. However, the majority of these chemicals are
yet to be evaluated for their potential to cause adverse

health effects. High-throughput (HTP) in vitro assays are
popular methods used to estimate chemical toxicity and
identify underlying molecular events [1]. Despite their
application to determine whether a chemical class may
be toxic, we still lack adequate knowledge of the mecha-
nisms of toxicity of many chemicals [2] preventing us
from connecting assay measurements to phenotypes.
Animal models can be a more translatable way of reveal-
ing chemical hazard potential to humans, with both me-
tabolism and integrated tissue systems. However, high
cost and low throughput are often barriers to testing
across a large chemical space. These barriers have been
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serious deficiencies in advancing chemical risk assess-
ment, and thus a HTP and accurate prediction of which
chemicals may be toxic is an essential next step in the
evaluation of chemical safety [3].
A popular HTP animal model, zebrafish (D. rerio),

by virtue of its rapid development [4] and high
physiological and genetic similarity to humans [5], is
being leveraged to identify chemical hazards [6] and
to determine the molecular signaling events that pre-
cede adverse phenotypic outcomes [7]. One of the
main -omics techniques that is applied to zebrafish is
transcriptomics, which uses RNA sequencing analysis
to provide an unbiased snapshot of gene expression
changes associated with a particular chemical expos-
ure [8]. Numerous transcriptomic studies in both de-
veloping and adult zebrafish leave no doubt that
diverse chemical exposures often result in diverse
gene expression changes [9–11]. Such studies have
led to the discovery of transcripts important for the
manifestation of higher level toxicity effects [12, 13]
and to a large relational database of chemical-
zebrafish transcriptome responses.
Much of this transcriptomic data collected from devel-

oping zebrafish has examined toxicants from a variety of
different classes. Polycyclic aromatic hydrocarbons
(PAHs), are a large class of ubiquitous environmental
pollutants, and human exposure has been linked to car-
diovascular disease, respiratory problems, carcinogen-
icity, and developmental deficits [14, 15]. The molecular
initiating event of many PAHs is the aryl hydrocarbon
receptor (AHR), and PAHs have been shown to bind all
three orthologs of AHR in zebrafish, with AHR2 being
the predominant receptor required for toxicity [16].
2,3,7,8-Tetrachlorodibenzodioxin (TCDD) is a haloge-
nated aromatic hydrocarbon and the best-characterized
and most potent AHR2 ligand. It is widely used as a ca-
nonical xenobiotic ligand to study responses down-
stream of AHR activation [17]. Many studies have
focused on the roles of the cytochrome P450 (CYP) me-
tabolizing enzymes in PAH toxicity [18, 19], while other
molecular signaling events downstream of the AHR re-
main largely unknown. Flame-retardant chemicals
(FRCs) are a diverse class of chemicals including poly-
brominated diphenyl ethers (PBDEs) and organophos-
phate flame retardants (OPFRs), commonly applied in
an additive manner to manufactured materials such as
furniture, clothing, and electronics, and often found to
leach into surrounding environments and human bodies
[20, 21]. FRCs have been associated with neurodevelop-
mental effects [22], altered reproductive and thyroid
function [23], and impacts on the immune and endo-
crine systems [24]. While many research groups have
conducted transcriptomic studies in developing zebrafish
exposed to PAHs and TCDD, only a limited number of

FRC whole-genome expression studies have been pub-
lished [25–28].
The standard use of transcriptomic data, and the ap-

proach used in many of the studies above, is to compare
gene expression levels between a control and a chemical
treatment. However, with a transcriptomic database of
sufficient size [29], it is possible to perform a meta-
analysis of sequencing data and construct a network of
genes based on co-expression values of each gene pair
[30, 31]. Co-expressed genes show a similar pattern of
either direct or inverse co-expression across multiple
conditions or biological replicates. Network analysis can
be used to reveal important chemical targets in a bio-
logical system [32–34], and to indicate processes that
are critical for or distinctive between responses to cer-
tain classes of chemicals [35, 36]. Network approaches
also have a distinct advantage over standard control/
condition comparisons in that data from several different
studies, even those conducted under variable conditions,
can be collected and integrated to produce a model
formed from a compendium of many datasets. Network
analysis can also highlight genes, pathways, and pro-
cesses that may change their expression in a significant
but subtle manner (less than the 2-fold cutoff normally
applied to control/condition comparisons), expanding
our ability to identify processes related to chemical class
or phenotypic response. A whole transcriptome ap-
proach is thus far more efficient and informative to de-
tect subtle but potentially important shifts in gene
expression patterns that describe interactions between
processes impacted by chemical exposure [37]. Such pat-
terns would be missed by smaller scale targeted expres-
sion studies for specific biomarkers. Based on the large
amount of transcriptomic data collected for zebrafish ex-
posed to a variety of different chemicals, we are now
able to apply these network approaches to zebrafish re-
sponse to chemicals.
While phenotypic outcomes of many chemicals have

been studied in zebrafish [6, 38], we still do not know
many of the transcriptomic pathways and processes that
are induced by these chemicals early in response. Add-
itionally, we do not know to what degree different clas-
ses of chemicals may overlap in their transcriptomic
response compared to their potentially similar pheno-
typic responses. To fill this gap in knowledge, the pri-
mary goal of our study was to utilize network analyses
to discover both common and distinctive biological
pathways that polycyclic aromatic hydrocarbons (PAHs),
2,3,7,8-Tetrachlorodibenzodioxin (TCDD), and several
flame retardant chemicals (FRCs), alter in developing
zebrafish. These chemicals were selected in part because
transcriptomic data reflecting a similar experiment de-
sign was available. However, these treatments not only
encompassed chemicals with unknown and likely
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distinct modes of action, but also included those with
the same or similar modes of action, allowing us to com-
pare the individually altered transcriptomes in a single
network. Networks were inferred using a random forest
method [31] applied to the compendium of both new
and previously published zebrafish transcriptomic data.
We identified specific portions of this network that rep-
resented tightly co-expressed genes enriched for certain
pathways and responding to certain chemical types. The
network approach used here enabled discovery of novel
genes in the AHR2 signaling pathway as well as several
genes and pathways associated with FRC exposure. The
inference of this gene co-expression network for zebra-
fish not only provides novel insight into the transcrip-
tional responses to chemical exposure, but can serve as a
resource for other studies focused on transcriptomic co-
ordination, predictive toxicology, and identification of
chemical-specific biomarkers and processes of interest in
this model organism.

Results
Characterization of full dataset
In this study, we sought to identify molecular signatures
and biological pathways following exposures to a diverse
group of chemicals. This was done using a large array of
transcriptomic data combined with the first chemical-
focused gene co-expression network inferred using zeb-
rafish. Transcriptomic data from 48-h post fertilization

(hpf) zebrafish included several previously published
studies [7, 39–41] in addition to new unpublished data-
sets. Details on these datasets including the exposure
concentrations and the number of differentially
expressed genes (DEGs) are included in Supplementary
Table S1. To gain an overview of transcriptomic patterns
from the 33 unique chemical treatments, we first used
Ward’s method of hierarchical clustering of the 10,346
genes that responded significantly to at least a subset of
chemicals. We observed that the treatments naturally
clustered into six groups based on log2FC values (Fig. 1).
Clusters 1 (orange) and 2 (red) represented all the flame
retardant chemicals (FRCs) examined and were also
more similar to each other than to other clusters in the
dataset, showing that the overall transcriptomic response
to FRCs is distinct from PAH and TCDD responses. In
addition to differences in transcriptomic response based
on chemical type, we also found that when we compared
our clustering to our lab’s previous studies investigating
the morphology and behavior effects caused by FRC ex-
posure [6, 41], there were differences between transcrip-
tomic response and developmental toxicity phenotype.
For example, IPP exposure caused both morphology and
behavior malformations at 120 hpf and yet, it clustered
here with the relatively benign FRCs. While several
PAHs in Cluster 3 (black) (9-MA, 3-NF, 2-MN, 1,5-
DMN, Carbazole, and Anthracene) were previously de-
termined to cause modest or no phenotypic responses in

Fig. 1 Heatmap of 48-hpf zebrafish transcriptomic response to ten Flame Retardant Chemical (FRC), 22 Polycyclic Aromatic Hydrocarbon (PAH),
and 1 TCDD treatment. Average log2 fold change (log2FC) values for each chemical treatment (y-axis) are shown, with yellow indicating higher
expression and blue indicating lower expression compared to each chemical’s DMSO control. Both genes and treatments are grouped via
hierarchical clustering with clusters of treatments (Clusters 1–6) indicated by colors on the left
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developing zebrafish, other chemicals in this cluster in-
cluding 4 h-CPdefP, 7,12-B [a] AQ, and TCDD are
known to cause overt developmental toxicity [7, 38, 42].
These observations demonstrated that transcriptional re-
sponse and phenotypic outcome are often not strongly
correlated. Clusters 4 and 5 consisted of the remaining
PAHs in this study. We noted that within all the PAHs
and TCDD, the chemicals known to predominantly acti-
vate AHR2 (“AHR Activators”, see Supplementary Table
S1) did not group together. The hierarchical clustering
analysis presented here indicates that chemical type is
the strongest driver of overall transcriptomic response,
rather than known mechanism of action or magnitude
of developmental toxicity within the chemical classes.

Global analysis of full co-expression network
We next inferred a co-expression network using the ran-
dom forest method, GENIE3 [31], and grouped genes
into one of 23 different modules ranging in size from 14
to 425 genes. We chose to use GENIE3 as we have
found it be highly accurate in our previous work [43], as
well as in other studies that directly compare gene co-

expression network methods [29]. While these previous
studies were in bacterial or human systems, we used
similar methods like those we already published [43] to
compare GENIE3 to other gene co-expression methods
using the zebrafish data in this study. Again, GENIE3
was found to be the most accurate and provided the
most comprehensive network with our data (data not
shown). Figure 2 shows the location of the 12 largest
modules calculated based on the number of genes they
each contain. Table 1 provides module information in-
cluding number of genes in each module and colors for
each module used in Fig. 2. We carried out functional
enrichment on all modules using g:Profiler [44] and
found that several modules were significantly enriched
(adjusted p-value < 0.05, function is overrepresented in a
module compared to the whole genome) for one or
more processes (Supplementary Table S2). Table 1
shows the pathway(s) that had the highest functional en-
richments for each module, and demonstrates the diver-
sity in functional enrichment across all the modules,
with some examples of the most enriched functions
highlighted in Fig. 2. Many of the functions are related

Fig. 2 Gene co-expression network of 48-hpf zebrafish transcriptomic response to chemicals. Small colored circles represent zebrafish genes
(nodes), and lines (edges) connecting the genes represent instances of high co-expression. Nodes are colored by the module they belong to
with processes highly enriched in four example modules indicated
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to disruptions to normal development such as nervous
system (Modules 1 and 5) and axon development (Mod-
ule 10), in addition to processes associated with ion
transporter activities (Modules 2 and 6) and gene ex-
pression (Modules 4 and 14).
To visualize how the network groups genes that re-

spond to particular classes of chemicals, we overlaid
gene expression changes from response to either the
FRCs or the AHR2 Activators onto the full co-
expression network. Overlaying gene expression changes
was done by determining how many FRCs or AHR2 Ac-
tivator chemicals each gene responded to (i.e. whether it
was a DEG with p-value < 0.05 and log2FC > 1, for a
given chemical treatment). Genes in the network were
then sized and colored by how many chemicals they
responded to with larger green nodes responding to
more chemical treatments and smaller brown nodes
responding to fewer chemical treatments. Genes
responding to the FRCs were spread across several mod-
ules (Modules 2, 7, and 10, with some being in Modules
1 and 6, Fig. 3A). Functional enrichment showed that
Module 1 was strongly enriched for development pro-
cesses including multicellular, neuronal, and anatomical

structure development. Module 2 was enriched for
transport mechanisms including metal ion, cation and
calcium transporters among others, similar to Module 6,
which was enriched for sodium channel complexes
(Table 1). In addition, Module 7 was enriched for regula-
tion of non-motile cilium assembly, while Module 10
was enriched for axon development. The large number
of FRC-responsive genes making up these modules
strongly suggests that response to the FRCs in our data-
set centers around these pathways and processes. In
contrast to the FRCs, genes responding to the AHR2 Ac-
tivators were very tightly localized to one location in the
network (Module 13, Fig. 3B). Module 13 was specific-
ally enriched for known chemical response pathways
such as xenobiotic phase I and phase II metabolism, and
oxidative stress, consistent with AHR functions [45, 46].
This module was also very tightly clustered (there were
a number of edges linking genes within Module 13), in-
dicating that the genes in this module are highly co-
expressed relative to each other and are strongly regu-
lated in response to AHR2 Activator exposure. Genes
within Module 13 include known zebrafish AHR2-
regulated genes upon PAH exposure including, cyp1a,

Table 1 Top GO term enrichment of genes in 12 largest modules of the full gene co-expression network
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cyp1c1, ahr2, ahrra, ahrrb, and foxq1a [39]. Thus, our
chemical subgroup-specific module analysis shows that
gene responses to FRCs are more spread across the net-
work and are associated with several different pathways
and developmental processes, while AHR2 Activators in-
duce a much more focused and tightly controlled re-
sponse consisting specifically of pathways linked to
xenobiotic exposure. The remaining modules did not
contain large numbers of genes that responded to either
the FRCs or the AHR2 Activators and were likely driven
by the remaining chemicals in our dataset. Several were
enriched for general housekeeping processes in 48-hpf
zebrafish [4], including neuronal (Module 5) and eye
(Module 8) development (Table 1).

Centrality analysis
While hierarchical clustering and module analysis can
give broad overviews of pathway responses and modules
associated with specific chemicals, networks also contain
valuable gene-specific co-expression information. Cen-
trality analysis of network genes based on betweenness
or degree can reveal which genes are critical within the
transcriptomic map of a biological system [34]. Genes of
high degree are those with several connections to other
genes and are termed “hubs”. Genes of high betweenness
are those that occupy positions as links between larger
clusters of genes, and are termed “bottlenecks”.

Supplementary Figure S1A shows the top 20 genes from
the network with the highest betweenness centrality
values. The gene with the highest betweenness was apc,
which codes for a regulator of the WNT signaling path-
way [47] (Table 2). Bottleneck genes were also found
throughout the network and in several different modules
suggesting that such genes do not respond in a particu-
larly strong way to any specific chemical or chemical
class, but are associated either with general chemical re-
sponse or with zebrafish housekeeping processes.
Genes of highest degree centrality (top 20) showed dif-

ferent location patterns within the network compared to
genes of highest betweenness (Supplementary Figure
S1B). Table 3 shows that the highest degree genes were
primarily grouped into Module 13 (12 genes) which was
enriched for AHR2 Activators, and Module 2 (7 genes),
which was enriched for the FRCs. There was one add-
itional high degree gene from the list of the top 20 that
was found in Module 4. This degree centrality analysis
shows that the most highly connected genes within our
network are those specifically responding to AHR2 Acti-
vator or FRC exposure, in contrast to high betweenness
genes which are more distributed throughout the net-
work. The genes with the highest degree were cyp1a and
sult6b, both previously shown to be highly induced by
PAHs [39]. While the cyps, gstp1, and ahrra are all in-
volved in response to xenobiotic stimulus and

Fig. 3 Network response to FRCs and AHR2 Activators. A Nodes are colored and sized by the number of FRCs they respond to (defined as an
FDR p-value < 0.05 when comparing chemical to DMSO control, no fold-change cutoff). Larger green nodes respond to a more chemicals, smaller
brown nodes respond to fewer chemicals. General location of modules highly associated with FRCs (Modules 1, 2, 6, 7, and 10) are indicated. B
Same as (A) but showing response to AHR2 Activators. Location of Module 13, highly associated with the AHR2 Activators, is indicated
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metabolism, the functional roles of the other high degree
genes are less clear. SlincR and foxq1a appear to have
roles in TCDD-induced toxicity in zebrafish; slincR was
recently identified as a long noncoding RNA that is in-
volved in the regulation of sox9b, one of the most highly
depressed transcripts upon TCDD exposure [12], and
foxq1a was induced by TCDD in the jaw primordium of
developing zebrafish [13]. It is unknown what the spe-
cific roles of gng13b, wfikkn1, and mxd1 are as they re-
late to chemical exposure; however, identification of
these hub genes is suggestive of their potentially import-
ant roles in mediating toxicity of some of the chemicals
in our network. We also highlight three high degree
Module 2 genes that might be involved in pathways as-
sociated with disruption of neurodevelopment due to
FRC exposure: srgap3, involved in neurodevelopmental
processes as reviewed previously [48], tfe3a, an import-
ant transcription factor [49], and cacna1da, associated
with calcium ion transport in neuronal signaling [50,
51]. Other high degree genes associated with FRC expos-
ure are presented in Table 4, and the high centrality
within their respective modules are suggestive of their
potentially important roles in the toxicity of FRCs in-
cluded in this study. We also examined which of these
high degree genes responded to specific chemical treat-
ments and found that many of them responded only to a

subset of conditions (with p-value < 0.05, and log2FC >
1) (Supplementary Table S3). Therefore, while there was
some overlap between centrality analysis and more fun-
damental pairwise comparisons to identify genes critical
to chemical response, our network approach also found
several new genes that would not have been found by
simply comparing individual treatments to control. We
also identified two genes of high degree that were com-
pletely uncharacterized, NA_732 (Module 13) and NA_
146 (Module 2) (Entrez GeneIDs: 108182865 and
100,332,468 respectively). Identification of these unchar-
acterized genes in our analysis alongside genes that are
strongly linked to AHR2 Activator or FRC exposure sug-
gests that they should be investigated in future analyses.

Analysis of module 13
Module 13 of the network is a critical AHR2 activation
module associated with xenobiotic metabolism path-
ways. Centered within Module 13 is cyp1a, a well-
studied biomarker gene of AHR exposure that is in-
volved in detoxification of xenobiotics. This gene has
been previously shown to be highly induced by TCDD
and several PAHs [39, 52], has a high degree centrality
in our network, and also responds to a large number of
treatments (20/33 chemical treatments induce cyp1a).
We extracted a subnetwork of the second order network

Table 2 Top 20 genes with highest betweenness in network

Gene Function Betweenness Degree Indegreea Outdegreeb ModuleID

apc APC regulator of WNT signaling pathway 0.27773144 9 3 6 1

ubl3b ubiquitin-like 3b 0.24156245 7 2 5 1

mapk7 mitogen-activated protein kinase 7 0.2232999 5 4 1 1

gata3 GATA binding protein 3 0.18845384 8 3 5 1

tfap2a transcription factor AP-2 alpha 0.07893617 11 4 7 1

kdm5ba lysine (K)-specific demethylase 5Ba 0.07449596 3 1 2 1

sf3b6 splicing factor 3b, subunit 6 0.0737653 3 2 1 1

pfklb phosphofructokinase, liver b 0.07243628 5 1 4 1

kremen1 kringle containing transmembrane protein 1 0.22835862 14 4 10 2

cacna1da calcium channel, voltage-dependent, L type, alpha 1D subunit, a 0.10295178 30 5 25 2

tfe3a transcription factor binding to IGHM enhancer 3a 0.07136245 30 11 19 2

rusc1 RUN and SH3 domain containing 1 0.06976945 6 2 4 3

ppp2r3a protein phosphatase 2, regulatory subunit B″, alpha 0.25738053 4 2 2 4

bhlhe23 basic helix-loop-helix family, member e23 0.14505353 19 8 11 4

fosl2 fos-like antigen 2 0.10537935 18 7 11 4

sgsm1a small G protein signaling modulator 1a 0.07037308 11 5 6 7

ccdc43 coiled-coil domain containing 43 0.09757468 3 2 1 9

dimt1l DIM1 dimethyladenosine transferase 1-like (S. cerevisiae) 0.08821623 5 3 2 9

g3bp1 GTPase activating protein (SH3 domain) binding protein 1 0.07623317 7 4 3 11

prr12a proline rich 12a 0.09610248 7 7 0 12
a Number of edges emanating to the gene
b Number of edges emanating from the gene
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neighborhood for cyp1a (Fig. 4A), which is defined as
any gene connected directly to cyp1a through an edge,
or any gene connected to a gene that is connected dir-
ectly to cyp1a. Within this subnetwork, there were 55
genes (including cyp1a), and 339 edges. Several of the
high degree Module 13 genes (Table 3) were present in
cyp1a’s first degree network neighborhood including
sult6b1, cyp1c1, cyp1c2, gstp1, wfikkn1, foxq1a, ahrra,
and slincR (Fig. 4B). Additionally, clcn2c, fgf7, and tiparp
were also part of this group. The second order network
neighborhood of cyp1a consisted of ahr2, gstp1, and
dhrs13la, and several other genes that have not been
previously associated with PAH bioactivity in zebrafish.
For genes in this group that have not yet been found to
have a role in this response including edn1, plvapa, and
thsb1b, and several uncharacterized genes, our analysis
suggests that their roles as they relate to PAH exposure
should be investigated in future studies.
We next examined the transcriptomic response of the

first order network neighborhood genes of cyp1a to each
chemical in our dataset. Figure 5 shows that while ex-
pression of cyp1a was increased with exposure to the
AHR2 Activators, the expression of cyp1a’s network
neighborhood genes showed some variability across all

the chemicals, including the AHR2 Activators. Of note,
even though cyp1a was induced by some of the other
PAHs that were included in this study, the expression
profiles of many of the first order network neighborhood
genes were noticeably different from the AHR2 Activa-
tors (Fig. 5). Additionally, while most of the genes had
increased expression with exposure to the AHR2 Activa-
tors, one exception was clcn2, which was decreased in its
expression. However, among the other chemicals, the
expression pattern of clcn2 was similar to other genes in
the cyp1a network neighborhood. Genes generally also
showed a much stronger increase in response to the
AHR2 Activators compared to their decrease in response
to other chemicals. This was especially true for cyp1a,
cyp1c1, and cyp1c2, showing that AHR2 Activators
strongly induce increased expression of these genes. As
with centrality analysis, we also compared how many
chemical treatments each gene in the network neighbor-
hood of cyp1a responded to (Supplementary Table S4).
We found that many genes responded to only a few
chemical treatments. Thus, their role in chemical re-
sponse can be missed by fundamental treatment to con-
trol comparisons and only emerges when we take a
network approach with a compendium of data as

Table 3 Top 20 genes with highest degree in network

Gene Function Betweenness Degree Indegreea Outdegreeb ModuleID

cyp1a cytochrome P450, family 1, subfamily A 0.00235481 41 17 24 13

sult6b1 sulfotransferase family, cytosolic, 6b, member 1 0.01272304 41 12 29 13

cyp1c1 cytochrome P450, family 1, subfamily C, polypeptide 1 0.00466897 39 17 22 13

cyp1c2 cytochrome P450, family 1, subfamily C, polypeptide 2 0.00712917 37 19 18 13

gng13b guanine nucleotide binding protein (G protein), gamma 13b 0.03415074 37 12 25 4

gstp1 glutathione S-transferase pi 1 0.06511838 34 14 20 13

wfikkn1 WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain
containing 1

0.00465263 34 16 18 13

ahrra aryl-hydrocarbon receptor repressor a 0.0040985 33 17 16 13

foxq1a forkhead box Q1a 0.00479027 33 13 20 13

mxd1 MAX dimerization protein 1 0.03254926 32 9 23 2

slincR None 8.00E-04 32 15 17 13

zgc.158689 None 0.01270125 31 13 18 2

cacna1da calcium channel, voltage-dependent, L type, alpha 1D subunit, a 0.10295178 30 5 25 2

osbpl2a oxysterol binding protein-like 2a 0.01197251 30 8 22 2

srgap3 SLIT-ROBO Rho GTPase activating protein 3 0.01114073 30 10 20 2

tfe3a transcription factor binding to IGHM enhancer 3a 0.07136245 30 11 19 2

cyb5a cytochrome b5 type A (microsomal) 0.00566261 28 15 13 13

pkhd1l1 polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 0.04172331 28 12 16 13

NA_732 None 7.84E-04 27 13 14 13

NA_146 None 0.01266327 26 5 21 2
a Number of edges emanating to the gene
b Number of edges emanating from the gene
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Table 4 Genes with the highest degrees from the modules associated with FRC exposure (Modules 2, 7, and 10)

Module Degree Gene Name Known function in zebrafish from previous studies Reference

2 32 mxd1 Max Dimerization Protein 1 unknown

31 zgc.158689 unidentified unknown

30 osbpl2a oxysterol binding protein-like
2a

unknown

30 srgap3 Slit-Robo GTPase activating
protein 3

role in neurodevelopmental processes [46]

30 tfe3a Transcription factor-binding to
IGHM enhancer 3a

Part of the MiT family coding for basic-helix-loop-helix/leucine zipper
class transcription factors

[47]

30 cacna1da calcium channel, voltage-
dependent, L type, alpha 1D
subunit, a

calcium channel-related gene whose expression was shown to be al-
tered by triadimefon, a broad-spectrum fungicide, and silica nanoparti-
cle exposures to embryonic zebrafish

[48, 49]

7 18 NA_1170 uncharacterized

12 purab Purine-rich element-binding
protein Ab

unknown

11 sgsm1a small G protein signaling
modulator 1a

associated with small G protein-mediated signal transduction [50]

10 fermt2 fermitin family member 2 part of the Kindlin or Fermitin family of scaffold proteins important for
signaling across membrane-spanning integrin adhesion receptors

[51]

10 10 apc2 APC regulator of WNT
signaling pathway 2

in the family of genes coding for a regulator of the WNT signaling
pathway

[45]

10 celsr3 cadherin, EGF LAG seven-pass
G-type receptor 3

plays a role in the facial motor neuron migration in zebrafish [52]

9 adam22 ADAM metallopeptidase
domain 22

unknown

9 NA_108 unidentified unknown

Fig. 4 Network neighborhood of cyp1a. A The full network is shown with each blue circle (node) representing a zebrafish gene (2141 nodes are
shown which represent the main network), and each line representing an edge (4373 edges are shown which represent the main network). The
dark blue node represents cyp1a. B A subset network showing the network neighborhood of cyp1a. The cyp1a gene is in dark blue, nodes in
blue represent those in the first-degree network neighborhood (directly linked to cyp1a through an edge). Nodes in light blue represent those in
the second-degree network neighborhood (linked to cyp1a through one additional gene within the first network neighborhood)
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presented here. Interestingly, we also noted that of the
25 cyp1a network neighborhood genes, 21 responded to
at least one FRC, with three genes (foxq1a, NA_145, and
si.ch211.229d2.5) responding to at least six of the ten
FRCs.
A combination of the presence in cyp1a’s network

neighborhood (Fig. 4B) and the consistent induction
of expression across all the AHR2 Activators (Fig. 5)
led us to a subset of genes (fgf7, mamdc2b, pkhd1l1,
sult6b1, NA_632, NA_732, NA_145, and NA_928)
that we hypothesized would be closely associated with
the AHR2 signaling pathway. To confirm the AHR2
dependence of these genes, we validated their expres-
sion upon TCDD exposure in both wildtype and
AHR2-null zebrafish using qRT-PCR. We confirmed
significant induction of all genes by TCDD, compared
to vehicle-treated 48-hpf wildtype zebrafish (Fig. 6).
Additionally, while cyp1a was significantly induced in
TCDD-treated AHR2-null zebrafish, albeit significantly
lower than TCDD-treated wildtype zebrafish, expres-
sion of none of the other transcripts changed in
TCDD-treated AHR2-null zebrafish. These results
confirm that our network analysis identifies multiple
genes in the AHR2 signaling pathway.

Chemical type analysis in networks
We next determined the relative contribution of
chemical type towards the global functional pathways
identified in our network by calculating how tightly
network genes remain co-expressed when AHR2 Acti-
vator samples or FRC samples were removed from
the dataset. This analysis reveals how genes of certain
functional pathways are organized based on response
to either the AHR2 Activators or the FRCs. When
AHR2 Activator data was removed from our dataset
and a new network was inferred, we found several
functions whose constituent genes were less tightly
co-expressed (based on their average co-expression
values) when comparing to a network lacking random
data (Table 5). This included negative regulation of
vascular development, regeneration, and metabolic
processes as well as carboxylic and oxoacid metabolic
processes, and actin and cytoskeletal processes. The
lower co-expression of genes within these functions
when AHR2 Activators are removed indicates that
they are particularly important to the transcriptomic
response of AHR2 Activators. We also found func-
tions whose constituent genes were more tightly co-
expressed (suggesting lower importance to AHR2

Fig. 5 Heatmap of chemical response of genes in the first-degree network neighborhood of cyp1a. Genes are shown on the right (y-axis) and
chemicals below (x-axis). Both genes and chemicals are clustered by similarity of response. Yellow indicates higher expression of each gene in
chemical treatment compared to respective DMSO control, blue indicates lower expression in chemical treatment compared to respective
DMSO control
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Activators compared to all chemicals). This included
bone, skeletal and cartilage development, as well as
eye development.
Functions showed even greater changes in co-

expression when examining FRC data (Table 5). As
above, FRC data was removed from our dataset and a
new network was inferred and compared to a network
lacking a random amount of data. The functions show-
ing the greatest decrease in co-expression in a network
lacking FRCs included regulation of vascular develop-
ment and neurogenesis. Interestingly, many of the func-
tions that showed higher co-expression were also related
to neuronal development. These included brain, fore-
brain, head, and central nervous system development.
This observation suggests that while vascular

development and neurogenesis generally are pathways
responding strongly to FRC exposure, the specific genes
and sub-roles within these broad pathways may respond
differently to FRC exposure.

Discussion
The main goal of our study was to identify the important
genes and biologically relevant pathways at the same
zebrafish developmental timepoint that were associated
with two groups of chemicals, the AHR2 Activators and
the Flame Retardant Chemicals (FRCs), using a com-
parative network approach. We took advantage of a large
compendium of 48-hpf RNA sequencing data from zeb-
rafish exposed to 33 unique chemical treatments to con-
duct the first meta-analysis of zebrafish chemical

Fig. 6 Validation of cyp1a network neighborhood genes identified from the network analysis. Comparative gene expression of cyp1a and
selected cyp1a network neighborhood genes in 48-hpf wildtype and AHR2 mutant zebrafish developmentally exposed to 0.1% DMSO or 1 ng/mL
TCDD (n = 3–4 biological replicates). Beta-actin was used as the normalization control. Error bars indicate SD of the mean. * = p-value < 0.05
compared to the wildtype vehicle control (DMSO). Statistical significance was determined using a Kruskal Wallis rank sum test followed by a
Dunnett’s test for data that were not normal (NA_732), or a two-way ANOVA followed by a Tukey test for data that were normal (all other genes)
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transcriptomic data using gene co-expression networks.
Using functional pathway enrichment paired with the
systematic removal of the individual chemical groups
from the network, we identified pathways associated
with each of the chemical groups. The network revealed
that the AHR2 Activators were associated with specific
xenobiotic metabolism-related pathways while FRC ex-
posure corresponded to broader, more general pathways
related to perturbation of normal development, with an
emphasis on neurogenesis.

While the genes in our full co-expression network
formed into 23 distinct modules, genes responding to
the FRCs or AHR2 Activators were found primarily in
only three modules and a single module, respectively.
Furthermore, while there was some overlap in modules
associated with the two subsets of chemicals, most mod-
ules were associated with a certain chemical class sug-
gesting largely distinct and highly specific molecular
signaling events for these two chemical types. Our hier-
archical clustering analysis reflected a similar pattern,

Table 5 Removal of AHR2 Activators or FRCs from the network, and comparison of co-expression values of each pathway listed
relative to networks lacking random datasets. The higher (yellow arrows) or lower (blue arrows) co-expression of genes within each
of the listed functional enrichments in a network lacking AHR2 Activators (column 1) or FRCs (column 2) compared to a network
lacking the same number of random chemicals as either the AHR2 Activators or FRCs, respectively

Shankar et al. BMC Genomics          (2021) 22:658 Page 12 of 20



where there was a strong separation between the FRCs
and the rest of the chemicals in the study, but there was
no separation between the AHR2 Activators and the
remaining PAHs. Additionally, developmental toxicity
phenotypes identified in previous studies were not a
driver of our clustering. While high throughput screen-
ing for developmental toxicity is the necessary first step
for determining perturbation to development [53], the
toxicology field is now moving towards leveraging these
data for mechanistic studies to reveal chemical modes of
action. Thus, the network analysis here, showing that
chemical types induce very specific transcriptional re-
sponses, provides a platform to characterize gene expres-
sion changes associated with a diverse group of
chemicals and emphasizes one of the limitations of de-
scribing chemical toxicity with only phenotypic
endpoints.
For our network analysis, we collected RNA sequen-

cing datasets that had been previously published, and
combined them with unpublished data gathered in this
study. The resulting larger dataset has the advantage of
examining gene expression changes associated with mul-
tiple chemicals at the same time point (48 hpf), and all
at phenotypically anchored exposure concentrations.
Such a dataset has never been analyzed before in zebra-
fish, allowing new conclusions to be gained here that de-
scribe transcriptomic response to chemicals. In addition
to the strength of the dataset itself, we apply co-
expression network analysis, an approach that is well de-
signed for such a compendium of data. Network analyses
can identify responses that lie outside the detection limit
of more traditional pairwise comparisons of control and
treatment conditions, and can also integrate data from a
number of different studies and research groups [30, 54].
The variations in data collected across studies is an ad-
vantage for the network analysis we apply here as it rep-
resents additional biologically relevant variations in gene
expression that can be used to infer edges between
genes, leading to a more robust and accurate network.
The combined strengths in this study (use of a compre-
hensive but coordinated dataset, and network analysis to
move beyond traditional transcriptomic analysis) means
that we were able to ask and answer questions that
could not be queried in previous studies related to path-
ways responding to specific chemical treatments. This is
reflected, for example, in our identification of high cen-
trality genes that do not respond to specific chemical
treatments but rather emerge only when the complete
data set is analyzed with a network approach. The same
is true for genes in Module 13; the close association of
these genes, and the strong response of this module to
AHR2 Activator exposure suggest that these genes are
important to AHR2 activation. However, not all of the
genes in Module 13 respond to all AHR2 Activators, and

their association and likely role in chemical response
only emerged when we applied network analysis to our
large compendium of data. It is possible that the identifi-
cation of Module 13 genes that do not respond to spe-
cific AHR2 Activators reflect the subtle differences in
downstream transcription following AHR2 activation,
and future work should investigate the functional roles
of the identified gene expression changes upon exposure
to each of the AHR2 Activator chemicals. Additionally,
our observation that many of the Module 13 genes were
also differentially expressed upon exposure to some of
the FRCs (Supplementary Table S4) points to the fact
that these genes might be involved in the general disrup-
tion to zebrafish development, probably via perturbation
of AHR signaling. This is conceivable since the role of
AHR in normal development has been identified previ-
ously across multiple species [55–57]. Indeed, it is true
that some FRCs have previously been shown to activate
AHR [26], although AHR activation might have been a
result of contaminants present in the chemical standards
[58].
The success of high-level analyses of large datasets

has also been used in other studies. Schuttler, et al.
used an approach based on building a map of tran-
scriptomic response of genes and then clustering
those that had similar profiles to view how genes
were related [59]. Our approach here differs in that
we use a network approach allowing for the applica-
tion of much of the mathematical tools that have
been developed for network analysis (centrality, etc)
in addition to collecting a larger dataset. Li, et al.
used transcriptomic data to better understand chem-
ical response with a focus on cause and effect rela-
tionships, regulatory pathways, and cardiac responses
specifically [60]. Aside from cardiac chemical re-
sponse, network analysis has also been used to better
understand heart regeneration in zebrafish [61]. Add-
itional network analysis focused on Weighted gene
co-expression network analysis (WGCNA) has also
been applied to zebrafish, but again focusing on a
smaller and more chemically homogenous
dataset allowing for a detailed analysis of these che-
micals and responses [62]. Our inclusion here of a
large number of chemicals that show a range of
phenotypic and transcriptomic responses lead a more
comprehensive network that can highlight many dif-
ferent pathways and processes.
The compendium dataset we use here also has the ad-

vantage of examining different chemical classes with
roughly the same level of analysis. However, despite the
similar number of datasets included in the network ana-
lysis for each chemical subgroup, we found that FRC re-
sponses drove the majority of the network structure,
while the AHR2 Activator gene expression changes were
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more restricted in the network, which was likely due to
the diversity of structures and molecular initiating events
of the FRCs compared to the AHR2 Activators. Both
functional enrichment of FRC-responsive modules, as
well as analysis of functions shifting their co-expression
after removal of FRC datasets show that the FRCs influ-
ence functions related to developmental, neurological,
and signaling and transport pathways. The analysis re-
moving the FRCs from the network identified regulation
of vascular development as being particularly important
to this group of chemicals. Vascular developmental ab-
normalities and cardiac arrhythmia have been investi-
gated in zebrafish exposed to only few FRCs [27, 63, 64];
but our results highlight it as a critical organ system that
should be more thoroughly investigated when studying
FRC toxicity. Our conclusions also corroborate evidence
from a number of previous studies demonstrating zebra-
fish FRC neurobehavioral toxicity upon exposure to
multiple structurally diverse chemicals, including indi-
vidual organophosphate FRCs [22, 65], DE-71 (a PBDE)
[66], and TBBPA [67]. Additionally, all FRCs included in
this network analysis were previously determined to in-
duce both 24-hpf and 120-hpf behavior effects in zebra-
fish, albeit at varying degrees [6]. Thus, our network
analysis not only confirmed observations from previous
studies, but also provides guidance for future studies in-
vestigating mechanisms of FRC developmental toxicity.
We recognize that even though the FRCs as a group lit
up distinct parts of the network compared to the rest of
the chemicals in the study, the structurally distinct che-
micals within the FRCs are likely to have some unique
modes of toxicity that were not captured here. Our ana-
lysis contained only a limited number of FRCs from each
structural class (for example, there were two brominated
phenols, TBBPA and TBBPA-DBPE), and future work
should consider incorporating more FRC transcriptomic
data, and using this increased FRC dataset to view how
different types of FRCs induce gene modules or func-
tional pathways. Our understanding of the mechanisms
by which the structurally diverse FRCs cause develop-
mental toxicity is still in its infancy. This is likely be-
cause several FRCs have been shown to interact with
multiple nuclear receptor signaling pathways to cause
gene expression changes and developmental toxicity in
zebrafish [68, 69]. Thus, our discovery of some of the
high centrality genes in our network such as kremen1,
cacna1da, and tfe3a within Module 2 (highly associated
with the FRCs), emphasizes their potentially important
role in driving FRC transcriptomic responses. Tfe3 is a
transcription factor, and its high co-expression with
genes associated with FRCs suggests that it might be in-
volved in regulation of the genes within this module.
The identification of the other high centrality genes
present in the FRC modules (Table 4) should be

investigated in future research to understand their roles
in the pathways enriched by their modules.
Module 13, whose genes were enriched for xenobiotic

metabolism by cytochrome P450, had a prominent role
in our network analysis. Although Module 13 was a
small module, it was very tightly co-expressed, and con-
tained a large number of high degree genes. This is in
line with our previous studies showing that high degree
genes are those that are heavily involved in a small num-
ber of specific pathways [70]. This is in contrast to high
betweenness genes which are often associated with sev-
eral pathways but not strongly with any one pathway, in
agreement with their general position linking multiple
larger groups of genes. Previous studies in centrality
have found both degree and betweenness to be approxi-
mately equal in their identification of genes of import-
ance [34]. However, those studies looked at a broader
range of conditions than we do here, where we infer a
network very focused on chemical response. This may
suggest that in more focused networks inferred from
very similar datasets using degree as the primary central-
ity measure may be advantageous, though further studies
are needed to determine if this is an effect of network
structure generally or of the network presented here in
particular. However, it does suggest that for this specific
network when identifying genes that respond to certain
chemicals of interest, degree is a better metric of import-
ance than betweenness.
Module 13 was primarily made up of genes responding

to the AHR2 Activators, which consisted of TCDD and
several PAHs, and at the center of this module was the
cyp1a gene, a widely use biomarker for PAH exposure in
several organisms [71, 72]. We found several AHR sig-
naling pathway genes such as ahrra and ahrrb [73],
foxq1a [13], and slincR [12] within Module 13 that were
tightly co-expressed with cyp1a. More interestingly, our
network analysis also identified within Module 13 other
annotated and non-annotated genes, including novel
long non-coding RNAs that have not been previously as-
sociated with AHR2. We hypothesized that they too
were involved in the AHR signaling pathway. Our in
silico network analysis conclusions are corroborated
through our RT-qPCR analysis demonstrating that fgf7,
mamdc2b, pkhd1l1, and sult6b1 expression is dependent
on the presence of AHR2. Importantly, several novel
genes, NA_632, NA_732, NA_145, and NA_928 (Entrez
GeneIDs of 103,910,027, 108,182,865, 100,332,446 and
407,643 respectively) were also associated with the
AHR2 signaling pathway (Fig. 6). NA_732 and NA_928
are long non-coding RNAs, while NA_632 and NA_145
are protein coding genes. Despite that fact that the func-
tions of these genes are unknown, their presence in
Module 13 linked to cyp1a strongly suggest that they are
important to AHR2 signaling. Future functional studies
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investigating the roles of these novel AHR2-related
genes will help strengthen our mechanistic understand-
ing of AHR2 Activator toxicity.
Overall, the methods used in this study combined the

strength of using an extensive transcriptomic dataset with
a gene co-expression analysis approach to measure how a
diverse group of chemicals altered the 48-hpf zebrafish
transcriptome relative to each other. We found that the
FRCs and AHR2 Activators localized to distinct regions of
the network we created, highlighting very specific tran-
scriptomic responses to each chemical group. Addition-
ally, FRCs induced a broad response related to
neurobehavior, ion signaling, and vascular development,
while the AHR2 Activators centered in one module re-
lated to chemical stress and metabolism-related responses.
Guided by our network, we also discovered novel genes
associated with the AHR2 signaling pathway. Overall,
while the FRCs and AHR2 Activators have chemical-
specific gene expression changes, we also identified several
candidate biomarker genes that future studies should
focus on to gain a better understanding of the toxicity of
these two chemical groups. While the toxicology field has
thus far focused on understanding phenotypic responses
associated with chemical exposure, we are now transition-
ing to unraveling the mechanisms of chemical hazard,
which will enable more in-depth characterization of che-
micals. This study provides transcriptomic biomarkers
that could be used in the future for exposure determin-
ation and mixture component diagnosis as they relate to
mode-of-action based risk assessment of PAHs. Addition-
ally, the transcriptomic network that we created can be
used as a resource for future studies investigating mecha-
nisms of toxicity in developing zebrafish.

Methods
Characterization of chemical datasets
In total, we collected RNA sequencing data from 48-hpf
zebrafish exposed to 33 unique chemical treatments (Sup-
plementary Table S1). For 29 of these treatments (18
PAHs, TCDD, and 10 FRCs), the data was collected from
previously published previous studies [7, 39–41], with the
remaining 4 treatments (4 PAHs) initially analyzed in this
study. Each treatment was examined with 3–8 replicates
for a total of 170 RNA sequencing samples included in the
study. Raw and processed RNA sequencing files for each
sample have been deposited in NCBI’s GEO database
(GSE171944). See Supplementary Table S1 for informa-
tion on chemicals, exposure levels, and relevant references
for the datasets used in this study.

Chemicals
Detailed methods for published datasets can be found in
our previous studies [7, 39–41]. Methods for chemicals
initially analyzed in this study, and TCDD exposures for

RT-qPCR analysis (See below) are described here. The
PAHs (benzo [a] pyrene (B [a]P), 9,10 phenanthrenequi-
none (9,10-PQ), and dibenzo [a,l] pyrene (DBalP)) were
dissolved to 10mM in 100% DMSO and stored in a des-
iccator. TCDD was purchased from Supelco (Sigma Al-
drich) at 311 nM with 95.3% purity, and stored in the
dark at room temperature. The chemical stocks were
sonicated in a water bath sonicator for 15 min (PAHs)
or 30 min (TCDD).

Zebrafish husbandry
The study’s zebrafish protocols were performed accord-
ing to the relevant guidelines provided by the Oregon
State University’s Institutional Animal Care and Use
Committee protocols (ACUP 5143). Briefly, Tropical 5D
wildtype zebrafish were housed at Oregon State Univer-
sity’s Sinnhuber Aquatic Research Laboratory (SARL,
Corvallis, OR) in densities of 1000 fish per 100-gal tank.
Fish were maintained at 28 °C on a 14:10 h light/dark
cycle in recirculating filtered water, supplemented with
Instant Ocean salts. Adult fish were fed GEMMA Micro
300 or 500 twice a day, and larval and juvenile fish were
fed GEMMA Micro 75 and 150, respectively, three times
a day [74]. Spawning funnels were placed in the tanks at
night and the following morning embryos were collected
and age staged [4, 75]. Embryos were maintained in em-
bryo medium (EM) in an incubator at 28 °C until further
processing. EM consisted of 15 mM NaCl, 0.5 mM KCl,
1 mMMgSO4, 0.15 mMKH2PO4, 0.05 mM Na2HPO4,
and 0.7 mMNaHCO3.

Exposures and RNA-sequencing sample preparation and
sequencing
Detailed exposure methodology and phenotypic end-
points identified for each chemical for the previously
published datasets can be found in their respective stud-
ies [7, 39–41]. Briefly, for the PAHs (with the exception
of 7,12-B [a] AQ and BEZO) and FRCs, an EC80
exposure concentration was selected based on a
concentration-response zebrafish phenotypic screen [6,
38]. If an EC80 concentration was not attainable, the
maximum concentration tested during the phenotypic
screen (50 μM for PAHs, and 85 μM for the FRCs) was
utilized for RNA sequencing [39, 41]. 7,12-B [a] AQ and
BEZO were exposed at their EC100 concentrations [7],
and 1 ng/mL TCDD was utilized, which is a concentra-
tion that ensures 99–100% of zebrafish at 120 hpf have
the expected TCDD-induced toxicity endpoints [40]. All
samples were processed for RNA sequencing analysis at
48 hpf, a timepoint whose transcriptome precedes and
likely drives morphological and/or behavioral pheno-
types observed at 120 hpf [7, 39–41]. Fastqc files for
each chemical were re-analyzed in this study (See
“Alignment and analysis of RNA-seq data” below).
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For the PAHs (B [a] P, 9,10-PQ, and DBalP) initially
analyzed in this study, zebrafish embryos were dechorio-
nated using pronase at 4 hpf, and were batch-exposed to
chemicals at 6 hpf in glass vials as described previously
[7]. Exposure concentrations were 1 and 10 μM for B [a]
P, 1.2 μM for 9,10-PQ, and 10 μM for DBalP. The ve-
hicle control was 1% DMSO, and there were 20 embryos
per glass vial in 2 mL exposure solution. Vials were incu-
bated at 28 °C in the dark on a rocker until sample col-
lection at 48 hpf. Following exposure, 48-hpf whole
embryos were homogenized using RNAzol (Molecular
Research Center, Inc.) and a bullet blender with 0.5 mM
zirconium oxide beads (Next Advance), as recom-
mended by the Next Advance. Each biological sample
consisted of 20 pooled 48-hpf zebrafish. The RNA from
the PAH exposures was isolated via phenol guanidine
extraction. RNA integrity was assessed (RIN score > 9)
using an Agilent Bioanalyzer. Total RNA samples were
sent to the Oregon State University Center for Genome
Research and Biocomputing Core facilities for library
preparation and sequencing. This included mRNA en-
richment by polyA selection. Libraries were prepared
with the PrepX™ mRNA and Illumina sequencing work-
flow (Wafergen Biosystems). 50 bp paired-end sequen-
cing was conducted using an Illumina HiSeq 2000
sequencer.

Alignment and analysis of RNA-seq data
All of the datasets listed in Supplementary Table S1
were analyzed (or re-analyzed if already published) using
the following approach. Each fastq file was aligned to the
Genome Reference Consortium Zebrafish Build 11
(GRCz11) (https://www.ncbi.nlm.nih.gov/assembly/
GCF_000002035.6/) using the Star Aligner [76] with de-
fault settings. Resulting SAM files were then used to
count reads aligning to genes using HTSeq (https://
htseq.readthedocs.io/en/release_0.11.1/) [77] along with
the gff file for the GRCz11 genome, resulting in raw read
counts for 39,701 zebrafish genes. Low expression genes,
defined as those with a count of ‘0’ in at least 43/170
(25%) of samples, were removed from further analysis.
The final raw dataset consisted of 21,854 genes across
170 samples.
Raw counts were normalized using Bioconductor’s

DESeq2 package [78]. DESeq2 was also used to calculate
log2 fold changes (log2FC) and adjusted p-values (cor-
rected for multiple hypothesis testing) for the 33 individ-
ual chemical comparisons to their respective DMSO
controls. Adjusted p-values and log2FC values for all
21,854 genes are shown in Supplementary Table S5. In
addition, whether the gene is a DEG (log2FC > 1 and an
adjusted p-value < 0.05) is indicated. To further reduce
the number of genes used to infer a network, any gene
that was not differentially expressed (defined as an

adjusted p-value > 0.05, no fold change cutoff) in at least
3 of the comparisons (10% of the total) was removed
from further analysis. This resulted in 10,346 genes
across 170 samples from 33 conditions being included in
subsequent networks. Log2FC values (comparing chemi-
cals to their respective DMSO controls) of these 10,346
genes were then used to infer the gene co-expression
network.

Inferring gene co-expression networks
GENIE3 [31] was used to generate a matrix of co-
expression values for all gene pairs. Regulators or targets
were not pre-selected so as to allow all gene co-
expressions to emerge from the analysis. The tree
method was randomforest, and the number of candidate
regulators randomly selected at each tree node (for the
determination of the best split) was set to the square
root of the total number of candidate regulators. The
number of trees in an ensemble for each target gene was
set to 1000. All of these settings represent the default
values for GENIE3. We filtered low co-expression values
(those below 0.00858) to generate a network with suffi-
cient structure for topological analysis, as done previ-
ously [70, 79]. Networks were viewed in Cytoscape [80]
by importing a .sif file with each line indicating a gene
pair connected by an edge. A prefuse force directed lay-
out was used to view the network. We also used Cytos-
cape to calculate centrality values by using the Analyze
Network tool and analyzing as a directed network. Net-
work neighborhoods of genes of interested were identi-
fied by selecting a gene of interest and using Cytoscape
to highlight the first network neighborhood of the se-
lected gene. This was followed by highlighting the first
network neighborhood of each of the selected genes
(corresponding to the second network neighborhood of
the original selected gene). The 23 modules in the net-
work were determined using the fastgreedy.community
function within the igraph package in R [81] with the
minimum number of genes comprising a module set to
12. Functional enrichment of modules was done using g:
Profiler using default settings [44]. A function was con-
sidered to be enriched if the p-value of the enrichment
was below 0.05, and the function was overrepresented in
a module or network compared to the zebrafish genome
as a whole. Underrepresented functions were not consid-
ered. g:Profiler outputs functions from KEGG, Gene
Ontology, Reactome, and WikiPathways. We examined
all enriched functions regardless of which database they
were drawn from. This led to some overlap in enriched
functions but also allowed us to gain the most compre-
hensive view of pathways enriched in certain parts of the
network or in different networks.
To determine which functions and pathways may be

related to certain classes of chemicals, we selected two
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subsets of our data, chemicals in the FRC class or che-
micals in the AHR2 Activator class (Supplementary
Table S1). For FRC analysis, we first inferred a GENIE3
co-expression matrix after removing FRC data (compris-
ing 39 samples). Next, we randomly removed 39 samples
of data from our dataset and calculated the resulting
gene co-expression matrix. This random data removal
from the full dataset and matrix calculation was repeated
an additional nine times and an average gene co-
expression matrix was calculated from these ten itera-
tions of data removal. A network was then constructed
from this average gene co-expression matrix. This net-
work represents the effect of randomly removing data
from our constituent dataset. This random removal net-
work was then compared to the network inferred after
specifically removing FRC data. For each of these two
networks (that lack FRC data or lack an identical
amount of random data), we calculated the average co-
expression value between all genes that belonged to each
functional enrichment identified using g:Profiler [44].
Genes of a particular function that show lower co-
expression in a network that is specifically lacking FRC
data compared to a network that has data randomly re-
moved from it, suggests that this function is especially
critical to the FRC response. A similar pair of networks
and comparisons were made for the AHR2 Activators
(comprising 46 samples).

TCDD exposure, RNA extraction, and quantitative reverse
transcriptase polymerase chain reaction (qRT-PCR)
To confirm that the highly co-expressed genes associ-
ated with the AHR2 Activators in our network are in the
AHR signaling pathway, we performed a qRT-PCR ex-
periment. Wildtype and AHR2-null [56] zebrafish em-
bryos were exposed to 0.1% DMSO or 1 ng/mL TCDD
at 6 hpf, as described previously [40], in a manner simi-
lar to the TCDD RNA sequencing samples included in
this study. The 1 ng/mL TCDD concentration was se-
lected as it results in 99–100% of 120-hpf zebrafish dis-
playing the expected TCDD-induced phenotypic
malformations such as heart and cartilage malformations
[82]. Briefly, exposures were conducted in 20-mL amber
glass vials with 1 embryo/100 μL exposure solution for 1
h with gentle rocking. Vials were also inverted every 15
min to ensure even exposure. After exposure, embryos
were rinsed three times with EM, transferred to 100-mm
Petri dishes, and raised in EM at 28 °C to 48 hpf. RNA
was extracted in a manner similar to the PAHs, as de-
scribed above. RNA quantification and quality assess-
ment (O.D. 260/280 ratios) was conducted using a
BioTek® Synergy™ Mx microplate reader with the Gen5™
Take3™ module.
qRT-PCR was conducted in 10 μL reactions consisting

of 5 μL SYBR® Green Master Mix, 0.08 μL reverse

transcriptase enzyme mix (Power SYBR® Green RNA-to-
CT™ 1-Step Kit; Applied Biosystems), 0.2 μL each of
10 μM forward and reverse primers, and 20 ng RNA per
reaction. The gene specific primers (IDT) for qRT-PCR
amplification are listed in Supplementary Table S6. The
QuantStudio 5 Real-Time PCR System (Thermo Fisher
Scientific) was used and the cycling parameters were as
follows: reverse transcription at 48 °C for 30 min, de-
naturation and activation of SYBR® polymerase at 95 °C
for 10 min, followed by 40 cycles of amplification (95 °C
for 15 s, 60 °C for 1 min). A melt curve analysis was con-
ducted to assess for multiple products, and it was con-
firmed that all primers amplified a single product.
Expression values were normalized to the β-actin con-
trol, and analyzed with the 2−ΔΔCT method as described
previously [83]. The data collected for each gene was
tested for normality using the Shapiro-Wilk normality
test. To determine significant difference compared to
control (p-value < 0.05), either a two-way ANOVA with
the post-hoc Tukey’s test or a Kruskal Wallis rank sum
test followed by a Dunnett’s test was conducted depend-
ing on if the data that passed or failed the normality test,
respectively,. Data analysis was conducted using RStudio
(version 3.6.0), and data visualization was performed
using GraphPad Prism version 8.0.0 for Windows,
GraphPad Software, San Diego, California, USA (www.
graphpad.com).
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