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Abstract

Mitochondrial structures were probably observed microscopically in the 1840s, but the idea of 

oxidative phosphorylation (OXPHOS) within mitochondria did not appear until the 1930s. The 

foundation for research into energetics arose from Meyerhof’s experiments on oxidation of lactate 

in isolated muscles recovering from electrical contractions in an O2 atmosphere. Today, we know 

that mitochondria are actually reticula and that the energy released from electron pairs being 

passed along the electron transport chain from NADH to O2 generates a membrane potential and 

pH gradient of protons that can enter the molecular machine of ATP Synthase to resynthesize ATP. 

Lactate stands at the crossroads of glycolytic and oxidative energy metabolism. Based on reported 

research and our own modeling in silico, we contend that lactate is not directly oxidized in the 

mitochondrial matrix. Instead, the interim glycolytic products (pyruvate and NADH) are held 

in cytosolic equilibrium with the products of the lactate dehydrogenase (LDH) reaction and the 

intermediates of the malate-aspartate and glycerol 3-phosphate shuttles. This equilibrium supplies 

the glycolytic products to the mitochondrial matrix for OXPHOS. LDH in the mitochondrial 

matrix is not compatible with the cytoplasmic/matrix redox gradient; its presence would drain 
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matrix reducing power and substantially dissipate the proton motive force. OXPHOS requires O2 

as the final electron acceptor, but O2 supply is sufficient in most situations, including exercise and 

often acute illness. Recent studies suggest that atmospheric normoxia may constitute a cellular 

hyperoxia in mitochondrial disease. As research proceeds appropriate oxygenation levels should 

be carefully considered.

Graphical Abstract

Credit for the discovery of what would become known as mitochondria is given to Rudolf 

Albrecht von Kölliker in 1857; these structures were subsequently described in greater detail 

by Richard Altmann. In 1898, Benda used a derivation of the Greek words for “thread” and 

“granule” to name these structures “mitochondria”. In 1907, Fletcher and Hopkins reported the 

disappearance of lactate in the presence of O2 in previously stimulated muscles. Approximately 

two decades later, Meyerhof’s work on O2 consumption and lactate (La−) resynthesis into 

glycogen during the recovery of isolated skeletal muscles from prior contractions was an early hint 

at the intersection of glycolysis and aerobic phosphorylation. Warburg related these phenomena to 

the metabolic physiology of cancer. Research by both Meyerhof and Emden led to discovery of 

the glycolytic pathway. In the 1930s, the work of Lundsgaard, Krebs, Kalckar, the Coris, Belitzer 

and Szent-Gyorgi, and subsequently Lipmann, Ochoa, Bensley & Hoerr and Claude in the 1940s 

led to establishing the bioenergetics of glycolysis and the TCA cycle and compounds of high 

phosphoryl transfer potential. The 1950s heralded the age of research using isolated, functioning 

mitochondria to explore bioenergetics, and featured prominently the work of Lehninger, Estabrook 

& Saktor, and Chance & Williams. In the 1960s, Peter Mitchell first proposed the chemiosmotic 

theory of oxidative phosphorylation, for which he was awarded the Nobel Prize. During this 

same decade, work by Borst clarified the malate-aspartate shuttle, wherein the exchange of 

anionic aspartate for undissociated glutamate (one negative charge exported from the matrix 

per exchange) is driven by the membrane potential (ΔΨ). Work by Skulachev in this decade 

and beyond further clarified mitochondrial bioenergetics and mitochondrial morphology. Boyer 

elucidated the nature of the ATP synthase, ultimately winning the Nobel Prize for his work. 

In the 1980s, David Nicholls further clarified mitochondrial bioenergetics, and the work of 

George Brooks initiated the era of the Cell-to-Cell Lactate Shuttle. Starting in the 1990s, 

research emerged suggesting that mitochondria are capable of transporting La− across the inner 

membrane and oxidizing it without the support of the cytosolic-mitochondrial electron shuttles 

(i.e., the malate-aspartate and glycerol-3-phosphate shuttles). The ultimate combustion of La− 

obviously takes place in the mitochondria; there is no question about that simple conclusion. 

However, our view is that La− is not directly oxidized by LDH in the mitochondrial matrix, but 
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rather La− must first be converted to pyruvate (Pyr−) in the cytosol or intermembrane space. 

Rationale for this view includes the high activity of the near-equilibrium enzyme LDH, which 

exceeds glycolytic capacity, the highly oxidized NAD+/NADH ratio relative to the mitochondrial 

matrix, and the thermodynamic necessity for an energy-driven accumulation of shuttle species 

(e.g., ΔΨ–dependent aspartate-glutamate exchanger). Modeling in silico demonstrates that an 

active LDH in the matrix would render mitochondria nearly incapable of oxidizing Pyr−, a 

result which is inconsistent with decades of studies from hundreds of laboratories using both 

isolated mitochondria and permeabilized cells in which the mitochondrial reticulum remains 

intact. Healthy mitochondria function well, even at low O2 levels such that dysoxia is rare and low 

O2 is likely a minor factor in the increasing concentrations of La− typical with exercise or even 

many acute critical care situations.

Keywords

Dysoxia; glycolysis; hypoxia; lactic acid; mitochondria; modeling in silico; NADH shuttles; 
oxidative phosphorylation; oxygen

Brief history of glycolytic and oxidative metabolism

For a detailed understanding of mitochondrial lactate metabolism one needs to appreciate 

the interlinkage of research into glycolysis and oxidative phosphorylation (OXPHOS) and 

the landmark historical events that led to the discovery of these pathways. Various aspects 

of the historical events of glycolysis and lactate metabolism have been presented previously 

(Brooks & Gladden, 2003; Ferguson et al., 2018). Prebble (Prebble, 2010) offers insights 

and interpretations into these discoveries and Needham (Needham, 1971) provides details 

of the studies that revealed the entirety of these pathways. A succinct overview of these 

advances follows.

Glycolysis.

As noted elsewhere (Ferguson et al., 2018), early research that ultimately led to our 

understanding of glycolysis arose from experiments that were mainly performed using yeast 

and skeletal muscle. Lehninger (Lehninger, 1970) provided a brief summary, focusing on 

a handful of important findings out of a multitude that culminated in the elucidation of 

the glycolytic pathway by 1938. First, Buchner (Buchner, 1897) reported that a cell-free 

extract of yeast could ferment glucose to ethanol. Subsequently, Meyerhof demonstrated 

that cell-free extracts of skeletal muscle could metabolize glucose to lactate (Meyerhof, 

1927). Another early milestone was the report of Harden and colleagues in 1906 (Harden 

et al., 1906) describing that alcoholic fermentation in yeast extracts required phosphate 

and formed a compound that was later identified as fructose 1,6-bisphosphate. Under other 

experimental conditions this compound was itself utilized, illustrating that it was likely an 

intermediate in overall fermentation. Harden and coworkers also separated components of 

the fermentation process that were later identified as: 1) required enzymes, 2) nicotinamide 

adenine dinucleotide (NAD+), and 3) a mixture of adenine nucleotides, namely AMP, ADP, 

and ATP. Later experiments by others showed that inhibition of glycolysis by fluoride 

caused an accumulation of 3-phosphoglycerate and 2-phosphoglycerate, while inhibition of 
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glycolysis by iodoacetate caused an accumulation of fructose 1,6-bisphosphate and triose 

phosphates. Otto Warburg determined some of the mechanisms of steps in glycolysis as 

well as the structure of NAD+ (Warburg & Christian, 1936) while Carl and Gerty Cori 

traced the pathway from glycogen to glucose 6-phosphate (Cori & Cori, 1936; Cori et 

al., 1938). In the midst of this plethora of findings by numerous researchers, the work 

of Embden and Meyerhof in separate laboratories has received the greatest recognition. 

Embden hypothesized the mechanism of fructose 1,6-bisphosphate cleavage and the steps 

involving NAD+/NADH (Embden et al., 1933), while Meyerhof isolated some of the 

glycolytic enzymes and determined the reaction sequence from 3-phosphoglycerate to 

lactate (Meyerhof, 1942). As a result, the glycolytic pathway is also known as the Embden­

Meyerhof pathway (Kresge et al., 2005).

From glycolysis to oxidative phosphorylation.

The derivation of oxidative metabolism research from studies of lactate/glycolysis are 

clearly discernible from Meyerhof’s studies in the 1920s. This is evidenced by his 

proposition that respiratory oxidation in some unknown process provided the energy for 

glycogen resynthesis from lactate in isolated muscles following contractions (Meyerhof, 

1927; Prebble, 2010). This of course followed from the classic paper of Fletcher and 

Hopkins in 1907 (Fletcher & Hopkins, 1907) which reported the disappearance of lactate 

in the presence of O2 in previously stimulated muscles. This lactate disappearance in an O2 

atmosphere was in sharp contrast to a further increase in muscle lactate concentration when 

the muscles were incubated in an anaerobic atmosphere. Concurrently with Meyerhof’s 

work, several groups discovered the phosphagens which were ultimately identified as 

phosphocreatine and ATP (Fiske & Subbarow, 1927, 1929; Lohmann, 1929, 1934). By 

1930, Lundsgaard (Lundsgaard, 1930), translation quoted in (Prebble, 2010), asserted that 

the energy for muscle contraction came directly from the splitting of phosphagen and 

that lactate formation was an anaerobic process that led to resynthesis of phosphagen. 

This forced Meyerhof to completely reinterpret his concepts of the role of lactate in 

metabolism. Significantly, Lundsgaard also noted that phosphagen resynthesis could take 

place aerobically in the absence of lactate formation (Lundsgaard, 1932). As a result, some 

have said that Lundsgaard was the “first to herald oxidative phosphorylations” (Prebble, 

2010). In summary, at the dawn of the 1930s, scientists researching metabolism were aware 

that carbohydrate synthesis from lactate was powered by aerobic processes and further that 

the same was true for the phosphorylation of creatine (Prebble, 2010).

In subsequent years, Engelhardt studied metabolism in both mammalian and avian red blood 

cells (e.g., (Engelhardt & Ljubimova, 1930)). The mammalian cells were entirely glycolytic 

while the avian cells were capable of aerobic respiration because they apparently contain 

mitochondria (Stier et al., 2013). Engelhardt concluded that ATP synthesis occurred during 

respiration and that it was stimulated by the breakdown products of ATP (Engelhardt, 1932). 

However, it is not clear that Engelhardt distinguished between glycolytic and respiratory 

oxidation (Prebble, 2010). Later work by Kalckar, the Coris, and Belitzer provided evidence 

that OXPHOS was separate from glycolytic phosphorylation; this work included the 

measurement of the P:O ratio by Kalckar (Kalckar, 1937). By the mid-1940s, via the work 

of Lipmann and Ochoa (Lipmann, 1941; Prebble, 2010), OXPHOS became recognized as a 
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key part of cell metabolism for the provision of energy by way of ATP synthesis (Prebble, 

2010).

In summary, the interest and research that led to studies of OXPHOS arose from Meyerhof’s 

work on O2 consumption and lactate resynthesis into glycogen during the recovery of 

isolated skeletal muscles from prior contractions. Beyond this, most of the researchers 

who ultimately established aerobic phosphorylation were in some manner, either directly 

or indirectly, influenced by Meyerhof’s laboratory (Prebble, 2010). Therefore, as Prebble 

(Prebble, 2010) concludes, the concept of aerobic phosphorylation arose among a group of 

biochemists whose primary interest was in skeletal muscle glycolysis.

The next giant step in understanding OXPHOS had its beginnings in the isolation of 

subcellular particles by Bensley and Hoerr in 1934 (Bensley & Hoerr, 1934), followed 

by Claude and others in the 1940s (Claude & Fullam, 1945; Prebble, 2010). However, 

it was Lehninger (Kennedy & Lehninger, 1949; Lehninger, 1964; Prebble, 2010) who 

refined the isolation of mitochondria via cell fractionation and began the study of OXPHOS 

at the organelle level. A second major insight was provided by cell biologists using 

electron micrograph techniques; mitochondria were surrounded by two membranes with the 

real metabolic action occurring in the inner membrane! A group of biochemists became 

enamored with these organelles and were called “mitochondriacs” by their colleagues 

(Prebble, 2010).

As early as the 1910s it was recognized that biological oxidations were closely related to 

insoluble cellular structures (Ernster & Schatz, 1981). Using extracts of guinea pig liver, 

Warburg (Warburg, 1913) reported that respiration was linked to particles whose role was 

to increase the activity of an iron-containing “respiratory enzyme”. Slightly more than 10 

years later, Keilin (Keilin, 1925) discovered the cytochromes which presaged recognition of 

a respiratory chain. In 1946, with technical advancements, Hogeboom and collaborators 

(Hogeboom et al., 1946) confirmed that succinoxidase and cytochrome oxidase were 

confined to mitochondria. In the early 1960s, researchers in the Green laboratory isolated 

four complexes that were later confirmed to reside in the inner mitochondrial membrane 

(Ernster & Schatz, 1981). These protein assemblies were called Complex I (Hatefi et al., 

1961), II (Ziegler & Doeg, 1962), III (Hatefi et al., 1962b), and IV (Fowler et al., 1962). 

In the same time frame, Hatefi and colleagues (Hatefi et al., 1962a) reconstituted the four 

complexes in the presence of cytochrome c. This led to today’s current understanding of 

four complexes that pass electrons from NADH and FADH2 into the electron transport 

chain (ETC) and ultimately to O2, accompanied by the expulsion of protons from the 

mitochondrial matrix into the intermembrane space. Recent research into the structure of 

these complexes suggest that they may interact with each other to form supercomplexes 

(Guo et al., 2016; Letts & Sazanov, 2017).

Krebs cycle.

A key part of mitochondrial metabolism is the Krebs cycle, or tricarboxylic acid (TCA) 

cycle (Krebs & Johnson, 1937), and the history of its discovery is succinctly outlined by 

Lehninger (Lehninger, 1970). First, it was known from the 1910s that anaerobic suspensions 

of minced animal tissues contained dehydrogenases that transferred hydrogen atoms. In 
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the 1930s, various researchers noted that minced tissue suspensions consumed O2 as they 

oxidized succinate, fumarate, malate, and citrate to CO2 and H2O. Then, in 1935, Szent­

Gyorgyi and co-workers (Annau et al., 1935; Lehninger, 1970) made the vital observation 

that when small amounts of fumarate, malate, or succinate were added to minced muscle 

suspensions, O2 consumption was enhanced far in excess of the amount needed to oxidize 

the added acids to CO2 and H2O. From these results, they concluded that these intermediates 

were able to stimulate the oxidation of some endogenous substrate within the tissue. 

From here, Lehninger (Lehninger, 1970) outlines seven key experimental results on minced 

pigeon flight muscles that led Krebs to postulate the TCA cycle as the major pathway for 

carbohydrate oxidation in skeletal muscle (Krebs & Johnson, 1937):

1. The skeletal muscle suspensions oxidized only specific dicarboxylic (succinic, 

fumaric, malic, oxaloacetic, and α-ketoglutaric) and tricarboxylic (citric, 

isocitric, and cis-aconitic) acids at very high rates.

2. Oxidation of endogenous carbohydrate or added pyruvate by the skeletal muscle 

suspensions was specifically catalyzed by small amounts of succinate, fumarate, 

malate, oxaloacetate, citrate, cis-aconitate, isocitrate, and 2-oxoglutarate.

3. When succinate dehydrogenase was inhibited by malonate, stimulation of the 

oxidation of pyruvate by any of the specific acids denoted in #2 above was also 

completely blocked.

4. Small amounts of citrate were formed when the skeletal muscle suspensions 

were incubated with oxaloacetate and pyruvate under anaerobic conditions; this 

led Krebs to postulate that the combination of pyruvate and oxaloacetate to form 

citrate was a missing link in the completion of a cycle of reactions involving the 

dicarboxylic and tricarboxylic acids.

5. When succinate dehydrogenase was blocked by malonate followed by addition 

of citrate, isocitrate, cis-aconitate, or 2-oxoglutarate; succinate accumulated.

6. Incubation of malonate-poisoned skeletal muscle suspensions also accumulated 

succinate in the presence of fumarate, malate, or oxaloacetate, meaning that there 

must be an oxidative pathway for fumarate to be converted to succinate when 

succinate dehydrogenase is blocked. This suggested a cycle of reactions.

7. Finally, in malonate-poisoned suspensions, Krebs also found that one molecule 

of oxaloacetate disappeared for each pyruvate molecule consumed whereas in 

the uninhibited condition, one molecule of oxaloacetate could stimulate the 

oxidation of many pyruvate molecules because oxaloacetate is regenerated with 

each set of reactions; the entire set of reactions constitutes a cycle!

In 1949, Kennedy and Lehninger (Kennedy & Lehninger, 1949) made the critical 

confirmation that isolated mitochondria could carry out all the above reactions with an 

O2 consumption rate that accounted for the entire respiration rate of cells.
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Control of OXPHOS.

As noted earlier, Engelhardt studied metabolism in both mammalian (entirely glycolytic) 

and avian (capable of aerobic respiration) red blood cells (e.g., (Engelhardt & Ljubimova, 

1930)). Even more importantly in the context of energetics control, he also demonstrated 

that aerobic ATP synthesis was stimulated by the breakdown products of ATP (Engelhardt, 

1932). The importance of this finding was not immediately appreciated (Slater, 1981). 

By the early 1950s, it was possible to isolate structurally well-preserved, functional 

mitochondria (Ernster & Schatz, 1981). Subsequently in the early years of that decade, 

“respiratory control”, defined as control of isolated mitochondrial rate via the availability of 

inorganic phosphate and ADP, was demonstrated by several laboratories (Ernster & Schatz, 

1981). Then, in a series of papers in 1955, Chance and Williams (Chance & Williams, 

1955a, b, c, d; Chance et al., 1955) established states 1-5 of the energetic condition of 

isolated mitochondria. The various states were defined on the basis of the medium to 

which the mitochondria were exposed and in particular to the rate-limiting factor for O2 

consumption and ATP production (e.g., ADP, substrate, O2, or the respiratory chain itself). 

The respiratory control ratio is specifically defined as the ratio of the respiration rate in state 

3 divided by the respiration rate in state 4 and has historically been considered a preferred 

index of the quality of isolated mitochondrial function (Brand & Nicholls, 2011). State 3 is 

the respiration rate of mitochondria when substrate is present in the medium, followed by 

addition of a limited amount of ADP; this elicits an elevated mitochondrial respiratory O2 

flux (JO2) which slows as the ADP is phosphorylated to ATP. State 4 is the JO2 once all the 

added ADP of state 3 has been phosphorylated. Among muscle and exercise physiologists, 

state 3 is often equated to exercise (muscular contractions; elevated [ADP]; higher JO2) 

while state 4 is equated to resting conditions (low [ADP]; low JO2).

Chemiosmotic theory.

Given the link between O2 consumption and ATP synthesis, the major remaining question 

was, “How?”; i.e., the mechanism by which the ATP was formed in OXPHOS. With the 

understanding of substrate phosphorylation in glycolysis, much investigation was focused 

on finding a chemical intermediate that stored the energy of oxidation and coupled it to 

phosphorylation (Prebble, 2001). However, no such intermediate was ever found. Instead, 

“without a shred of experimental evidence”, Peter Mitchell proposed the chemiosmotic 

theory (Slater, 1994). In fact, none of the three key tenets of his original proposal had 

been tested (Prebble, 2001). To be fair, Mitchell’s training (e.g., with Danielli, a proposer 

of the phospholipid bilayer of biological membranes) and his own research on active 

transport across membranes, helped him develop underlying ideas of an analogy between 

translocation and enzyme-catalyzed, group-transfer reactions as well as the notion of a 

vectorial/directional component to reactions (Slater, 1994). After its proposal in 1961 

(Mitchell, 1961), Mitchell’s theory slowly gained acceptance and he was awarded the Nobel 

Prize in 1978. It is now accepted knowledge (Nicholls & Ferguson, 2013) that the energy 

of electrons passed down the electron transport chain from NADH and FADH2 in the 

inner membrane of mitochondria to O2 powers the transfer of protons outwards across the 

membrane, establishing an electrochemical gradient (pH and electrical membrane potential). 

Subsequently, the energy of this gradient (a proton motive force) is used to resynthesize 

ATP.
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ATP synthase.

To complete the process, a link was needed between the electrochemical gradient across 

the inner mitochondrial membrane and the actual resynthesis of ATP. Beginning in the 

1950s, Paul Boyer became interested in an enzyme in the mitochondrial membrane, ATP 

synthase (Allchin, 2002). Along the way, he claimed to have found the long-sought missing 

intermediate, but he turned out to be wrong (Allchin, 2002), later stating, “I became overly 

enthusiastic…” and “I should have been more cautious”. In the 1970s, Boyer maintained 

a conformational hypothesis for oxidative ATP synthesis while discounting Mitchell’s 

chemiosmotic theory, later calling himself a “holdout”. Ultimately, however, Boyer found 

that chemiosmotic and conformational concepts were not mutually exclusive but were 

indeed complementary. Accordingly, in 1997 he shared the Nobel prize with John Walker 

for discovering the ATP synthase, “A Splendid Molecular Machine” (Boyer, 1997, 2002), 

so it is now accepted that the ATP synthase is a molecular, rotary engine that mints out 

ATP as H+ ions move through its turbine across the inner mitochondrial membrane into the 

mitochondrial matrix.

NADH shuttles.

Most of fuel metabolism results in NADH formation within the mitochondrial matrix 

where its electrons can be passed readily to Complex I of the electron transport chain. 

However, this is not the case for NADH that is formed in the cytosol; i.e., from glycolysis. 

The inner mitochondrial membrane is impermeable to NADH as shown by Lehninger 

(Lehninger, 1951; Lehninger, 1970). As described by Dawson (Dawson, 1979), given 

this impermeability, there must be a way to re-oxidize cytosolic NADH within the same 

compartment by transferring its reducing equivalents to another acceptor. Moreover, the 

cytosol is orders of magnitude more oxidized than the mitochondrial matrix (Williamson 

et al., 1967). This means that reducing equivalents on cytosolic NADH must “go uphill” 

energetically when they are transferred from the cytosol into the matrix. In other words, 

cytosol-to-matrix electron shuttling requires the input of a substantial thermodynamic 

driving force. These energetic realities led to the concept of energy driven shuttle systems. 

While several such shuttles have been proposed (Dawson, 1979), the most well-established 

of these are the glycerol-3-phosphate shuttle (Estabrook & Sacktor, 1958) and the malate­

aspartate shuttle (proposed by Borst in 1963 (Borst, 1963b, a, 2006)). In the malate-aspartate 

shuttle, the exchange of anionic aspartate for undissociated glutamate (one negative charge 

exported from the matrix per exchange) is driven by the membrane potential (ΔΨ) (Bremer 

& Davis, 1975), which at rest is roughly 180 mV, matrix-negative (Nicholls & Ferguson, 

2013). In the glycerol-3-phosphate shuttle, the energy driving cytosolic electrons on NADH 

into the mitochondrion arises from the fact that a cytosolic NAD+-linked oxidation/reduction 

with a midpoint potential of −320 mV transfers electrons to the ubiquinone pool of the 

ETC, with a much less negative midpoint potential close to zero (Nicholls & Ferguson, 

2013). The glycerol-3-phosphate shuttle therefore transfers electrons into the ETC beyond 

the 4 protons pumped by Complex I; electron advancement toward O2 is thus not subjected 

to the immense “backpressure” energy equivalent of 4 protons. The lower P:O yield of 

the glycerol-3-phosphate shuttle energetically pays for this steep redox gradient favoring 

electron transfer from cytosol to mitochondrion.
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History of mitochondrial structure.

In mitochondria, as in all of physiology and biochemistry, structure informs function. In 

the 1840s, not long after the discovery of the cell nucleus, there are records of intracellular 

structures that were probably mitochondria (Ernster & Schatz, 1981). However, Rudolf 

Albrecht von Kölliker is given credit for discovering mitochondria in 1857 (Schatz, 

2013) and they were subsequently described in greater detail by Richard Altmann in 

1890 (Altmann, 1890; Ernster & Schatz, 1981; Schatz, 2013). Specifically, Altmann 

noted their widespread appearance in different cells and referred to them as “bioblasts.” 

That same year, Retzius coined the term “sarcosomes” to refer specifically to these 

structures in cardiac muscle (Cleland & Slater, 1953). In 1898, Benda called these 

structures “mitochondria,” based on a Greek derivation from “mitos” meaning “thread” 

and “chondros” meaning “granule” (Ernster & Schatz, 1981). In Benda’s view, this was 

how the mitochondria appeared during spermatogenesis (Benda, 1898). Subsequently, based 

on electron micrographs, mitochondria were considered to be the elliptical (Kirkwood et 

al., 1986) “bean-shaped” organelles that permeate illustrations of cell structure and remain 

today in most biochemistry textbooks. However, between the late 1960’s and 1980s, several 

researchers had reported that mitochondria appeared as a reticulum, or network, in numerous 

tissues, including the liver, nephron, and myocardium (summarized by (Kirkwood et al., 

1986)), and it was proposed, presciently, that connected mitochondrial networks could 

facilitate energy distribution throughout the cell in the form of mitochondrial membrane 

potential (Skulachev, 1969; Skulachev, 1990). Indeed, Skulachev’s group reported in 1978 

(Bakeeva et al., 1978) that mitochondria could form physically connected networks across 

the entire width of the rat diaphragm muscle fiber, and several years later Brooks’s lab 

(Kirkwood et al., 1986) also observed that mitochondria appeared as a reticulum in rat limb 

skeletal muscle. However, while Kayar and coworkers (Kayar et al., 1988) found evidence 

of connected mitochondrial networks in some horse hindlimb muscles, they concluded that 

mitochondria did not exist as a continuously connected reticulum and suggested that more 

quantitative assessments of mitochondrial connectivity were needed to adequately address 

distribution of cellular energy.

Origin, controversy, and debate surrounding the intracellular lactate shuttle

Classic dogma of mitochondrial lactate metabolism.

The currently taught view (Nelson & Cox, 2017) of mitochondrial lactate metabolism 

follows. First, pyruvate is incorrectly viewed as the end product of glycolysis instead 

of lactate (Rogatzki et al., 2015; Ferguson et al., 2018). This misconception is derived 

from a failure to appreciate the extremely high activity of lactate dehydrogenase (LDH) 

and the fact that the LDH reaction equilibrium is significantly in the direction of lactate 

(Quistorff & Grunnet, 2011; Rogatzki et al., 2015; Bak & Schousboe, 2017; Ferguson et 

al., 2018). Second, lactate formation is incorrectly considered to be the primary fate of 

pyruvate only when O2 levels are low; i.e., hypoxia; this permits the regeneration of NAD+ 

and the continuation of glycolysis in the presence of O2-limited mitochondrial function. 

Remarkably, some modern biochemistry textbooks do not even consider the idea of lactate 

oxidation by mitochondria and instead view lactate disposal to be handled almost entirely 

via the Cori cycle (Nelson & Cox, 2017). Also, according to current dogma, when the O2 
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supply is sufficient, pyruvate is transported across the inner mitochondrial membrane by 

the pyruvate transporter (Bricker et al., 2012; Divakaruni & Murphy, 2012; Herzig et al., 

2012) while reducing equivalents (electrons) are transferred across the inner membrane via 

the malate-aspartate and glycerol-3-phosphate shuttles, with the contribution of each varying 

according to the tissue type. Pyruvate is subsequently converted to acetyl-CoA for entry into 

the Krebs cycle while the shuttled cytosolic reducing equivalents enter the mitochondrial 

respiratory chain. There is no mention of an intracellular lactate shuttle or of the possibility 

of LDH in the mitochondrial matrix according to this classic dogma.

The basics of an LDH near equilibrium condition.

LDH catalyzes the reversible oxidation/reduction of lactate/pyruvate. Written in the 

direction of pyruvate (Pyr−) reduction to lactate (La−) the reaction is as follows:

Pyr‐ + NADH + H+ La‐ + NAD+ (1)

Because myocyte cytosolic pH remains very close to pH 7.0 from resting through moderate 

exercise intensity conditions, the remainder of this basic introduction will be restricted to pH 

7.0, in which case the proton can be omitted:

Pyr‐ + NADH La‐ + NAD+ (2)

Written in this direction, the mass action ratio (MAR) of the reaction is:

MAR = [La][NAD]
[Pyr][NADH] (3)

If the reaction is at equilibrium, then the MAR is equal to the equilibrium constant, Keq:

Keq = [La]eq[NAD]eq
[Pyr]eq[NADH]eq

(4)

Krebs and coworkers (Williamson et al., 1967) determined the value of the LDH Keq under 

physiological conditions and pH 7.0 to be about 9000. The actual free energy change (ΔG) 

of the reaction can be written as:

ΔG = 2.303RT ∗ LogMAR
Keq

(5)

where R is the gas constant and T is the absolute temperature. Equation 5 clearly shows 

that an MAR equal to the Keq gives a ΔG of zero. However, if the MAR < Keq, then ΔG 

is negative and the reaction can spontaneously advance in the direction of Equation 2 if a 

pathway exists: pyruvate → lactate. Conversely, if MAR > Keq then a positive ΔG value 

results and the reaction as we have written it will proceed spontaneously in the opposite 

direction: lactate → pyruvate. In other words, the LDH reaction can be easily pushed to 
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either lactate → pyruvate or pyruvate → lactate without the requirement for any special 

process or mechanism.

LDH is a very high activity enzyme.—LDH is a very high activity cytosolic enzyme in 

many tissues, skeletal muscle being a prime example. The maximal velocity of reaction 

(Vmax) of LDH in mammalian skeletal muscle is routinely measured at around 500 

mmol·min−1·kg muscle−1 (Rasmussen et al., 2002). This immense catalytic potential ensures 

the maintenance of near equilibrium (MAR ≈ Keq) at rest and during moderate exercise. We 

will see below that aerobic glycolytic flux in resting human muscle after an overnight fast 

may be in the vicinity of 5 μmol glucosyl units·min−1·kg−1 (thus, pyruvate and cytosolic 

NADH each produced at 10 μmol·min−1·kg−1). The LDH Vmax exceeds this flux by 

500/0.01 = 50,000-fold! During moderate knee extension exercise aerobic glycolytic flux 

rises dramatically, by 150-fold, but LDH catalytic potential is still about 340 times higher. 

Not surprisingly, abundant evidence supports the contention that LDH maintains a near 

equilibrium state under most conditions (Donovan & Brooks, 1983; Connett, 1987; Katz & 

Sahlin, 1988; Wolfe et al., 1988). An obvious feature of very high activity, near-equilibrium 

steps like LDH is that net flux in either direction will promptly and strongly advance in 

response to small changes in substrate or product concentrations; i.e., small changes in the 

MAR (Kushmerick, 1998).

Cytosolic lactate/pyruvate and NAD+/NADH ratios.—Routine assays of [La−] and 

[Pyr−] in resting skeletal muscle yields a ratio (lactate/pyruvate) of about 10-15 (Katz & 

Sahlin, 1988). Assuming LDH equilibrium and lactate/pyruvate = 10, we can therefore 

rearrange Eq (4) to estimate the cytosolic redox state:

NAD+ ∕ NADH = 9000 ∗ (1 ∕ 10) = 900 (6)

In marked contrast, the NAD+/NADH in the mitochondrial matrix is closer to 1.0 (Katz 

& Sahlin, 1988); i.e., the matrix is much more reduced than the cytosol (corresponding 

redox potentials are: cytosol = −229 mV and matrix = −320 mV). The transfer of 

electron pairs from the cytosol into the matrix, an obligatory step of aerobic glycolysis, 

therefore must overcome a substantial thermodynamic “hill” of −91 mV: ΔEh = −320 

– (−229) = −91 mV, which, using the Faraday constant converts to a substantial and 

unfavorable free energy change of +4.2 kcal per mol e− pair. What driving force “pushes” 

electron pairs up this steep redox gradient? In the malate-aspartate electron shuttle, anionic 

aspartate is electrophoretically driven from the matrix by the membrane potential, ΔΨ, 

in exchange for uncharged glutamic acid. In this example, a ΔΨ value of 182 mV 

(matrix-negative) would provide the minimum required −4.2 kcal of driving force. The 

exported aspartate transaminates with 2-oxoglutarate, generating cytosolic oxaloacetate, 

which oxidizes cytosolic NADH to NAD+ at cytosolic malate dehydrogenase and forms 

malate (Figure 1). The electroneutral exchange of this malate for 2-oxoglutarate export 

completes the malate-aspartate shuttle. Thus, ΔΨ-driven aspartate thermodynamically 

accounts for the existence of the redox gradient across the inner membrane and provides 

the driving force for the uphill uptake of electron pairs produced by the glycolytic pathway 

(Nicholls & Ferguson, 2013).
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The transition from rest to heavy exercise demands a number of coordinated adjustments. 

Mitochondria must consume O2 and produce ATP at rates proportional to the energy 

demand. Unlike heart, in skeletal muscle this coupled adjustment requires a fall in cellular 

energy state (ATP free energy, ΔGATP) (Connett & Honig, 1989). While energetic driving 

forces are falling, however, glycolytic flux dramatically rises, requiring commensurately 

increased rates of cytosol-mitochondria electron shuttling. It is therefore not surprising that 

the lactate/pyruvate ratio begins to rise as activation of the glycolytic pathway dramatically 

accelerates. Rising lactate/pyruvate, and hence falling cytosolic NAD+/NADH, means a 

more negative cytosolic redox potential, thus diminishing the magnitude of the energetic hill 

that electron transfer must overcome (Katz & Sahlin, 1988; Connett et al., 1990).

Aerobic glycolysis.

We define aerobic glycolysis to mean that the products of the glycolytic pathway are 

oxidized to CO2 and H2O by mitochondria. These products are: 1) the electron pairs 

collected on NAD+ to form cytosolic NADH at glyceraldehyde-3-phosphate dehydrogenase 

and 2) lactate formed by LDH. However, there is a continuous reversal from lactate back 

to pyruvate; aerobic glycolysis therefore simply describes a match between the cytosolic net 

formation rates of these glycolytic products and the mitochondrial rates of their uptake and 

oxidation. Any mechanism(s) proposed to account for this metabolic coordination must be 

consistent with the kinetics and thermodynamics of the participating reactions.

Dynamic range of aerobic glycolysis.

After an overnight fast, human skeletal muscle rests at an O2 consumption rate of 

roughly 0.1 mmol O2·min−1·kg−1 with a respiratory quotient less than 0.80 (Andres 

et al., 1956), which mathematically converts to an aerobic glycolytic flux of slightly 

less than 5 μmol glucosyl units·min−1·kg−1. This carbon flow would be attended by 

a cytosolic-to-mitochondrial electron shuttling rate of roughly 10 μmol NADH electron 

pairs·min−1·kg−1. Contractile activity imposes severe challenges to the maintenance of 

this cytosolic-mitochondrial NADH transport. Skeletal muscle possesses an expansive 

aerobic scope (>100-fold) and myocytes switch fuel selection toward greater reliance on 

carbohydrate as the ATP turnover rate rises. These two factors multiply to yield an extremely 

large dynamic range for aerobic glycolysis. For example, the quadriceps of untrained 

healthy males performing exercise on a knee extension ergometer at 65% of peak aerobic 

power (~11 W·kg−1 external power output or ~ 167 ml O2·min−1·kg active muscle−1) have 

glycolytic fluxes around 735 μmol glucosyl units·min−1·kg−1, with net lactate efflux of 

essentially zero (Helge et al., 2007). With these data we can estimate that mitochondria in 

untrained skeletal muscle can adjust their rates of pyruvate and cytosolic electron pair uptake 

and oxidation across at least a 150-fold dynamic range from rest to heavy exercise.

The intracellular lactate shuttle hypothesis.

Abundant data support the contention that the initial products of glycolysis (i.e., pyruvate 

and cytosolic NADH) equilibrate with lactate and NAD+ more or less completely at the 

cytosolic LDH reaction; in fact, we contend that lactate rather than pyruvate is the final 

end product of glycolysis (Rogatzki et al., 2015). Thus, the ultimate combustion of lactate 

obviously takes place in the mitochondria; there is no question about that simple conclusion. 
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What has raised this issue to the level of controversy in modern times was the published 

hypothesis and supporting data (Brooks et al., 1999) that mitochondria are capable of 

transporting lactate across the inner membrane and oxidizing it without the support of the 

cytosolic-mitochondrial electron shuttles (i.e., the malate-aspartate and glycerol-3-phosphate 

shuttles). Thus, as articulated by Brooks et al. (Brooks et al., 1999) for striated muscle, this 

intracellular lactate shuttle posits that lactate can be oxidized by LDH in the mitochondrial 

matrix. In the intracellular lactate shuttle, neither the malate-aspartate shuttle nor the 

glycerol-3-phosphate shuttle (Figure 1) would be necessary. Lactate transport into the 

mitochondrial matrix would simultaneously deliver both pyruvate and cytosolic reducing 

equivalents from the cytosol into the mitochondrial matrix. In that report (Brooks et al., 

1999), mitochondria isolated from rodent skeletal muscle and heart given only saturating 

ADP, lactate, and malate to prime the TCA cycle, consumed O2 at rates greater than that 

of pyruvate + malate. Indeed, it was reported that the lactate + malate O2 consumption 

rate exceeded that of pyruvate + malate by roughly the increment expected on the basis 

of the additional NADH electron pair from the (matrix) LDH reaction. To be clear, no 

NAD+ was added to the respiration medium and, thus the only NAD+ pool present in these 

experiments would be expected to be limited to the mitochondrial matrix. Moreover, in both 

skeletal and cardiac muscle, oxamate, a well-known LDH inhibitor, both blocked lactate 

+ malate O2 consumption and increased O2 consumption of pyruvate + malate (as would 

be predicted if matrix LDH were in competition with pyruvate dehydrogenase in a highly 

reduced compartment, such as the mitochondrial matrix). These data, which provided a new 

context and implied significance for the term “mitochondrial lactate oxidation,” were not 

simply surprising and unprecedented; they were fundamentally at odds with contemporary 

understanding of how glycolysis and mitochondria interact.

Experimental approaches to study the intracellular lactate shuttle in isolated mitochondria.

As early as 1971, the possibility of such a lactate shuttle was suggested by Baba and 

Sharma (Baba & Sharma, 1971) following the observations of a histochemical association 

of LDH with mitochondria in heart and skeletal muscle. However, they tempered their 

conclusions by writing “We observed … no [LDH] activity in the mitochondrial matrix,” 

and “Permeability of the mitochondria to lactate has not been well-demonstrated, and the 

lactate shuttle remains a pure speculation.” Subsequently, despite some evidence-based 

conclusions about the existence of mitochondrial matrix LDH in heart and skeletal muscle 

(reviewed in (Ferguson et al., 2018)), most groups have failed to identify support for 

mitochondrial matrix LDH congruent with an intracellular lactate shuttle (Baba & Sharma, 

1971; Brandt et al., 1987; Rasmussen et al., 2002; Sahlin et al., 2002; Ponsot et al., 2005; 

Yoshida et al., 2007; Elustondo et al., 2013; Jacobs et al., 2013; Fulghum et al., 2019; 

Altinok et al., 2020).

One key issue that is often not clear in these studies is the definition of “mitochondrial 

LDH”, particularly with respect to whether it means specifically that LDH resides in the 

mitochondrial matrix. Unfortunately, some studies which have concluded the existence 

or absence of mitochondrial LDH, and implied the physiological relevance thereof, 

base such claims on experiments involving the continuous monitoring of added NADH 

autofluorescence in isolated mitochondria (Valenti et al., 2002; De Bari et al., 2004; Atlante 
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et al., 2007; De Bari et al., 2010; Pizzuto et al.,2012; Passarella et al., 2014; Paventi 

et al., 2017). As discussed previously (Ferguson et al., 2018). aerobic re-oxidation of 

externally added NADH has been consistently observed in isolated mitochondria of diverse 

origin without, or before the addition of any other substrates, including lactate (Rasmussen, 

1969; Bernardi & Azzone, 1981; Szczesna-Kaczmarek et al., 1984; Jorgensen et al., 1985; 

Rasmussen & Rasmussen, 1985; Nohl, 1987; Atlante et al., 1999; Rasmussen et al., 2001; 

Rasmussen et al., 2003a. b; Abbrescia et al., 2012)). While some of the earlier investigators 

suggested that this represents structural alterations of the mitochondrial (outer) membrane 

with isolation (e.g., (Lehninger, 1951; Chance & Williams, 1955c; Maley, 1957)), others 

have even suggested a physiological role for the pathway of “external NADH oxidation” 

itself (e.g., (Deshpande et al., 1961; Sottocasa et al., 1967; Rasmussen, 1969; Lofrumento 

et al., 1991). Ironically, this pathway of exogenous NADH oxidation has been observed 

to interact with the process of lactate metabolism involving LDH in isolated mitochondria 

(Deshpande et al., 1961; Szczesna-Kaczmarek et al., 1984). specifically, by reoxidizing 

NADH for the LDH reaction. Because the mitochondrial inner membrane is impermeable to 

NAD(+)(H), the observed increase in lactate oxidation with exogenous NADH implies that 

this LDH is operating outside of the matrix. With respect to the relevance in vivo however, 

it should be noted that a consistently observed characteristic among lactate-consuming 

cells is their high malate-aspartate shuttle activity (reviewed in (Kane, 2014)). Indeed, 

thermodynamic rationale and evidence from modeling in silico are presented below which 

echo experimental observations linking the malate-aspartate shuttle to aerobic glycolysis.

Subsequent to the proposal of the intracellular lactate shuttle, the Brooks laboratory 

(Hashimoto et al., 2006), using the techniques of confocal laser scanning microscopy 

and immunoblotting after immunoprecipitation in L6 skeletal muscle cells, postulated 

the presence of a lactate oxidation complex in mitochondria. Specifically, they 

reported evidence suggesting that LDH, monocarboxylate transporter 1, the single-span 

transmembrane glycoprotein CD147, and cytochrome oxidase are colocalized in the inner 

mitochondrial membrane. Importantly, they indicated that mitochondrial LDH resides on the 

outer surface of the inner membrane, a location that does not lead to the criticisms raised 

for a mitochondrial matrix location for LDH (Figure 1). Unfortunately, the major impact of 

this nuance has often been overlooked (Chen et al., 2016; Paventi et al., 2017; Young et al., 

2020).

Direct uptake and oxidation of lactate by mitochondria at rates equal to or even greater 

than pyruvate as reported by Brooks et al. (Brooks et al., 1999) was contradictory to prior 

knowledge. Notably, these results obviated a role for the electron shuttles, in the process 

eliminating the thermodynamic basis for the large redox gradient known to exist across the 

inner membrane (Veech et al., 1970). Specifically, the presence of high activities of LDH 

on both sides of the inner membrane, along with transmembrane transporters for pyruvate 

and lactate provides no driving force to account for the observed steep redox gradient 

across the inner membrane. In fact, this intracellular lactate shuttle would create a short­

circuit pathway to dissipate the cytosolic-matrix redox gradient generated by the malate­

aspartate and glycerol-3-phosphate shuttles, as proposed by Sahlin and colleagues (Sahlin 

et al., 2002). The reality is that the transmembrane redox gradient is, in fact, observed, 

and its existence was an important motivating factor to explore the malate-aspartate and 
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glycerol-3-phosphate electron shuttles and their energy dependence. Direct mitochondrial 

lactate oxidation is thermodynamically inconsistent with well-known observations.

Insights from modeling in silico.

To further explore the thermodynamic consequences of matrix LDH activity, we have 

adapted the computational model of Wu and coworkers (Wu et al., 2007). We simulated 

the oxidation of two substrate combinations, pyruvate + malate (10 mM + 2.5 mM) and 

lactate + malate (10 mM + 2.5 mM). The mitochondrial matrix LDH Vmax parameter was 

varied from zero to 100% of the pyruvate dehydrogenase (PDH) Vmax (LDH Vmax/PDH 

Vmax values of 0, 0.01, 0.025, 0.05, 0.10, 0.25, 0.50, 0.75, and 1.0). A simple two substrate 

- two product rate expression was used to simulate matrix LDH activity with the following 

KM values for pyruvate, NADH, lactate, and NAD+, respectively: 20 μM, 15 μM, 3.2 mM, 

and 20 μM. A lactate-specific monocarboxylate transporter with kinetics identical to the 

pyruvate carrier was also installed in the inner membrane. We emphasize that this approach 

in silico simulated the behavior of isolated skeletal muscle mitochondria during conventional 

polarographic assessment of respiration. The respiration buffer contained mitochondria, 

substrates (malate plus either pyruvate or lactate), and then ADP was added to induce 

maximum respiration. No NAD+ and no enzymes were present in the respiration buffer 

medium

All simulations used the same protocol: Mitochondrial protein, 0.1 mg, was pre-incubated 

with substrates for 180 sec in 2.0 ml of respiration medium. A 1.0 μmol bolus of ADP (0.5 

mM final concentration) was then added and model output was followed for an additional 

490 sec. In the first simulation, shown in Figure 2A, matrix LDH activity was set to zero and 

pyruvate + malate substrates were added. As can be seen in Figure 2A, the model accurately 

simulates what is routinely observed in laboratories around the world: Highly functional 

mitochondria with state 3 respiration in the vicinity of 400 nmol O2·min−1·mg−1, P:O of 

roughly 2.5, and respiratory control ratio close to 10. In the second simulation, shown in 

Figure 2B, lactate + malate is the substrate and matrix LDH Vmax is set equal to PDH 

Vmax. The model predicts that hypothetical mitochondria with matrix LDH activity equal to 

pyruvate dehydrogenase would indeed have state 3 rates that exceed pyruvate + malate, as 

was reported by Brooks et al. in 1999 (Brooks et al., 1999). Further, P:O and respiratory 

control ratio values would also equal or exceed pyruvate + malate.

However, the third simulation (Figure 2C) shows that matrix LDH activity dramatically 

impairs the oxidation of pyruvate + malate! In this simulation, matrix LDH Vmax equals 

PDH Vmax and pyruvate + malate are the added substrates. In this case, state 3 is only 85 

nmol O2 ·min−1·mg−1 or about 23% of what is routinely observed in actual mitochondria 

experiments (i.e., when LDH activity equals zero, as simulated in Figure 2A). Due to this 

extremely low rate, P:O and respiratory control ratio cannot be determined. Figure 2D shows 

the results of a complete titration of matrix LDH/PDH catalytic potential on simulated state 

3 rates with either pyruvate + malate or lactate + malate addition. Simply stated, Figure 

2D shows that pyruvate and lactate oxidation are mutually exclusive; progressively higher 

matrix LDH activity would increase direct mitochondrial lactate oxidation, but it would 

also progressively impair the capacity to oxidize pyruvate to rates far below those routinely 
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measured in laboratories. The simulation results therefore strongly reject the idea of matrix 

LDH activity in skeletal muscle mitochondria.

Figure 3 is a schematic diagram illustrating the effect of hypothetical matrix LDH activity 

on the metabolism of lactate (Figure 3A) and pyruvate (Figure 3B). In both scenarios it 

is important to remember the thermodynamics of the LDH reaction. Because the LDH 

equilibrium constant (Keq) favors lactate and NAD+ formation, net lactate → pyruvate flux 

can only proceed when matrix [Pyr−] and [NADH] are sufficiently low. This requirement 

is not a problem during state 3 respiration when the extramitochondrial energy state is 

unphysiologically low (saturating ADP) and there is therefore much less “backpressure” 

opposing oxidative phosphorylation. As a result, as shown in Figure 3A, the LDH reaction 

advances toward net pyruvate and NADH formation and these products, in turn, fuel flux 

through pyruvate dehydrogenase, the TCA cycle, the ETC, and the synthesis/export of ATP. 

Moreover, the low matrix [Pyr−] minimizes the loss of pyruvate carbon to the buffer via 

the mitochondrial pyruvate carrier. In dramatic contrast, Figure 3B illustrates the effect 

that matrix LDH would have when pyruvate is the fuel added to the buffer. In this case, 

the LDH Keq dictates the accumulation of extremely high matrix [La−] and [NAD+]. As 

a result, a substantial reduction of pyruvate to lactate proceeds at the expense of NADH 

generated by the TCA cycle. When pyruvate is the added fuel, the overall impact of matrix 

LDH is therefore the oxidation of the matrix (decreased “redox pressure” down the ETC) 

and the export of pyruvate carbon as lactate via the monocarboxylate transporter. These 

de-energizing effects of matrix LDH are especially evident when the buffer ATP/ADP ratio 

is maintained in a physiologically relevant range; i.e., the region of control between states 

3 and 4 (not shown). Overall, these results in silico demonstrate that an active LDH in the 

matrix would render mitochondria nearly incapable of oxidizing pyruvate, a result which 

is inconsistent with decades of studies from hundreds of laboratories using both isolated 

mitochondria and permeabilized cells in which the mitochondrial reticulum remains intact.

Modern view of mitochondrial structure and its implications.

Recently, networks of many adjacent, physically connected mitochondria were reported 

in mouse heart, and oxidative and glycolytic skeletal muscles and researchers have 

meticulously shown that these networks of mitochondria allow rapid cellular energy 

distribution through conduction of the mitochondrial membrane potential (Glancy et al., 

2015; Glancy et al., 2017; Bleck et al., 2018). However, in these studies, connectivity of the 

mitochondrial power grid varied by cell type. For example, oxidative skeletal muscle fibers 

have fewer, larger reticula and are more connected than glycolytic fibers (Bleck et al., 2018). 

These differences likely reflect diverse approaches to balancing the energetic support system 

relative to the overall cell functions. The specific configuration of mitochondrial networks 

is critical to the cellular energy conversion process as the ability of a mitochondrion to 

provide the energy needed to support cellular function depends, in part, on its capacity to 

receive necessary substrates (e.g., fuel and O2) and to deliver its products (e.g., ATP) where 

needed. Thus, the amount, size, shape, and location of mitochondria all play a key role in 

determining mitochondrial functional capacity by regulating the spatial interactions among 

energetic sources and sinks within the cell. Mitochondrial content (the total amount of 

mitochondria in the cell, measured as volume density or number in imaging-based methods) 
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results from a balance between mitochondrial biogenesis (Wu et al., 1999), mitophagy 

(Lemasters, 2005), and the import and degradation of individual proteins and lipids, the 

latter of which is the dominant mechanism in striated muscles (Karunadharma et al., 

2015). The size of individual mitochondria is regulated in part by the balance between 

the well-known mitochondrial fission and fusion mechanisms (Nunnari et al., 1997) which 

split or merge mitochondria, respectively, and the frequency of these dynamic events can 

vary greatly by cell type. The infrequent mitochondrial fusion in adult muscle fibers, for 

instance, occurs ten-fold less often than in developing myotubes (Eisner et al., 2014). In the 

context of this review, larger, healthy mitochondria would, in theory, increase the capacity 

for mitochondrial lactate oxidation per mitochondrion.

How mitochondrial shape is regulated is not yet clear; simple fission and fusion cannot 

account for the large variation in mitochondrial shapes found within cells. Mitochondria can 

be observed as large or small spheres or as thick or thin tubules that are either straight or 

branched, sometimes all within the same cell (Bleck et al., 2018). Irregular mitochondrial 

structures such as nanotubes (Vincent et al., 2017) or donuts (Bleck et al., 2018) have been 

reported, though the functional implications are currently not well understood. Elongated 

mitochondrial shapes have relatively greater surface area-to-volume ratios than more 

compact shapes, and thus, are better equipped to interact with the surrounding environment 

which may be important for interactions between mitochondria and glycolytic outputs such 

as lactate. Mitochondria isolated from cells are spherical in nature (Hackenbrock, 1966) 

suggesting that cellular components such as the cytoskeleton may be involved in regulating 

the more complex mitochondrial shapes found within cells. Indeed, mitochondria have been 

shown to interact with microtubules and motor proteins for trafficking around the cell (Wang 

& Schwarz, 2009) and to undergo a calcium-dependent mitochondrial shape transition 

(Nemani et al., 2018) independent of fission or fusion.

Interactions among mitochondria and with other organelles or cellular structures are also 

likely to regulate mitochondrial function within cells (Murley & Nunnari, 2016). When 

two mitochondria come in close proximity with one another they can form specialized 

intermitochondrial junctions (Bakeeva et al., 1978; Glancy et al., 2015) which may involve 

cristae alignment of both mitochondria (Picard et al., 2015) and have been suggested to 

facilitate conduction of the mitochondrial membrane potential (Bakeeva et al., 1978; Glancy 

et al., 2015; Bleck et al., 2018). Mitochondrial interactions with endoplasmic reticulum 

and other organelles are known to occur at dedicated contact sites between the membranes 

of each organelle and have been shown to permit direct exchange and communication of 

signals and metabolites (Murley & Nunnari, 2016). Glycolytic enzymes such as hexokinase, 

enolase, and glyceraldehyde 3-phosphate dehydrogenase can also anchor to mitochondria 

though this appears to occur as a means to regulate apoptosis rather than to directly 

channel glycolytic flux into mitochondria (Majewski et al., 2004; Tristan et al., 2011; 

Gao et al., 2014). Enzymes of the cytosolic portion of the malate-aspartate and the 

glycerol-3-phosphate shuttles are located outside of the mitochondria (Figure 1) though 

cytosolic malate dehydrogenase is listed as part of MitoCarta 2.0 just as are LDH and four 

other glycolytic enzymes (hexokinase, glyceraldehyde 3-phosphate dehydrogenase, triose 

phosphate isomerase, and pyruvate kinase (Calvo et al., 2016).
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The internal structure of a mitochondrion also plays a large part in determining capacity 

for mitochondrial energy conversion and is likely the structural aspect most relevant 

to mitochondrial lactate oxidation. The mitochondrial outer membrane contains voltage­

dependent anion channels and other transporters that permit the flux of pyruvate, lactate, and 

NAD(+)(H) into and out of the intermembrane space, and its size and shape is regulated 

largely as described above. Within the mitochondrion is an inner membrane containing 

both tortuous cristae which can extend along the width of the mitochondrion and an inner 

boundary membrane which is closely associated to the outer mitochondrial membrane (Frey 

& Mannella, 2000). The inner membrane is the site of OXPHOS and glycerol 3-phosphate 

dehydrogenase, and also contains transporters such as the mitochondrial pyruvate carrier 

and putative monocarboxylate transporter (Ferguson et al., 2018). However, an intact inner 

membrane is not permeable to NAD(+)(H). Regulation of mitochondrial inner membrane 

structure is performed by the mitochondrial contact site and cristae organizing system 

complex of proteins and functions in tandem with the mitochondrial intermembrane space 

bridging complex (Kozjak-Pavlovic, 2017). Inside the inner membrane is the mitochondrial 

matrix which contains the mitochondrial components of the malate-aspartate shuttle and 

pyruvate dehydrogenase and the enzymes of the TCA cycle and beta oxidation which 

generate NADH and FADH2. It is currently unknown how, or if, changes in mitochondrial 

ultrastructure influence mitochondrial lactate oxidation specifically.

Summary of mitochondrial lactate bioenergetics.

In our view, lactate is the end product of glycolysis, and the final metabolic fate of lactate 

in vivo is often oxidation by mitochondria; i.e., aerobic glycolysis. Glycolytic enzymes 

produce pyruvate and NADH. Three cytosolic enzymes (LDH, malate dehydrogenase, and 

aspartate amino transferase, all possessing very high maximal reaction velocities (Vmax) 

and catalyzing fully reversible reactions, act to bring pyruvate, lactate, NAD+, NADH, 

glutamate, aspartate, 2-oxoglutarate, malate, and oxaloacetate into near equilibrium in the 

cytosol (Figure 1). All of the participating substrates can then generally diffuse freely 

through the voltage-dependent anion channels. These substrates then have access to inner 

membrane proteins: one transporter (the mitochondrial pyruvate carrier) and two exchangers 

(the glutamate/aspartate exchanger and the malate/2-oxoglutarate exchanger). One of these, 

the glutamate/aspartate exchanger, comes into near equilibrium with ΔΨ and accounts for 

the steep NAD+/NADH gradient that exists between the cytosol and the matrix. Negatively 

charged aspartate is exported from the matrix by nearly 200 mV of electrical potential. 

Outside the inner mitochondrial membrane, aspartate transaminates with 2-oxoglutarate to 

become oxaloacetic acid; the Keq of aminotransferases is close to unity. Oxaloacetic acid is 

the oxidized redox partner of malate in the malate dehydrogenase reaction. As a result, at 

rest, the oxaloacetate/malate and therefore the NAD+/NADH ratio in the cytosol, is orders 

of magnitude higher than the corresponding ratio in the matrix (Jong & Davis, 1983). The 

malate-aspartate shuttle operates near equilibrium, but it is kinetically challenged by two 

factors described elsewhere in this review: 1) the extremely high metabolic scope of aerobic 

glycolysis, and 2) the fact that a higher mitochondrial OXPHOS rate requires a fall in 

ΔΨ. Rising cytosolic lactate/pyruvate is therefore a predicted consequence of rising ATP 

turnover, hence, aerobic glycolytic flux.
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Cytosolic NADH electron pairs can also enter the ETC via the glycerol-3-phosphate shuttle. 

In this case, electrons enter the ETC at the level of the ubiquinone pool. Electrons from 

glycerol-3-phosphate therefore entirely bypass Complex I and are not subjected to the 

"backpressure" of the 4 protons that Complex I pumps. The glycerol-3 phosphate shuttle 

therefore always operates far from equilibrium and would oxidize the cytosol even more 

than the malate-aspartate shuttle, were it not for kinetic control (mainly Ca2+-mediated) on 

mitochondrial glycerol-3-phosphate dehydrogenase (Mracek et al., 2013).

To be fair, essentially all experimental models (isolated mitochondria, permeabilized muscle 

fibers) tend to display at least a minor amount of mitochondrial lactate oxidation and the 

Mitocarta (2.0) continues to list LDH as a mitochondrial protein in a variety of tissues 

(Calvo et al., 2016). Perhaps LDH (and malate dehydrogenase) localize to the cytosol-facing 

surface of the outer mitochondrial membrane (Hung et al., 2017). As previously noted 

(Gladden, 2008), Skilleter and Kun (Skilleter & Kun, 1972) employed submitochondrial 

fractionation and concluded that LDH in intact mitochondria “is probably on the outer 

side of the inner membrane” in liver. Deimann et al. (Deimann et al., 1981) used 

scanning transmission electron microscopy and found the reaction product for LDH “clearly 

identified in the intermembranous space of mitochondria” in rabbit glycolytic skeletal 

muscle. Using proteolytic disruption of isolated liver mitochondria, Kline et al. (Kline et 

al., 1986) concluded that LDH is “mainly in the outer membrane and [intermembrane] 

space.” Brandt et al. (Brandt et al., 1987) used fractionated mitochondria isolated from rat 

heart, kidney, liver, and lymphocytes with digitonin; and reported that “the mitochondrial 

LDH is located primarily in the [intermembrane] space.” Using confocal microscopy to 

view immunohistochemically stained LDH and inner mitochondrial membrane proteins in 

skeletal muscle, Elustondo and collaborators (Elustondo et al., 2013) also found evidence of 

proximity between LDH and the mitochondrial inner membrane. Depending on the integrity 

of the outer mitochondrial membrane, LDH in an intermembrane location (including on 

the outer face of the inner mitochondrial membrane) might be more or less protected. 

LDH, with a molecular weight of 134,000 would unlikely pass through an intact outer 

mitochondrial membrane that is impermeable to molecules larger than a molecular weight 

of 5000 whereas NAD+/NADH at a molecular weight of approximately 664 moves through 

readily. LDH within the intermembrane space would also be protected from destruction 

by proteases used in mitochondrial isolation (trypsin, molecular weight ≈23,000; nagarse, 

molecular weight ≈27,000) (Gladden, 2008). Taken together, these facts lead us to question 

the bioenergetic relevance of an intermembrane LDH in skeletal muscle in vivo.

While our review and modeling refer specifically to skeletal muscle, any model which 

includes LDH on both sides of an inner mitochondrial membrane equipped with a lactate 

transporter must identify the driving force that is thermodynamically competent to account 

for the steep redox gradient known to exist across the inner mitochondrial membrane. In 

fact, matrix LDH has the opposite effect. Simulations with our computational model clearly 

indicate that matrix LDH dissipates the redox gradient established by the malate-aspartate 

shuttle (not shown). The higher the matrix LDH Vmax, the more rapid the dissipation.

Whether or not a putative lactate oxidation complex located on the outer surface of the 

inner mitochondrial membrane (Hashimoto et al., 2006) has a significant role in this process 
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remains to be determined. Further experimentation is required which may or may not lead 

to a debate akin to that related to the role of creatine kinase isoforms in the phosphocreatine 

shuttle (Meyer et al., 1984).

Mitochondrial lactate metabolism in health (exercise) and disease

Exercise.

Our view is that lactate is not directly oxidized by mitochondria, but rather lactate 

must first be converted to pyruvate in the cytosol or intermembrane space. Nevertheless, 

mitochondrial density, adequate mitochondrial function, sufficient reducing equivalents, 

and O2 are relevant to lactate metabolism. In healthy individuals, exercise is typically 

the primary condition in which [La−] increases. Much attention has been devoted to the 

idea that increasing exercise intensity creates a hypoxic (anaerobic) environment that limits 

mitochondrial oxidation of fuels, creating an exaggerated dependence on glycolysis with 

subsequent lactate accumulation; i.e., an anaerobic threshold is reached (Wasserman & 

McIlroy, 1964; Wasserman et al., 1973). However, it is well-established that mitochondria 

are able to work at maximal OXPHOS rates down to very low O2 levels (i.e., PO2 = ≈2 

mmHg), and as reviewed extensively by several authors (e.g., (Ferguson et al., 2018)), 

exercising muscles are unlikely to reach those limiting PO2 values at work rates eliciting 

significant increases in muscle and blood [La−]. Therefore, the term “anaerobic threshold” is 

inappropriate and should be replaced by “lactate threshold”. Similarly, indirect assessments 

of the lacta te threshold via gas exchange should be labeled as such (e.g., “ventilatory 

threshold”, or “gas exchange threshold”).

Lactate metabolism during exercise has been reviewed extensively (e.g., (Clanton et al., 

2013; Ferguson et al., 2018)) and will not be discussed in detail here. However, it should 

be noted that if the concept of a mitochondrial reticular power grid (Glancy et al., 2015) is 

valid, this would further diminish the possibility of dysoxia (an O2 tension that is sufficiently 

low enough to limit cytochrome turnover in the electron transport chain (Connett et al., 

1990) as a cause of increased muscle and blood [La−] during most exercise intensities. 

Clanton (Clanton, 2019) has also proposed the idea of a myoglobin/nitric oxide “shield” 

working in combination with the mitochondrial power grid to reduce the potential for low 

PO2 to limit mitochondrial OXPHOS activity. While decreasing PO2 in exercising muscles 

can cause an increase in lactate production ((Lundin & Strom, 1947; Hogan et al., 1983; 

Wasserman & Koike, 1992) and see Figure 27 in (Clanton et al., 2013)), this O2 dependency 

is not due to frank dysoxia, and O2 limitation of mitochondrial function is usually a minor 

player among the causes of lactate production; e.g., increasing stimulation of glycogenolysis 

by catecholamines (see relevance to disease below).

Overall, we see skeletal muscle mitochondrial density as the major factor in the relationship 

between exercise intensity and increases in muscle and blood [La−]. When lactate 

production by the glycolytic pathway accelerates, [La−] will increase unless there are 

sufficient mitochondria to siphon off pyruvate and NADH via the mitochondrial pyruvate 

carrier and NADH shuttles, respectively. Lactate concentration will always be a balance 

between the glycolytic rate and the subsequent mitochondrial metabolism of pyruvate and 

NADH. A greater volume density of healthy mitochondria will permit lower [La−] at 
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higher glycolytic rates (engendered by higher exercise intensities). Mammalian myocytes 

can respond to endurance training with nearly 2-fold increases in mitochondrial abundance 

(e.g., (Holloszy & Coyle, 1984; Granata et al., 2018)) leading to significant decreases in 

lactate production, increased removal, and decreased net accumulation. This concept can 

be extended to include the whole body in lactate removal via mitochondrial oxidation of 

pyruvate and NADH. Intracellularly, the LDH equilibrium is maintaining [La−] higher than 

pyruvate concentration such that pyruvate transfer from cellular locations where glycolysis 

is occurring, to the mitochondrial reticula for subsequent metabolism is via the cytosol-to­

mitochondria shuttle (see Figure 10 in (Ferguson et al., 2018)).

Disease – Acute Care.

Clinicians treating illness and injury are forced to make decisions based on interpretation 

of the best available data. Unfortunately, this has led to multiple misunderstandings of O2 

uptake, lactate kinetics, and/or the role of “anaerobic metabolism” in the clinical setting. 

While a measurable increase in [La−] has remained a reliable predictor of poor outcomes in 

the clinical setting (Claridge et al., 2000), the mechanisms behind this have not been fully 

elucidated. Although an O2 limitation or intrinsic mitochondrial derangement would lead 

to increases in [La−], these remain the exception rather than the rule in clinical situations 

(Goodwin et al., 2019). By understanding the metabolic causes that are likely responsible 

for the elevation of [La−] observed in various common disease states, clinicians may not 

only improve current treatments but also devise broad strategies for more widespread 

implementation in the trauma bay, intensive care unit, or perioperative setting (Brooks, 

2018).

Although a full history of lactate in the clinical setting is well beyond the scope of this 

review, key early developments must be noted. After Berzelius noted elevated [La−] in the 

muscles of hunted stags (Ferguson et al., 2018), over 100 years of research commenced, 

much of it with the overarching theme that lactate was a waste product formed due to the 

hypoxia of exhaustive contractions, cardiac or respiratory insufficiency, or other illness, or 

some combination thereof (Ferguson et al., 2018). Hypoxia, or more accurately dysoxia, 

is often an unlikely clinical scenario, yet many clinicians often treat an elevated [La−] as 

if by definition there is an O2 limitation. It is under this misunderstanding that the term 

“occult hypoperfusion” entered the literature (Mizock, 1989). This term was introduced in 

the trauma literature to explain conditions in which trauma patients were resuscitated as 

indicated by all measurable means (e.g., hemodynamics, urine output, etc.),yet an elevated 

blood [La−] persisted, often for hours. Occult hypoperfusion is the best explanation for 

clinicians who understand an elevation of blood [La−] solely as the end result of poor 

perfusion/oxygenation. Although some clinicians believe that an unmeasured, visceral 

hypoperfusion drives this elevation in blood [La−], strong supporting data are lacking. For 

example, in experiments utilizing a series of stepwise clamps on the superior mesenteric 

artery to induce visceral ischemia in pigs, venous [La−] increased locally, but arterial [La−] 

remained unchanged, even as mesenteric artery flow was completely occluded (Tenhunen 

et al., 2001). This directly contrasts with the clinical setting often encountered, where a 

trauma or intensive care unit patient may have an elevated [La−] for hours to days without 

signs of hemodynamic insufficiency or gut ischemia. Arguments have been put forth that 
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some limitation exists at the level of the microcirculation. However, in studies designed to 

specifically test this proposition, correction of microperfusion deficits did not alter lactate 

responses (Trzeciak et al., 2008; Puskarich et al., 2016).

While the dangers of hypoxemia/dysoxia are obvious, there are also potential downsides to 

hyperoxemia. High levels of inspired O2 can cause increased formation of superoxides and 

free radicals resulting in lung injury (Ferguson, 2016; Damiani et al., 2018). As reviewed 

by Damiani and colleagues (Damiani et al., 2018), resorption atelectasis can also result 

from breathing hyperoxic gas mixtures. Further, animal models suggest that the increased 

oxidative stress of hyperoxemia may extend to systemic effects including an increase in 

inflammatory cytokines that may lead to more widespread infection and an increased 

incidence of multiple organ dysfunction (Damiani et al., 2018). There are also potential 

negative consequences for systemic blood flow control, coronary blood flow, and myocardial 

O2 consumption (Damiani et al., 2018). It is not surprising, then, that clinical reports of 

potential adverse effects of aggressive O2 therapy are beginning to appear. Specifically, 

Girardis et al. (Girardis et al., 2016) investigated the outcomes of critically ill patients with 

an intensive care unit length of stay of 72 hours or longer, and reported that intensive care 

unit mortality was lower for patients treated with a conservative protocol (maintenance of 

PaO2 between 70 and 100 mmHg or arterial oxyhemoglobin saturation (SaO2) between 

94% and 98% vs. conventional therapy (PaO2 up to 150 mmHg or SaO2 between 97% and 

100%)). Similarly, in a systematic review and meta-analysis, Chu and colleagues (Chu et al., 

2018) reported problems with liberal O2 therapy in the acute care setting. Across trials that 

included 16,037 patients, liberal O2 therapy was defined with a median FIO2 of 0.52 for a 

median duration of 8 h in comparison to conservative therapy with a median FIO2 of 0.21. 

The patient groups included those with sepsis, critical illness, stroke, trauma, myocardial 

infarction, cardiac arrest, and emergency surgery. In these acutely ill adult patients, mortality 

was actually increased in the liberal O2 condition without evidence of improving other 

important patient outcomes. These concerns about hyperoxygenation have led to some rapid 

recommendations from an international panel of experienced clinicians (Siemieniuk et al., 

2018). Specifically, the following recommendations were made:

Strong 
recommendation:

If supplemental O2 is administered, the maximum peripheral capillary O2 saturation should 
be limited to 96%.

Strong 
recommendation:

For patients with myocardial infarction or stroke, do not initiate supplemental O2 if the 
initial peripheral capillary O2 saturation is greater than 92%.

Weak recommendation: For patients with myocardial infarction or stroke, do not initiate supplemental O2 if the 
initial peripheral capillary O2 saturation is in the range of 90-92%.

From a mitochondrial perspective, it is important to remember that intracellular PO2 in 

contracting muscles during exercise has been estimated to be in the range of 2-4 mmHg 

(Richardson et al., 1998; Richardson et al., 2001) with a metabolic rate that is many times 

greater than at rest. Yes, there is lactate efflux but it is not caused by the low intracellular 

PO2 (Richardson et al., 1998). The relationship to clinical conditions is that it may be 

necessary to have severely low cellular PO2 before there is a tissue limitation or a hypoxic/

dysoxic stimulus for increased lactate production or decreased lactate removal, unless there 

is a mitochondrial abnormality. An important caveat is that none of this discussion obviates 
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the clinical concern that often accompanies a declining arterial O2 saturation. Also, whether 

other tissues in addition to skeletal muscle are similarly functional with low cellular PO2 

deserves further study.

Disease - Catecholamines and lactate.

If dysoxia is not always the cause of relevant elevations in blood [La−] in the clinic/

hospital, what are other alternatives? Perhaps the most obvious contributor is circulating 

catetcholamines (Goodwin et al., 2019). Earlier investigated by Mazzeo with regard to 

the lactate threshold during exercise (Mazzeo & Marshall, 1989), the lactate response has 

been shown to closely mirror the catecholamine response. In the trauma and critical care 

setting, this link explains how an elevation in blood [La−] can persist in the face of restored 

hemodynamics/O2 measures. Circulating catecholamines provide a mechanism by which 

skeletal muscle glycogen can be broken down and enter the blood stream as lactate, to 

be circulated and used as a fuel where needed. This critical component of the cell-to-cell 

lactate shuttle (Brooks, 2018) allows remarkable whole-body coordination in times of fight 

or flight. From the viewpoint of the individual skeletal muscle, stored muscle glycogen is 

convenient in that it is available only to that muscle cell. However, from an organismal view, 

this can be overridden when the life of the organism demands, as circulating catecholamines 

bind β-receptors on skeletal muscle cells and lead to muscle glycogen breakdown to 

lactate, which then equilibrates with the plasma and red blood cells via monocarboxylate 

transporters and then ultimately with distant sites of usage. Goodwin et al. (Goodwin et al., 

2019) summarize key evidence of the potential role of catecholamines in eliciting elevated 

[La−]s in certain clinical situations.

Despite the mechanistic misunderstanding by many, an elevated [La−] remains a harbinger 

of poor clinical outcomes. In the trauma setting, an elevated blood [La−] on presentation 

to the trauma bay or a persistent elevation in blood [La−] that is not trending downward 

within the first day portends a poor prognosis. For example, patients who presented to the 

trauma bay with arterial [La−] > 4.0mM had a mortality rate approaching 20% (Odom 

et al., 2013). Within that group, those who showed improvement within the first 6 hours 

([La−] decreased by at least 60%) had a mortality rate of 7.5%, while those with less than 

a 30% [La−] reduction had a mortality rate approaching 30%! Other studies have examined 

the same phenomenon but with absolute cut offs. As an example, trauma patients who did 

not have an absolute [La−] of 2.5 mM or less at 24 hours post-admission experienced a 

poorer survival rate (Blow et al., 1999). This relationship between an elevated [La−] in 

critical conditions and poor prognosis has remained when examined across trauma, critical 

care, and perioperative conditions (Crowl et al., 2000; Grey et al., 2013; Venkatesan et al., 

2015; Richards et al., 2016). As emphasized by Brooks (Brooks, 2018), perhaps a better 

appreciation that lactate is not simply a deadend waste product of anaerobic glycolysis but 

is instead an important intermediate that shuttles among tissues even in the presence of 

adequate O2, will lead to better treatments in acute care situations.

Disease – Mitochondriopathy.

While there are several causes of abnormal mitochondrially linked disease, a primary cause 

is mutations of mitochondrial DNA (mtDNA). Such mutations of mtDNA usually cause 
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disruptions in respiratory chain function (Schapira, 2012; Gorman et al., 2016). In other 

cases, mitochondrial dysfunction may be secondary to biochemical abnormalities induced by 

other disorders (Schapira, 2012). Given that disease-causing mutations have been reported 

in more than 230 different genes, mitochondriopathy describes a heterogeneous group of 

diseases with a variety of clinical phenotypes (Koopman et al., 2012; Schapira, 2012; Rotig, 

2014; Gorman et al., 2016). Most of these mutations affect the mitochondrial respiratory 

chain (Gorman et al., 2015; Mootha & Chinnery, 2018). The overall severity of the disease 

is likely to depend on the degree of heteroplasmy; that is, the mutated mtDNA versus 

wild-type DNA in the individual cells of a person (Gorman et al., 2016). In severe cases such 

as Leigh syndrome, children can exhibit developmental delay and die of respiratory failure 

in their first few years of life (Ferrari et al., 2017).

Despite the heterogeneity of the disease, there are some physiological/biochemical 

characteristics that are generally associated with mitochondrial malfunction. At rest, blood 

[La−] is elevated (e.g., 1.4-5.0 mM vs. ≤ 1.0 mM in controls) but the magnitude of 

the elevation varies considerably and is not a sensitive indicator of the extent of disease 

(Taivassalo et al., 2003; Robinson, 2006; Grassi et al., 2007; Gorman et al., 2016; Delaney 

et al., 2017). During exercise, blood [La−] of mitochondrial disease patients increases in a 

pattern that is similar to that of controls, but at much lower work rates (Taivassalo et al., 

2003; Grassi et al., 2007; Delaney et al., 2017). In other words, for any given work rate, 

the patients have a higher blood [La−]. While some patients overlap with healthy controls, 

in general, individuals with mitochondrial disease have a lower peak O2 uptake (V
.
O2peak); 

for example, 16 vs. 32 ml O2·kg−1·min−1 (Taivassalo et al., 2003). However, despite a lower 

peak work rate and lower V
.
O2peak, the peak cardiac output of mitochondrial disease patients 

is similar to that of controls (Taivassalo et al., 2003; Delaney et al., 2017). Additionally, 

these patients have a decreased exercise efficiency, slower pulmonary V
.
O2 on-kinetics, and a 

greater V
.
O2 slow component (Porcelli et al., 2016; Grassi et al., 2019).

Given the normal cardiac output (Q
.
) at peak exercise in combination with a reduced V

.
O2peak, 

the Fick equation (V
.
O2 = Q

.
• a‐vO2d; a‐vO2d = V

.
O2 ∕ Q

.
) illustrates that O2 extraction (i.e., 

arteriovenous O2 concentration difference = a-vO2d) is impaired in mitochondrial disease 

(Taivassalo et al., 2003; Delaney et al., 2017). In fact, Taivassalo et al. (Taivassalo et al., 

2003) reported a linear correlation between V
.
O2peak and peak systemic a-vO2d, concluding 

that exercise intolerance in mitochondrial disease patients is directly correlated with the 

severity of impaired muscle OXPHOS as reflected by the peak O2 extraction. Grassi and 

colleagues (Grassi et al., 2007; Grassi et al., 2019) used near infrared spectroscopy to 

interrogate the relative deoxygenation of skeletal muscle hemoglobin and myoglobin during 

exercise, arriving at similar conclusions. In general, deoxygenation was less at any given 

work rate, suggesting an “exaggerated” (wording of (Grassi et al., 2019)) cardiovascular 

response relative to the metabolic demand in the mitochondrial disease patients. The notion 

of higher tissue oxymyoglobin and oxyhemoglobin saturations along with higher [La−] is 

consistent with first principles. Dysfunctional mitochondria with limited respiratory capacity 

would engender elevated stimuli for increased cardiac output and local active muscle 

vasodilation. At the same time, stimuli for OXPHOS (e.g., [ADP]•[Pi]/[ATP]) would likely 
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be elevated, providing “extra” stimulation of the glycolytic pathway and increased lactate 

production. It should be noted that the acidosis accompanying elevated blood [La−] is not 

entirely negative. Acidosis shifts the oxyhemoglobin dissociation curve rightward, which in 

the periphery would assist in maintaining a higher mean capillary PO2 and thereby a greater 

driving gradient for O2 into tissues, thus improving diffusion. Without this acidosis effect, 

cardiac output might be even more hyperperfusive.

The evidence above favors a supposition of an overabundance of O2 in the tissues of those 

with mitochondrial disease. This concept segues to tantalizing new information relative to 

the role of O2 in this disease. Mootha and Chinnery (Mootha & Chinnery, 2018) note that 

high-flow O2 (i.e., rapid flow rate of supplemental O2 via a mask) is the typical response 

when a compromised mitochondrial disease patient shows up at the emergency room or 

intensive care unit. However, a screen for clustered regularly interspaced short palindromic 

repeats (CRISPR) by Jain et al. (Jain et al., 2016) directed attention to elements of the 

hypoxia response pathway. Subsequently, they (Jain et al., 2016; Mootha & Chinnery, 2018) 

altered the environmental O2 level (FIO2) in a genetic mouse model of Leigh syndrome, the 

most common pediatric form of mitochondrial disease. The results were striking; when these 

mice inspired 11% O2, as opposed to the typical ambient level of 21% O2, they regained 

body weight, achieved normothermia, and lived longer. To the contrary and unlike wild-type, 

normal mice, when the Leigh syndrome mice breathed 55% O2, they died within days 

(Jain et al., 2016; Mootha & Chinnery, 2018). Further research revealed that hypoxia-treated 

knockout mice died of neurodegeneration at about 270 days in comparison to about 60 

days for normoxiatreated mice (Ferrari et al., 2017). Further, less hypoxic regimens, such 

as 17% O2, did not prevent neuropathology, whereas 11% hypoxia appeared to reverse 

the neurological disease even in the late stages (Ferrari et al., 2017). What mechanism 

is at work? Mootha and Chinnery (Mootha & Chinnery, 2018) speculate that the relative 

abundance of O2 in the diseased mice might be limiting the activation of glycolysis and/or 

be directly toxic due to formation of reactive O2 species and enzyme inactivation. Currently, 

whether high supplemental O2 is detrimental to human patients with mitochondrial disease 

or whether hypoxia might be a treatment for such patients is unknown (Mootha & Chinnery, 

2018; Jain et al., 2019).

Using the results described above as a springboard, Ast and Mootha (Ast & Mootha, 2019) 

note the almost universal discrepancy between tissue O2 levels in vivo and the O2 levels in 

routine mammalian cell culture. While cell culture incubators typically maintain a PO2 of 

about 140 mmHg, O2 tension in human organs tends to be much lower; for example, large 

intestine (3-11 mmHg), uterus (15-19 mmHg), liver (30-55 mmHg) (Ast & Mootha, 2019), 

resting skeletal muscle (34 mmHg; (Richardson et al., 2006)), and exercising muscle (2-4 

mmHg; (Richardson et al., 1998; Richardson et al., 2001)). The PO2 in the core of untreated 

tumors might be on the order of 2 mmHg (McKeown, 2014). We have raised this concern 

about cellular O2 levels in vitro previously (Ferguson et al., 2018) and echo the sentiments 

of Ast and Mootha (Ast & Mootha, 2019) which are now more supported by actual data.
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Cancer, lactate, and mitochondrial dysfunction.

The role of lactate metabolism in cancer remains an area of intense debate. Cancers 

have long been associated with deranged glucose and lactate metabolism, with many of 

these aberrations implicating lactate as “tumorigenic” (Goodwin et al., 2014; Brooks, 

2018; Gladden, 2019). Dating back to Warburg and the Cori’s in the early 1920’s, this 

aberrant behavior of increased glucose utilization and lactate production despite adequate 

O2 has been termed “the Warburg effect” (Warburg et al., 1927; Otto, 2016). Early work 

centered on the possibility of severe mitochondrial dysfunction driving the onset of cancer 

(Otto, 2016), although it is now well known that most cancers do have normally or near­

normally functioning mitochondria (Martin et al., 1998; Moreno-Sanchez et al., 2007; Jose 

et al., 2011; Vander Heiden & DeBerardinis, 2017). Cancers are now recognized to have 

altered metabolism upstream from the mitochondria (e.g., glycolytic enzymes are elevated 

severalfold in some tumors (Moreno-Sanchez et al., 2007; San-Millan & Brooks, 2017)), 

often altering their behavior based on substrate availability, the local microenvironment, 

metabolic demands, and vascularity, although some degree of mitochondrial dysfunction 

may exist in particular cancers (Avagliano et al., 2019).

As one example of how mitochondrial function is directly affected in cancers, evidence 

supporting the role of “mitochondrial reprogramming” in various cancer types continues to 

mount. Wang et al. (Wang et al., 2019) used various breast cancer cell lines to demonstrate 

a significant uptake of glutamine during hypoxia, leading to inhibition of the electron 

transport chain and accumulation of reducing equivalents (NADH), in turn impacting 

mitochondrial respiration. Currently, mitochondria are increasingly being investigated 

for their role in tumorigenesis, although data elucidating specific mechanisms are not 

conclusive.

Finally, it should be noted that these investigations into metabolism of various cancers are 

further confounded by the difficulty in replicating the complex tumor microenvironment 

in vivo under laboratory conditions in vitro (Muir et al., 2018). We have already noted 

issues about O2 levels above. Additional confounding occurs due to the wide variety of 

metabolic behaviors that have been observed in cancer types. While lactate is now seen as 

“tumorigenic” in most cancers (San-Millan & Brooks, 2017) some tumors seem to produce 

lactate in a traditional Warburg manner, while others seem to metabolize lactate, taking 

advantage of its characteristics both as a potent fuel and signaling molecule (Gladden et al., 

2011; Goodwin et al., 2014), driving vascular endothelial growth factor and vascularity. 

For full reviews of the role of lactate in cancer, the reader is encouraged to see the 

following (San-Millan & Brooks, 2017; Vander Heiden & DeBerardinis, 2017; Brooks, 

2018; Ferguson et al., 2018; Gillies et al., 2019; Goodwin et al., 2019; Payen et al., 2019; 

Pennington et al., 2019).

Conclusion

In summary, we return to the early 20th century reports of lactate removal via O2 

consumption by Meyerhof (Meyerhof, 1927) in recovering, previously stimulated amphibian 

skeletal muscle. As detailed early in the current review, these studies presaged the discovery 

of OXPHOS in the mitochondrial reticulum. Numerous studies over the intervening 
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period of almost a century have shown that lactate is not merely a dead end waste 

product of anaerobic metabolism, but is instead a continuously produced and removed 

metabolite that circulates among essentially all cells of the body; i.e., the cell-to-cell 

lactate shuttle as so brilliantly deduced by Brooks (Brooks, 2018). Lactate is indeed 

oxidized by the mitochondrial reticulum but the weight of evidence indicates that it is 

first converted to pyruvate via the LDH reaction, which then moves across the inner 

membrane into the mitochondrial matrix via the mitochondrial pyruvate carrier. The 

electron pairs resulting from glycolysis are transferred across the inner membrane via 

the long-known malate-aspartate and glycerol-3-phosphate shuttles, both of which have 

nonequilibrium steps to maintain the large redox gradient between the mitochondrial matrix 

and the cytoplasm. Transmission of pyruvate and NADH from active intracellular glycolytic 

sites to mitochondrial consumption sites is likely facilitated by an LDH equilibrium 

throughout the cell which essentially uses lactate as the transmitted species; i.e., the cytosol­

to-mitochondria shuttle (Rogatzki et al., 2015; Ferguson et al., 2018). This means that lactate 

is the end product of glycolysis in the cytosol, but it combines with NAD+ to yield pyruvate 

and NADH in locations near the mitochondrial reticulum, but outside the inner membrane. 

Lactate metabolism is intimately tied to mitochondrial function and volume density because 

of the competition of mitochondrial components (mitochondrial pyruvate carrier and the 

NAD+/NADH shuttles) with glycolytic rate and the LDH reaction.

Blood and muscle [La−]s increase as exercise intensity increases and intramuscular PO2 

declines to the range of 2-4 mmHg. However, healthy mitochondria function well even 

at these low O2 levels such that dysoxia is rare and low O2 is likely a minor factor in 

the increasing [La−]. The exercise lactate response is very much influenced by skeletal 

muscle mitochondrial volume density. A greater presence of mitochondria allows them to 

compete favorably with the LDH reaction for the interim products of glycolysis (pyruvate 

and NADH), thus minimizing lactate accumulation.

While lactic acidosis is indeed a harbinger of dire consequences in acute and critical care 

situations, numerous studies show that high [La−] often remains even after adequate O2 

supply has been assured., Therefore, clinicians should look to mounting evidence that the 

elevated [La−] may be due to a stress response that is expressed by elevated catecholamines 

that stimulate glycolysis. Intriguingly, recent data suggest that tissue O2 supply may be in 

surplus in at least some mitochondrial diseases. For example, initial experiments in a mouse 

model of Leigh syndrome show that low O2 breathing (11% O2) improves the animals’ 

health and increases their life span. Cancer cells are voracious consumers of glucose and 

avid producers of lactate even in the presence of sufficient O2. Nevertheless, PO2 can 

be quite low at the core of tumors (e.g., 2 mmHg). These results from various lines of 

research spotlight the role (or not) of O2 in metabolism. A specific take-home message 

is that researchers studying isolated cells in vitro should carefully consider not only the 

degree to which experimental substrate concentrations and spatial constraints replicate the 

environments encountered in vivo, but also whether the level of O2 exposure is appropriate 

for the question being studied. In most cases, atmospheric air is hyperoxic for cells.
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Figure 1. 
Schematic representation of the interaction among mitochondrial electron shuttles and 

mitochondrial lactate (La−) oxidation (Kane, 2014; Ferguson et al., 2018). Mono- and 

dicarboxylate anions can move between the cytosol and the mitochondrial intermembrane 

space by crossing the outer mitochondrial membrane via the voltage-dependent anion 

channels (VDAC). Due to the action of the glycerol phosphate and malate-aspartate 

shuttles, the cytosolic NAD+/NADH ratio can be orders of magnitude greater than the 

mitochondrial matrix, but decreases during exercise along with decreasing mitochondrial 

membrane potential (ΔΨ) spanning the inner membrane (inset; (Sahlin et al., 1987)). 

The electrogenic transport of glutamate (Glu2−) across the inner mitochondrial membrane 

via the aspartate-glutamate exchanger (AGE) is a key regulator of mitochondrial lactate 

oxidation vis-à-vis aerobic glycolysis and the malate-aspartate shuttle. The putative 

mitochondrial lactate oxidation complex comprised of mLDH, CD147, cytochrome c 

oxidase, and monocarboxylate transporter is depicted (Hashimoto et al., 2006), as is 

a matrix mLDH (Brooks et al., 1999). In the text, we argue against the likelihood 

of LDH in the mitochondrial matrix and suggest that the necessity and/or role of the 

lactate oxidation complex requires further study. Abbreviations: 2-OG2− 2-oxoglutarate, 

I Complex I/NADH oxidoreductase of the mitochondrial electron system, II Complex 

II/succinate dehydrogenase of the mitochondrial electron system, III Complex III of 

the mitochondrial electron transport system, IV/COX complex IV/cytochrome c oxidase, 

AAT aspartate aminotransferase, AGE Aspartate-glutamate exchanger, Asp2− aspartate, C 
cytochrome c, cG3P DH cytosolic glycerol 3-phosphate dehydrogenase, CoA coenzyme 

A, DHAP2− dihydroxyacetone phosphate, G3P2− glycerol 3-phosphate, Glu2− glutamate, 
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LDH L-lactate dehydrogenase, Mal2− malate, MCT monocarboxylate transporter, MDH 

malate dehydrogenase, mG3P DH mitochondrial glycerol 3-phosphate dehydrogenase, 

mLDH mitochondrial lactate dehydrogenase, MOE malate-2-oxoglutarate exchanger, 

MPC mitochondrial pyruvate carrier, OAA2− oxaloacetate, PDH pyruvate dehydrogenase 

complex, Pyr− pyruvate, Q quinone, TCA cycle tricarboxylic acid cycle
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Figure 2. 
Results of modeling isolated mitochondrial energetics in silico. A) Typical experiment with 

Pyruvate + Malate, 10 mM + 2.5 mM and zero LDH in the mitochondrial matrix; B) 
Experiment with Lactate + Malate, 10 mM + 2.5 mM and matrix LDH activity set to equal 

PDH Vmax activity; C) Experiment with Pyruvate + Malate, 10 mM + 2.5 mM and matrix 

LDH activity set to equal PDH Vmax activity; D) Simulated state 3 rates with either Pyruvate 

+ Malate or Lactate + Malate as substrates as matrix LDH activity is titrated from 0% to 

100% of PDH Vmax. Complete details of the results are provided in the text. Abbreviations: 

LDH lactate dehydrogenase, PDH pyruvate dehydrogenase, P:O ratio of ATP synthesized to 

atomic oxygen consumed, RCR respiratory control ratio, JO2 mitochondrial respiratory O2 

flux, Vmax maximal reaction velocity
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Figure 3. 
A) Schematic diagram showing the effect of hypothetical matrix LDH on the oxidation 

of Lactate. Green lines show the path of energy conservation and ATP production. Red 

line shows small loss of matrix pyruvate to buffer via the mitochondrial pyruvate carrier. 

B) Schematic diagram showing the effect of hypothetical matrix LDH on the oxidation 

of pyruvate. Green lines show the path of energy conservation and ATP production. Red 

lines show loss of matrix redox pressure (LDH catalyzes the oxidation of NADH produced 

by the TCA cycle) and export of pyruvate carbon as lactate due to LDH activity and 

a monocarboxylate transporter. Abbreviations:, C V Complex V, ETC electron transport 

chain, LDH lactate dehydrogenase, MCT monocarboxylate transporter, MPC mitochondrial 

pyruvate carrier, PDH pyruvate dehydrogenase, TCA tricarboxylic acid cycle
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