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Targeted treatment for osteoarthritis: drugs and delivery system
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ABSTRACT
The management of osteoarthritis (OA) is a clinical challenge due to the particular avascular, dense,
and occluded tissue structure. Despite numerous clinical reports and animal studies, the pathogenesis
and progression of OA are still not fully understood. On the basis of traditional drugs, a large number
of new drugs have been continuously developed. Intra-articular (IA) administration for OA hastens the
development of targeted drug delivery systems (DDS). OA drugs modification and the synthesis of bio-
adaptive carriers contribute to a qualitative leap in the efficacy of IA treatment. Nanoparticles (NPs)
are demonstrated credible improvement of drug penetration and retention in OA. Targeted nanomate-
rial delivery systems show the prominent biocompatibility and drug loading-release ability. This article
reviews different drugs and nanomaterial delivery systems for IA treatment of OA, in an attempt to
resolve the inconsonance between in vitro and in vivo release, and explore more interactions between
drugs and nanocarriers, so as to open up new horizons for the treatment of OA.
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1. Introduction

As life expectancy has increased over the past half-century,
the prevalence of Osteoarthritis (OA) has been increasing
prominently. In Europe, the United States and other devel-
oped countries, 10%�15% of adults over 60 years old suffer
from OA due to the severity of the aging population, with a
significantly higher prevalence rate in older women than
older men (Bijlsma et al., 2011; Prieto-Alhambra et al., 2014;
Wallace et al., 2017). Substantial evidence indicates that age,
as the strongest risk factor for OA, interacts with multiple
risk factors throughout the pathological process. Obesity is
another non-negligible risk factor for OA, increasing the risk
by more than three times (Blagojevic et al., 2010; Silverwood
et al., 2015; Reyes et al., 2016). Obesity increases the load on
the large joints of lower limbs (hip, knee and ankle) and fur-
ther affects the biomechanics of the joints. Meanwhile, the
increase of adipokines and inflammatory cytokines caused by
obesity promotes the development of OA (Kulkarni et al.,
2016; Wang & He, 2018; Liu et al., 2019; Misra et al., 2019).
Different types of joint injury are an important basis for the
pathogenesis of OA. Long-term high-intensity exercise train-
ing is one of the susceptibility factors of OA and post-trau-
matic osteoarthritis (PTOA) is a representative type (Bodkin
et al., 2020; Rothrauff et al., 2020). Injuries of the anterior
cruciate ligament (ACL) and meniscus are the most common
causes of PTOA (Ajuied et al., 2014; Li et al., 2019; Wang
et al., 2020). Knee ligament, meniscus, muscle, bone, and
tendon injuries or surgery increase the risk of knee arthritis
by at least four times (Muthuri et al., 2011; Poulsen et al.,

2019). The joint biomechanical abnormalities caused by con-
genital or acquired joint anatomical dysfunction may lead to
the occurrence of OA under the influence of self and envir-
onmental factors. Hip dysplasia, varus and valgus, femoroace-
tabular impingement, quadriceps atrophy, lower limbs length
inequality will affect the pathological process of OA in vary-
ing degrees (Nishida et al., 2017; Wyles et al., 2017; Kim
et al., 2018; Lynch et al., 2019; Hernandez et al., 2020;
Springer et al., 2020; Xu et al., 2020). Genomic studies of OA
patients and their families have revealed new biogenetics
insights of OA pathogenesis and multiple gene loci were
found relevant to the pathogenesis of OA (Zeggini et al.,
2012). Similar to aging, changes in modern lifestyle also
affect the incidence of OA. Physical inactivity and changes in
dietary structure contribute to obesity and metabolic syn-
drome which result in abnormal regulation of bone meta-
bolic factors such as dyslipidemia, impaired glucose
tolerance and hypertension (Berenbaum et al., 2018)
(Figure 1).

2. Pathogenesis of OA

OA is the most common degenerative disease of the whole
joint, progressively affecting the articular cartilage, synovium,
subchondral bone, and periarticular tissues like ligaments,
capsule, and periarticular muscles (Glyn-Jones et al., 2015;
Martel-Pelletier et al., 2016; Sharma, 2021). The main patho-
logical manifestations are degeneration of articular cartilage,
thinning of subchondral bone, osteophyte formation around
the joint, meniscal alterations, synovial fluid inflammation,
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ligament injury, and joint capsule hypertrophy (H€ugle &
Geurts, 2017; Roseti et al., 2019). Cardinal symptoms include
pain, swelling or even deformity of the joints, stiffness (espe-
cially severe and transient morning stiffness), popping or
crepitus during joint motion, and mobility disorder (Fu et al.,
2018; Bacon et al., 2020; He et al., 2020). Traditionally, OA is
regarded as a passive degenerative disease or injury caused
by long-term wear and tear. However, new insights suggest
that OA is actually an active dynamic process arising from
imbalance of joint damage and repair. Initially, erosion
begins on the surface of the cartilage and gradually deepens
into the calcified cartilage area. During this process, chondro-
cytes attempt to repair the damage by enhancing prolifer-
ation and differentiation, but the accompanying
inflammatory response inhibits chondrocyte function. Then
the subchondral bone proliferates pathologically and erodes
the cartilage layer. The endochondral pathologic enhance-
ment of osteogenesis results in the formation of osteophytes
around the joint margins (Figure 2).

3. Management of OA

3.1. Non-pharmaceutical strategies

Almost all guidelines recommend regular and individualized
exercise in the different pathological stages of OA. The most

common exercise for OA treatment includes aquatic exercise,
aerobics, resistant exercises, multimodal and combined exer-
cise (Luan et al., 2019). However, the effect of exercise inten-
sity on the outcome of OA rehabilitation has not been fully
elucidated, especially in the acute stage of OA. Inappropriate
exercise prescription may aggravate the development of
the disease.

Physical therapy (PT) has a prominent therapeutic effect
on OA including therapeutic ultrasound, electrical stimula-
tion, phototherapy, hydrotherapy, magnet therapy, cryother-
apy and thermotherapy. PT has a significant relief effect on
the symptoms of osteoarthritis, including pain, edema, and
joint motion disorders, which is suitable for emergency man-
agement in the acute phase (de Oliveira Melo et al., 2016;
Aciksoz et al., 2017; Rothenberg et al., 2017; Langella et al.,
2018). Physical factors are also effective triggers for stimuli-
responsive NPs for controllably releasing agents in IA treat-
ment and this will be introduced blew.

OA patients usually require assistive devices to compen-
sate for decreased strength, impaired balance, pain during
movement. Common devices include splints, braces, walking
canes, functional footwear and other training equipment.
Splint shows remarkable improvement of pain relief for base-
of-thumb osteoarthritis with time dependence of efficacy
(Rannou et al., 2009; Gomes Carreira et al., 2010; Becker
et al., 2013). Daily cane use can diminish pain and maintain
a normal gait which is crucial for OA patients to preserve
joint function and muscle strength in the early stage of
rehabilitation (Jones et al., 2012; Moe et al., 2012). Although
clinical studies have yielded some positive results, questions
remain about the necessity for assistive devices and their
long-term safety.

Acupuncture is a non-pharmaceutical treatment of trad-
itional Chinese medicine (TCM). Acupuncture plays a certain
role in relieving pain and restoring function for OA treat-
ment. The therapeutic effect of acupuncture may come from
the regulation of inflammatory factors (Lin et al., 2020; Shi
et al., 2020). However, evidence showed incertitude of acu-
puncture in treating OA, in particular the obvious difference
between electroacupuncture and manual acupuncture (Wang
et al., 2020; Tu et al., 2021), and in a small sample study, no
difference was observed in the eight-week (three sessions
per week) acupuncture intervention (Lin et al., 2018). In add-
ition, non-pharmaceutical strategies include health education,Figure 1. Risk factors of OA prevalence alone with the rising of age.

Figure 2. Schematic representation of healthy knee joint structure and pathological changes of knee osteoarthritis.
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lifestyle changes such as diet, physical activity, and weight
control, and Self-management is an important measure to
prevent OA (Figure 3).

3.2. Pharmacological management

Considering that many patients with OA are unable to iden-
tify independent risk factors for intervention and there is still
uncertainty about the efficacy and adaptability of non-
pharmacological treatment. Pharmaceutical drugs remain the
primary treatment for OA including topical, oral and inject-
able intervention. First-line drugs include non-steroidal anti-
inflammatory drugs (NSAIDs), paracetamol, analgesics, capsa-
icin, and glucocorticoids and show remarkable efficacy in
symptom control (Hochberg et al., 2012; Bannuru et al.,
2019; Kolasinski et al., 2020). However, both topical and oral
drug use have certain limitations in that topical drugs have
lower systemic drug levels than oral, but they are limited by
drug penetration, retention and high-frequency medication.
In addition, long-term use of NSAIDs and cyclooxygenase 2
(COX2) is an inconvenient risk of gastrointestinal and cardio-
vascular systems (Nissen et al., 2016; Chan et al., 2017;
Solomon et al., 2017). With the deepening of research, an
increasing number of drugs are being developed for the
treatment of OA.

Another class of commonly used drugs is referred to as
cartilage protectors including glucosamine and chondroitin
sulfate products. Although some studies have shown the
anti-inflammatory and analgesic effects of chondroitin and
glucosamine in OA treatment, thus alleviating clinical symp-
toms and delaying disease progression, the effect is only bet-
ter than that of a placebo, lacking favorable evidence and
relevancy (Bruy�ere et al., 2014; Sharma, 2021). Hyaluronic
acid is a high-molecular-weight GAG in synovial fluid and
cartilage which is widely used as a viscous supplement to
lubricate joints and absorb impact. A large number of meta-
analysis results showed that the clinical efficacy and outcome

correlation of hyaluronic acid was not explicit, and the new
treatment guidelines no longer recommend hyaluronic acid
for OA treatment (Rutjes et al., 2012; McAlindon et al., 2014).

3.3. Surgical management

Surgical treatment is suitable for severe OA caused by some
specific etiological factors like trauma, congenital joint
deformity and dysplasia, osteonecrosis. Common techniques
include arthroscopic debridement and lavage, cartilage trans-
plantation, meniscus resection and arthroplasty. Arthroscopic
debridement shows obvious clinical results in elbow OA, and
joint foreign body and impingement are considered potential
indications (MacLean et al., 2013; Carlier et al., 2019; French
Arthroscopic Society, 2019). Some studies showed that
arthroscopic debridement and lavage are also effective in
the improvement of symptoms in shoulder, knee and thumb
OA (Furia, 2010; Bexkens et al., 2018; Lo Presti et al., 2020).
However, some clinical trials and the systematic review
showed unsatisfactory results for debridement and lavage
procedures that the outcomes after surgery are temporary or
no different from placebo procedures (Moseley et al., 2002;
Kirkley et al., 2008; Skelley et al., 2015). Although some min-
imally invasive procedures are well established, surgical treat-
ment is also different degrees of trauma to the joint.

Osteochondral allograft transplantation (OCA) shows
dependable improvement of pain, function and symptom
scores in chondral lesions. In multiple follow-up studies over
10 to 20 years, OCA shows significant prognostic effects,
greatly delayed the time of arthroplasty, and reduced reoper-
ation rate (Frank et al., 2017; Pascual-Garrido et al., 2017;
Stone et al., 2017; Ekman et al., 2018; Frank et al., 2018).
Nonetheless, OCA shows definitely cost-effective which
means the clinical outcomes are largely dependent on the
overall cost of the operation, particularly the cost of
the graft, which will increase the financial pressure on the
patients (Mistry et al., 2019). OCA can help athletes return to

Figure 3. Non-pharmaceutical strategies of OA.
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competition, but there is a high probability of reoperation,
requiring debridement and removal of the free body
(Crawford et al., 2019). In addition, the study found an
intractable relationship between the thickness of the graft
and the prognosis that thin grafts may result in high risk of
subchondral cysts and thicker grafts may delay osseous graft
integration after surgery (Ackermann et al., 2019).

4. Targeted nanomaterial drug delivery systems

4.1. DDS targeting the inflammation of synovium
and cartilage

Lornoxicam (Lnx) is a thienothiazine derivative NSAIDs of oxi-
cam class with properties of anti-inflammatory, analgesic and
joint repair (Berry et al., 1992; Kidd & Frenzel, 1996; Hall
et al., 2009). However, due to poor aqueous solubility and
upper digestive tract absorption, oral administration and sim-
ple interarticular injection have many restrictions, such as
gastrointestinal reactions, low absorption rate, and rapid
clearance rate (Hamza & Aburahma, 2009). Zhang (Zhang &
Huang, 2012) et al evaluated the biocompatibility, systemic
toxicity, retention time and anti-inflammatory effect of Lnx-
loaded PLGA microspheres (Lnx-MS) in papain-induced OA
rats. Lnx-MS showed remarkable retention time in joint tissue
and persistent low level in plasma during 96 hours after
injection. Lnx suspensions distribution in plasma peaked in
24 hours and they were cleared within 24 hours in joint tis-
sue. Lnx-MS was verified to be biodegradable and safe to
proliferate and differentiate chondrocytes.
Pharmacodynamics showed a reduction in joint swelling and
proteoglycan loss. Researchers used chitosan/tripolyphos-
phate MS carrying Lnx to intervene monosodium iodoacetic
acid (MIA) induced OA rats. Compared to suspensions, chito-
san MS prolonged drug delivery time to 8 days with a long-
lasting anti-inflammatory effect (Abd-Allah et al., 2016). The
optimized formula showed remarkable improvement in joint
tissues and inflammatory cytokine inhibition.

Meloxicam (Mlx) is also a hydrophobic and lipophilic
NSAID. Compared to other NSAIDs, Mlx is a preferential
inhibitor of COX2 thus resulting in slight gastrointestinal
reactions, but poor aqueous solubility limits the absorption
and bioavailability. Shohreh Fattahpour (Fattahpour et al.,
2020) et al compared two Mlx delivery systems that carboxy-
methyl chitosan-methylcellulose-pluronic hydrogel (CMC-
MC-P hydrogels) containing Mlx NPs showed prominent
biocompatibility, low degradation and swelling in compari-
son to hydrogel containing Mlx solution. The drug release
studies showed that 85%-97% of Mlx in NPs released in
37 days while hydrogel-containing solution release almost
100% after 20 days. Chondrocytes have better proliferation
and adhesion in NPs system and they are affected by the
concentration of NPs and Mlx solution.

Celecoxib (Clx) is a kind of NSAID working as a COX-2
selective inhibitor and has significant anti-inflammatory and
analgesic effects for OA (Davies et al., 2000; Hochberg et al.,
2016; Puljak et al., 2017). Compared to nonselective NSAIDs,
Clx shows certain drug safety in gastrointestinal symptoms
and renal adverse events at an appropriate dose (Chan et al.,

2010; Solomon et al., 2018; Yeomans et al., 2018). However,
long-term use of aspirin can attenuate the gastrointestinal
safety of Clx and cardiovascular safety is also a potential risk
for oral administration of Clx (Silverstein et al., 2000; Nissen
et al., 2016; Reed et al., 2018). Audrey Petit (Petit et al., 2014)
et al evaluated the biocompatibility of Clx-loaded hydrogel
carried on an acetyl-capped PCLA-PEG-PCLA triblock copoly-
mer in vitro and in vivo. The copolymer is detected thermo-
set that it stays in a sol state at room temperature and turns
into immobile gels at 37 �C. The study showed sustained top-
ical Clx release both in vitro and in vivo (90 days and 4-
8weeks) based on polymer dissolution. No damage was
observed in articular cartilage of healthy rats after subcuta-
neous injection of encapsulated Clx polymer thus revealing
this Clx-loaded polymer as a safe DDS for OA treatment.
Another formulation used endcapped PCLA-PEG-PCLA
copolymer loaded with Clx showed similar results with ace-
tyl-capped copolymer but longer release time (van Midwoud
et al., 2018). These results suggest the potential of PCLA-
PEG-PCLA for OA targeted injection treatment.

Polyesteramide (PEA) MS is another high-profile Clx-
loaded NPs. Maarten Janssen (Janssen et al., 2016) et al
reported that Clx was released sustainedly up to 80 days
in vitro and inflammation responsive release was observed in
the Hl-60 cell line. In OA-induced (ACLTþ pMMx) rats, deg-
radation of PEA MS was higher than health rats which veri-
fied inflammation responsive release again. Regrettably, no
difference was observed in cartilage degeneration changes
between 0.9% NaCl, single MS and Clx-loaded MS. A later
similar study showed that Clx-loaded PEA MS reduced the
osteophytes, subchondral ossifying, bone cysts, and synovial
inflammation in surgery-induced OA rats (Tellegen et al.,
2018). Ian J Villamagna (Villamagna et al., 2019) et al opti-
mized the structure of PEA MS and demonstrated different
toxicity in vitro and in vivo.

Recently, poly (D, L-lactic acid) (PDLLA) microparticles
(MP) and hyaluronan nanocapsules were developed to load
Clx for rats OA model research. Two different kinds of PDLLA
MP (drug in solution MP and nano-drug embedded MP)
showed good biocompatibility, drug loadings rate, entrap-
ment efficiencies and long action sustained release of Clx.
PGE2 decreased in IL-1b induced human articular synovio-
cytes after two MP interventions (Salgado et al., 2020).
Clx-loaded hyaluronan nanocapsules showed remarkable
entrapment efficiency and release time in vitro. In addition,
nanocapsules improved knee joint swelling, morphology, his-
tomorphology and inflammation in MIA-induced rats OA
model (El-Gogary et al., 2020).

Diclofenac (Dcf) is also commonly used in the targeted
treatment of OA by loading nanomaterials. Bryan B Hsu (Hsu
et al., 2014) et al first reported a new polymer–Dcf conjugate
system of biodegradable thin films using a layer-by-layer
(LBL) self-assembly process and achieved sustaining small
molecule release. Dcf is firstly activated with triethylene gly-
col (TriEG) to form a TriEG-Dcf prodrug conjugate and then
conjugated to poly (l-glutamic acid) to complete integral
PGA-TriEG-Dcf formulation assembly. After conjugating to
poly(l-lysine) to form PLL/PGA-TriEG-Dcf, the release time
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increased significantly, exceeding several months. PLL/PGA-
TriEG- Dcf showed a prominent anti-inflammatory effect by
COX inhibition and no deleterious effects appeared in syn-
thetic procedures. Adrian Sulistio et al. (Sulistio et al., 2017)
developed a new polymer-Dcf conjugate (PDCs) and found
that PDCs provide high drug loading and a sustained steady
release of Dcf. Notably, by regulating the feed ratio of PEG
co-monomers and the amount of PDCs, Dcf loading and
release kinetics can be continuously optimized to achieve
precise control. The hydrogel films of poly(n-vinylcaprolac-
tam) NPs (mPVCL) were reported temperature-responsive on
the basis of high drug loading by the LBL assembly tech-
nique (Zavgorodnya et al., 2017). After being loaded with
Dcf, different layers of mPVCL show different performance of
drug loading and release, and when (mPVCL)30 is in the artifi-
cial skin film at 30 �C (average skin temperature), the cumula-
tive drug release in 24 hours is 12 times that of 22 �C. Kuan
Zhang (Zhang et al., 2020) et al reported a dual-functional
nanospheres PNIPAM-PMPC loaded with Dcf prepared by
emulsion polymerization. PNIPAM-PMPC nanospheres show
higher drug release at 37 �C than 22 �C. Meanwhile, it has
prominent lubrication by forming a compact hydration layer
outside. Dcf-loaded PNIPAM-PMPC nanospheres have good
biocompatibility, which increase anabolic genes and inhibit
catabolic genes of chondrocytes. Toshio Kawanami
(Kawanami et al., 2020) et al developed a novel Dcf-hydrogel
conjugate system produced by 2-pyridylamino-substituted 1-
phenylethanol (PAPE) which reduced the production of the
lactam in regular ester conjugates of Dcf. Besides, this hydro-
gel conjugate has an optimizable release rate regulated by
physiological microenvironment. Recently, inartificial clay
mineral attapulgite (ATP) was used to produce an enhanced
supramolecular hydrogel by cyclodextrin pseudopolyrotaxane
(PPR) system (Ha et al., 2021). This ATP hybrid hydrogel
appears to sustained release of Dcf, good biocompatibility
and remarkable anti-inflammatory in vivo test.

Etoricoxib (Ecx) is a highly hydrophobic selective inhibitor
of COX-2 and is commonly used for acute pain caused by
rheumatoid arthritis and OA. However, due to low solubility,
severe pH dependence, and cardiovascular risk, oral or sys-
temically administration of Ecx remains many challenges
(Okumu et al., 2009). Polycaprolactone (PCL) MP is early used
for Ecx-loaded targeted delivery. PCL MP showed satisfactory
biocompatibility, hypotoxicity and long-term sustained
release in vivo and in vitro tests (Arunkumar et al., 2016a).
Loading PCL MP with chitosan gel to form novel injectable
gel MP can enhance the duration of Ecx in synovial
(Arunkumar et al., 2016b). Pingju Liu (Liu et al., 2019) et al
developed novel PLGA-PEG-PLGA copolymer NPs loaded
with Ecx. NPs showed sustained release in vitro and signifi-
cant anti-inflammatory effects in subchondral bone, syno-
vium, and cartilage in vivo. Alaa H Salama (Salama et al.,
2020) et al reported Ecx-loaded PLA-CS NPs synthesized from
polylactic acid and chitosan hydrochloride. By adjusting the
ratio of surfactant, the formula with the smallest particle size
and the most obvious slow-release effect was optimized.
PLA-CS NPs showed cytocompatibility and enhanced ALP
activity in vitro test.

In addition to chemically synthesized nanomaterials,
organometallic materials are also used for drug-loaded tar-
geted therapy. A UiO-66 metal-organic framework (MOF) was
used as DDS for ketoprofen by introducing functional groups
(NH2, NO2) (Li et al., 2019). Ketoprofen-loaded UiO-66-NH2

showed good biosafety and sustained drug release. NSAIDs
are relatively mature in delivery systems research (Table 1).

4.2. DDS targeting cartilage protection and
regeneration

Diacerein (Dcn) is a chondroprotective agent metabolized by
acetyl esterases and it exerts anti-inflammatory and cartilage
protective effects by metabolizing rhein (Jain et al., 2015;
Lohberger et al., 2019). Dcn does not affect the production
of prostaglandins, and there are few reports of gastrointes-
tinal disorders, so it is recommended as a first-line drug for
OA, especially for patients contraindicated to NSAIDs (Bartels
et al., 2010; Pavelka et al., 2016). However, low water-solubil-
ity limits the oral bioavailability of both diazepine and rhein.

Achint Jain (Jain et al., 2013) et al developed Dcn-loaded
solid lipid NPs (Dcn-SLN) by ultrasonication technique and
characterized its physicochemical properties. Dcn-SLN shows
sustained drug release in vitro and high bioavailability of oral
management in a rat model. Mubashar Rehman (Rehman
et al., 2015) et al optimized Dcn-SLN by mixing proportion-
ally of solid and liquid lipids to form binary SLNs. This novel
formula demonstrates not only sustained Dcn release but,
more importantly, rapid release at high temperatures. This
thermoresponsive release property makes it possible to com-
bine it with OA thermal therapy. In subsequent studies, Dcn-
loaded niosomes and self-nano emulsifying gel based on
GLC and TPGS were successively developed (El-Say et al.,
2016; Eltobshi et al., 2018). Both DDS showed good drug
release performance in vitro and anti-inflammatory effect
in vivo after optimization. Dcn or rhein-loaded PLGA NPs
showed excellent biocompatibility and inflammatory inhib-
ition in vitro (G�omez-Gaete et al., 2017; Jung et al., 2020).
Dcn-loaded PLGA NPs could effectively protect the cartilage
injury and inhibit the progression of inflammation after inter-
articular injection in vivo. Diana E Aziz (Aziz et al., 2018) et al
developed a novel Dcn delivery system using elastosomes
for transdermal delivery thereby avoiding oral adverse effects
(Table 2).

Chondroitin sulfate (CS) is a sulfated GAG and an import-
ant component of the cartilage extracellular matrix (Alessio
et al., 2021). It is widely used in the adjuvant therapy of OA
due to its anti-inflammatory, anti-oxidative and anti-apop-
totic effects (Henrotin et al., 2010). Studies showed that poly-
mer-modified CS significantly increased the inter-tissue
retention time. CS-encapsulated PLGA copolymers with dif-
ferent lactide and glycolide ratios showed different CS burst
releases, and this may be potential for controlled drug
release (Jiang et al., 2011). Priyanka Dwivedi (Dwivedi et al.,
2015) et al combined gold NPs with CS to reinforce drug
delivery. AuNps-CS was demonstrated to enhance chondro-
cyte proliferation and promote ECM production in vitro.
Besides, a novel polymer agent formulated by CS-cysteine
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conjugate showed remarkable bioadhesive properties and
low biotoxicity in rat primary chondrocytes (Suchaoin
et al., 2016).

4.3. DDS targeting GAG loss and ROS of chondrocyte

Glucocorticoids have obvious anti-inflammatory effects, but
long-term repeated use of large doses can lead to a variety
of local or systemic side effects. Dexamethasone (Dex) is the
most commonly used glucocorticoid for OA treatment. In
order to improve the efficiency of drug use and reduce side
effects, a variety of DDS has been developed. Bajpayee
(Bajpayee et al., 2016; 2017) et al conjugated avidin nano-
carriers with Dex by two linkers (ester and hydrazone). Ester
linker had faster drug release than hydrazone linker and avi-
din-Dex rescued IL-1-induced GAG loss with does depend-
ence. Subsequent animal experiments confirmed that the
avidin-Dex could penetrate cartilage and retain for 3weeks,
improve morphology and inhibit the formation of osteo-
phytes, but increased Dex load was needed to further reduce
the loss of GAG. Dex-carbon nanotubes were developed to
restrain TNF-a induced inflammation in synovial fibroblasts
(Lee et al., 2017). Nanotubes showed higher Dex uptake by
caveolin-dependent endocytosis and efficient intracellular
release to inhibited ROS production by targeting
mitochondria.

Stefano Perni (Perni & Prokopovich, 2020) et al greatly
increased the drug uptake of Dex-poly-beta-amino-esters
(PBAEs) by continuously optimizing the polymer structure.
Dex-PBAEs inhibited GAG loss induced by IL-1a in cartilage
explants cultured and improved the chondrocyte activity.
Dex-loaded PLGA MP showed significant sustained release,
pro-anabolic and anti-inflammatory factor effects in vitro and
in vivo (Stefani et al., 2020). Tengfei He (He et al., 2020) et al
developed a novel multi-arm avidin NPs, which greatly
increased the drug load with crosslinkers. These multi-arm
avidin NPs showed remarkable control of drug release and
cartilaginous permeability. In vitro tests indicated that it
inhibited the generation of ROS, protected the activity of
chondrocytes, and reduced the loss of GAG and collagen.

The glucocorticoid-loaded DDS shows great potential for
OA intraarticular targeted treatment. At the same time, some
studies confirmed that the biological effects of the NPs DDS
are affected by the dynamic changes of the joint environ-
ment, such as the changes of proteins, hyaluronic acid and
phospholipids in the synovial fluid (Magri et al., 2019).

4.4. Novel drug molecules targeting osteanagenesis

In recent years, some new drug molecules introduced to dif-
ferent DDS showed remarkable therapeutic effects of OA in
experiments, which has laid a foundation for clinical applica-
tion (Table 3). Human stromal cell-derived factor 1a (rhSDF-
1a) is a significant chemokine facilitating stem cell migration
and homing to injured tissue and promoting tissue repair
(Hattori et al., 2001). rhSDF-1a-loaded fibrin/HA hydrogel was
used to filled chondral defects and it recruited chondrogenic
progenitor cells to chondral defects, which improved theTa
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morphology, proteoglycan density and cartilage ultrastruc-
ture (Yu et al., 2015).

Anabolic growth factors are efficient for OA treatment by
enhancing chondrocyte activity and promoting matrix pro-
duction. An earlier study found that insulin-like growth factor
1 (IGF-1) fused to heparin-binding domain had a distinct pro-
longation of intraarticular retention and rescued cartilage
degeneration in the rat OA model (Loffredo et al., 2014).
Brett C Geiger (Geiger et al., 2018) et al loaded IGF-1 on posi-
tively charged PEGylated polyamidoamine (PAMAM) den-
drimers and this dendrimer-IGF-1 presented prominent
performance of drug absorption, cartilage penetration, drug
retention and biocompatibility in vitro. The nanocarriers
enhanced the treatment effects of alleviating cartilage
degeneration and osteophyte formation in vivo. BMP2 is an
important excitoanabolic factor in bone metabolism. BMP2
adsorbed onto graphene oxide (GO) flakes showed remark-
able biocompatibility and sustained slow release in vitro. In
the OA rat model, GO-adsorbed BMP2 had a better histo-
logical appearance after intra-articular intervention (Zhong
et al., 2017). GO-loaded TGF-b3 3D nano-scaffold is a new
progress of cartilage engineering. Culture of hMSCs encapsu-
lated in 3D GO scaffold-adsorbed TGF-b3 hydrogel improved
chondrogenesis and ECM production. This novel 3 D GO scaf-
fold demonstrated excellent drug delivery, low cytotoxicity
and sustaining drug activity (Zhou et al., 2019).

Yung-Hsin Cheng (Cheng et al., 2017) et al developed a
glutathione-loaded chitosan hydrogel and used it in Cisd2
deficiency-induced rat chondrocytes injury. The hydrogel
showed thermosensitively and sustained drug release in
chondrocytes without obvious cytotoxicity. Glutathione res-
cued the inflammation, apoptosis and oxidative stress in
Cisd2–/– chondrocytes by restraining H2O2 activity.

Kartogenin (KGN) is found an important activator of the
CBFb-RUNX1 signaling pathway which promotes chondro-
genesis and chondroprotection (Zhao et al., 2020). KGN was
first conjugated to the head or end group of PEG-PAMAM to
form KGN- PEG-PAMAM (KPP) or PEG-PAMAM-KGN (PPK) den-
drimer. KPP showed the more prominent effect of CBFb and
chondrogenic markers activation. In vivo test showed pro-
longed retention of drug in a rat model (Hu et al., 2017).
Pierre Maudens et al. (Maudens et al., 2018) introduced KGN
nanocrystals acquiring by wet milling to PLA nanocrystal–-
polymer particles to form KGN-NPPs. The NPPs system pre-
sented commendable drug loading, sustained drug release
and biocompatibility in vitro test. The KGN-loaded NPPs
improved chondrohistology and osteophyte size in vivo test.
In the past two years, tri-copolymer scaffolds structured by
gelatin-chondroitin-hyaluronan and engineered exosomes
were used to deliver KGN to chondrocytes and showed
potential application future (Chen et al., 2021; Xu
et al., 2021).

Nano-sized liposomes conjugated to MAbCII were synthe-
sized to encapsulate TPCA-1, a selective inhibitor of NF-jB
pathway, and showed distinguished improvement of inflam-
mation, oxidative stress and cell apoptosis in TNF-a-treated
chondrocytes (Bhatti et al., 2019). The advantage of lipo-
somes is the sustained drug release properties but once the

release is activated, it does not extend the clearance time.
Xiuling Liu (Liu et al., 2019) et al conjugated adenosine to
biodegradable PLA-b-PEG NPs in different binding sites. In
vitro studies showed that adenosine-loaded NPs can signifi-
cantly increase intracellular cAMP and inhibit a variety of
inflammatory factors. Early injection of adenosine-loaded NPs
into rat joints can effectively prevent traumatic OA.

Haimin Chen (Chen et al., 2019) et al optimized the MMP/
pH-responsive DDS by synthesizing ferritin nanocages
(CMFn) loaded with hydroxychloroquine (HCQ). The fluores-
cence intensity of CMFn can reflect the severity of OA and
HCQ can be sustained released for 14 days in an acidic pH
microenvironment. This dual sensitive DDS has great applica-
tion prospects for precision OA diagnosis and treatment.

4.5. Chinese herb extracts and targeted DDS

Curcumin is extracted from the Chinese herb Curcuma longa
which is commonly used in OA for inflammation and pain
relief. Combined injection of curcumin and bone marrow
mesenchymal stem cells (BMSCs) into the OA rat model can
enhance the migration and proliferation of chondrocytes,
improve the level of anabolic factors and promote chondro-
genesis (Zhang et al., 2021). Regardless of oral, direct joint
injection or transdermal administration, Curcumin shows
obvious anti-OA effects and the potential mechanism is
related to inhibition of oxidative stress, promotion of anabol-
ism, and anti-inflammatory apoptosis (Nicoliche et al., 2020;
Zhou et al., 2020). However, the traditional administration
still has drawbacks such as multiple dosing and gastrointes-
tinal side effects, although the study showed better tolerance
of curcumin than that of Dcf (Shep et al., 2019). Some stud-
ies used gelatin/silk fibroin MPs and synthetic NPs loaded
with curcumin and showed good drug penetration and sus-
tained release (Zhang et al., 2016; Ratanavaraporn
et al., 2017).

Qiumei Lan (Lan et al., 2020) et al developed another
MMP/pH-responsive DDS loading psoralidin (PSO) which is
extracted from pPoralea corylifolia. The MRC-PPL NPs are
designed to target cartilage and respond to MMP-13. MRC-
PPL@PSO showed remarkable anti-inflammatory and cartilage
repair effects in vitro and in vivo test by regulating PI3K/AKT,
MAPK and NF-jB signaling. Zhengxiao Ouyang et al.
(Ouyang et al., 2019) introduced hesperetin (extracted from
citrus fruit) to Gd2(CO3)3-based NPs with a cartilage-target-
ing peptide. The NPs displayed excellent biocompatibility
and magnetic resonance suitability. Hesperetin showed
remarkable chondrocytes protection by inhibiting the TLR-2/
NF-jB/Akt pathway.

Salvianolic acid A (SAA) is extracted from Salvia miltior-
rhiza Bunge and it can inhibit chondrocyte apoptosis and
ECM degradation in the OA rat model by restraining NF-jB
signaling and activating TIMP-1 and TIMP-2 to inhibit MMPs
(Xu et al., 2017; Wu et al., 2020). Artesunate (ART) is derived
from artemisinin which is an extract of Chinese herb used to
treat malaria. ART can relieve OA rat inflammation and
improve cartilage pathological by regulating AK/STAT signal-
ing (Zhao et al., 2017). Ethanol extract of Agkistrodon acutus
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can alleviate the apoptosis of chondrocytes and correct the
abnormal expression of MMPs and Col2in OA rats (Wang
et al., 2019). These Chinese herb extracts demonstrate
remarkable effects in OA, and they have tremendous poten-
tial to work with appropriate DDS in the clinical application
(Table 4).

4.6. Gene delivery system

Transfering exogenous nucleic acids to intracellular compart-
ments is an effective method for OA treatment. Gene ther-
apy includes DNA, RNA and no-coding RNA that are specific
to different diseases and tissues. Nanomaterial non-viral vec-
tors can avoid the immunogenicity, oncogenic effects and
other lethality of traditional viral vectors and become a
promising gene therapy DDS (Table 4). Cristiano Sacchetti
et al. (Sacchetti et al., 2014) used single-walled carbon nano-
tubes (SWCNTs) to load morpholino antisense oligonucleoti-
des (mASOs) modified by anti-green fluorescent protein
(GFP). Intra-articular injection of PEG-SWCNT-anti-GFP mASOs
can effectively penetrate the ECM, deliver drugs to the chon-
drocytes with a prolonged retention time and inhibit
GFP expression.

Indian Hedgehog (Ihh) is a non-collagen related marker
which is closely related to chondrocyte injury and the devel-
opment of OA (Zhang et al., 2012; Thompson et al., 2015).
Lipid NPs were used to load Ihh siRNA into chondrocytes
with 100% transfection efficiency. Lipid NPs-Ihh siRNA was
found to accumulate in the ECM instead of the synovium. In
addition, it showed remarkable excito-anabolic and anti-
catabolism effects and effectively alleviated cartilage degen-
eration in the OA rat model (Wang et al., 2018). The fibrin/
HA hydrogel and self-assembling peptidic NPs were also
used for carrying antimiR-221 and NF-jB p65 siRNA, respect-
ively. These DDS showed excellent targeting delivery, gene
silencing and OA therapeutic effects (Lolli et al., 2019; Yan
et al., 2019).

4.7. Multidrug delivery system

Some formulations use targeted delivery of combination
drugs, which makes the therapeutic effect more comprehen-
sive. Mamta Bishnoi et al. (Bishnoi et al., 2014) conjugated
aceclofenac-loaded CS to SLN and the SLNs showed sus-
tained drug release over 24 hours in vitro test. When adminis-
tered subcutaneously, SLNs presented high concentrations in
the joints but no significant accumulation in vital organs and
reduced edema induced by MIA. KGN and Dcf were conju-
gated to thermoresponsive NPs outside and inside, respect-
ively (Kang et al., 2016). The therapeutic effects of both
drugs were fully demonstrated in the formula, and the drugs
could be released with precise control in cold temperatures.
Similarly, indomethalin and glucosamine were jointly loaded
on PLGA nano-micelles and observably improved inflamma-
tory response and histopathology in the OA rat model
(Kamel et al., 2016).

Xu Chen (Chen et al., 2019) et al developed a photother-
mal-triggered nanogenerator which loaded NO and Ta
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Notch1-siRNA on PLGA-PEG NPs. With the synergistic effect
of phototherapy, this formula achieved NO anti-inflammatory
effect, Notch1 gene silencing, and alleviation of cartilage ero-
sion. The combination of multidrug delivery and physical fac-
tor therapy is a promising approach for OA treatment.

5. Conclusions and future prospects

The constant development of DDS displays a great avenue
for targeted therapy of OA. Traditional drugs fully release the
therapeutic potential and greatly reduce the drawbacks and
side effects accompanied by systematic administration. Many
emergent drug molecules present great therapeutic potential
in vitro and in vivo studies, whether in inflammation suppres-
sion, chondrocyte protection, extracellular matrix generation,
or the relief of corresponding symptoms. The future applica-
tion of these drugs still needs more explorations to confirm
and optimize the property, and help reveal the internal
mechanism of the occurrence and development of OA.

Nano-DDS is an important optimization of OA topical
administration, which realizes biological functions such as
drug penetration, long-term retention and sustained release.
By modulating DDS structure, the encapsulation efficiency of
the drug is greatly improved, which avoid large dose or fre-
quent administration. The penetration of chondrocyte ECM
in DDS has made some progress, but it is still one of the dif-
ficult problems to be solved in the later period. Multi-struc-
ture integration of NPs can be loaded with different types of
drugs, which can help enrich therapeutic strategies accord-
ing to the specific condition of the disease. Responsive nano
DDS opens a new horizon for the precise treatment of OA.
Drug release controlled by joint microenvironment changes
can help better grasp the disease progress, while the phys-
ical factor response system takes full advantage of physio-
therapy on the basis of precision treatment.

Nanotechnology has revealed the great plasticity of new
materials in the medical field and these findings will catalyze
new breakthroughs of DDS. In future studies, it is necessary
to more clearly reveal the pathogenesis of OA and find more
drugs with definite efficacy to enrich treatment strategies. At
present, many studies get remarkable results in vitro or ex
vivo, but there is still a long way to go before clinical appli-
cation. Each drug delivery strategy needs to be reevaluated
for safety, consistency, and clinic efficiency over long-term
clinical studies. The drug load is an important translation
challenge due to the differences in drug requirements for
human OA and animal studies. Biocompatibility, low biotoxic-
ity, and biodegradability remain the primary concerns for the
development of DDS. The nanomaterials need to be further
optimized to achieve good human adaptability, and the
pharmacokinetics of the drug loading system need to be
clarified. In addition, the structure-function relationship
between nanomaterials and different stages of OA (changes
in synovial fluid, cartilage, subchondral bone, muscle, liga-
ment and other tissues as well as the intraarticular environ-
ment) is also important challenge for clinical conversion.
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