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Abstract

Models for predicting the time of a future event are crucial for risk assessment, across a 

diverse range of applications. Existing time-to-event (survival) models have focused primarily 

on preserving pairwise ordering of estimated event times, or relative risk. Model calibration is 

relatively under explored, despite its critical importance in time-to-event applications. We present 

a survival function estimator for probabilistic predictions in time-to-event models, based on a 

neural network model for draws from the distribution of event times, without explicit assumptions 

on the form of the distribution. This is done like in adversarial learning, but we achieve learning 

without a discriminator or adversarial objective. The proposed estimator can be used in practice 

as a means of estimating and comparing conditional survival distributions, while accounting for 

the predictive uncertainty of probabilistic models. Extensive experiments show that the proposed 

model outperforms existing approaches, trained both with and without adversarial learning, in 

terms of both calibration and concentration of time-to-event distributions.

1 Introduction

Time-to-event studies aim to characterize the covariate effects on the time of a future 

event, while capitalizing on information from censored events when performing learning. 

Conventional nonparametric time-to-event (also called survival) models primarily involve 

methods that maximize the Concordance Index (C-Index) [22], a metric related to the 

receiver operating characteristic, that quantifies the degree to which estimated events result 

in pairwise orderings that are consistent with observed event times, i.e., the ground truth. 

Consequently, any model that is able to estimate properly ordered but proportional event 

times can score high in terms of C-Index. A prominent example is the widely used Cox 

Proportional Hazards (CPH) model [9].

Predicting temporally accurate event times is important in a variety of applications, 

e.g., risk profiling [23, 40], drug development [14], and prevention of online fraudulent 

activities [55]. Estimating temporally accurate event times typically involves the use of 

parametric Maximum Likelihood Estimation (MLE) approaches [30] or recently-developed 

nonparametric sampling based methods, e.g., via adversarial learning [7] or normalizing 
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flows [36]. Further, given the critical time-sensitive nature of time-to-event modeling, it is 

highly desirable to design models that are not only temporally accurate but also produce 

population-calibrated and uncertainty-aware predictions.

Classical survival models include the CPH semiparametric model [9] that learns relative 
risk (proportional to time-to-event) as a function of covariates, and the Accelerated Failure 

Time (AFT) model [50], a parametric specification for temporally accurate event times 

that assumes covariates either accelerate or decelerate the progression of event time. AFT 

often assumes log-normal distributed event times, however, other likelihood functions have 

been considered, e.g., exponential, Gamma, Weibull, etc. [4, 30]. These classical approaches 

assume a linear relationship between event times and covariates, which may be limiting for 

modern, large and highly heterogeneous datasets.

Time-to-event methods based on deep-learning are often direct extensions of classical 

models that aim to learn more flexible, non-linear mappings between event times and 

covariates. CPH-based deep learning methods [27, 56] have demonstrated improvements in 

C-Index relative to classical approaches, in some settings. Parametric extensions include 

the Deep Regularized Accelerated Failure Time (DRAFT) model [7], Deep Survival 

Analysis (DSA) [41] and the Survival Continuous Ranked Probability Score (S-CRPS) 

model [2]. Nonparametric extensions include Deep Adversarial Time-to-Event (DATE) [7], 

nonparametric DSA [36] and Gaussian-process-based models [1, 13, 34]. As an alternative 

to a strict time-to-event formulation, some approaches discretize event times and specify 

models that predict the probability of survival at discrete intervals [15, 35, 52].

Methods that produce uncertainty-aware predictions aim to estimate time-to-event 

distributions, rather than point estimates. Most approaches, parametric or not, result in 

either a parametric time-to-event distribution, e.g., log-normal in AFT, DRAFT and S-CRPS 

and Weibull in DSA, or samples from an implicitly defined distribution, e.g., DATE and 

nonparametric DSA. The latter uses normalizing flows. Importantly, uncertainty-aware 

predictions are only useful if the time-to-event distributions are concentrated, i.e., their 

probability masses have coverage much smaller than the observed time range. This is key, 

because only in that case can uncertainty be leveraged effectively for ranking or prioritizing 

events/subjects. However, only a few approaches have considered the uncertainty of the 

predictions when assessing performance, namely, [7] via distribution coverage and [2] via 

coefficient-of-variation metrics.

Calibration, a descriptor of a predictive model that characterizes the statistical consistency 

of the predictions relative to the distribution of the observations on a population level, 

has been studied in forecasting [11], Bayesian analysis [10], and in machine learning, 

for classification [21] and regression [33] problems. Unfortunately, it is under-explored in 

time-to-event models. Exceptions include [3, 34, 49, 54] that use (time horizon) thresholded 

time-to-event Brier scores to asses calibration [6], and [2] that use calibration slope as a 

way to compare model performance. Note that although Brier scores are often used to assess 

calibration, most commonly in classification models, summaries of calibration curves such 

as the calibration slope are usually considered more informative [47].
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We present an approach that implicitly defines time-to-event distributions conditioned on 

covariates via a neural network specification, from which we can synthesize temporally 

accurate, concentrated and calibrated time-to-event distributions. To this end, i) we present 

a reinterpretation of the Kaplan-Meier estimator for survival functions; ii) we extend it to 

estimate survival functions conditional on covariates; iii) we show that the new estimator 

can be used for visual and quantitative assessment of calibration; iv) we propose using it 

as an objective function in a neural-network-based nonparametric time-to-event model, to 

encourage calibrated predictions; v) we directly match the conditional survival function of 

the model to that of the ground truth without the need of adversarial techniques [18]; vi) 
we show that our survival function matching approach is related to earth mover’s distance 

minimization; and vii) we present extensive quantitative and qualitative results, showing that 

our approach outperforms existing time-to-event models in terms of calibration, while being 

competitive in terms of C-Index and concentration (sharpness) of the predicted time-to-event 

distributions.

2 Background

Assume a time-to-event dataset, D = xn, tn, yn n = 1
N , consisting of N observations (or subjects). 

For the n-th observation, we have d covariates, xn = x1n, …, xdn ∈ ℝd, a time point, tn, and a 

censoring indicator, yn ϵ {0, 1}. When yn = 1, tn represents the time-to-event of interest, 

and when yn = 0, tn is the censoring time. Typically, events are right censored, meaning that 

given yn = 0, all we know about the n-th observation is that we have not observed the event 

of interest up to time tn. Though left and interval censored events are possible, these are far 

less common and are thus not usually considered in practice. Here we only consider right 

censoring, however, the proposed approach is general and can be readily extended using 

ideas from [2].

Time-to-event (or survival) models either characterize the conditional survival function S(t|
x), time density f(t|x), or the hazards function h(t|x), where the conditioning is on covariates 

x. The survival function S(t|x) = P(τ > t|x), for τ > 0, which can also be written as the 

complement of the conditional cumulative density function, F(t|x); hence, S(t|x) = 1 − F(t|
x) is a monotonically decreasing function of time. Learning the time-to-event conditional 

distribution, f(t|x), can in principle yield both S(t|x) and h(t|x), provided f(t|x) = S(t|x)h(t|x). 

For some parametric choices of the conditional density, f(t|x), the survival and hazards 

functions can be obtained in closed-form [30]. For instance, assuming the exponential 

density, f(t|x) = λx exp(−λxt), yields h(t|x) = λx and S(t|x) = exp(−λxt), where λx is 

a function of x. See [4] for a few other examples. In practice, we seek to approximate 

the time density f(t|x) with q(t|x), a function parametrically or nonparametrically specified 

and learned from data, D. The dataset D represents the ground truth or, conceptually, the 

empirical joint distribution p(t, y, x) with marginals p(t), p(y) and p(x), from which p(t) is of 

most interest in our case, as described below.

The Kaplan-Meier Estimator

The standard Kaplan-Meier (KM) estimator [26] is a widely-used frequentist approach 

to estimate the (marginal) survival function, S(t), using samples from p(t), i.e., the time-to-
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event empirical distribution. Let T = ti | ti > ti − 1 > … > t0  be the set of distinct and ordered 

observed event times (censored and non-censored). The KM estimate for time ti can be 

evaluated recursively as

SKM ti = 1 − di

ni
SKM ti − 1 , (1)

where ni is the number of subjects at risk at the beginning of follow-up interval [ti, ti+1), 

di is the number of non-censored events that occur within the same interval, [ti, ti+1), and 

SKM t0 = 1, indicating that at t0 there are no observed events so dn = 0 and n0 = N. It has 

been shown [24] that the KM estimator can be interpreted as a random process, where 

the number of events, di, within each discrete interval [ti, ti+1) can be modeled as a draw 

from a Binomial distribution di ~ Binomial(ni, π), with mean event rate π. Moreover, it has 

been proven that KM is a consistent estimator [38], i.e., N(SKM(t) − S(t)) converges to a 

Gaussian process [5], with zero mean and covariance function recursively approximated by 

Greenwood’s formula [20].

Distribution-Based Kaplan-Meier Estimator

The standard KM estimator is a population statistic that approximates the marginal survival 

distribution S(t). Consequently, KM does not explicitly accommodate the use of predictions, 

i.e., individualized (subject-level) conditional survival functions. Considering that time-to-

event methods are primarily tasked with individualized predictions of conditional time 

densities, f(t|x), which can be then used to obtain conditional survival functions S(t|x), 

below we present a modified KM estimator that accounts for individualized time-to-event 

predictions.

We first consider a KM estimator for point estimates of S(t|x), directly formulated from 

the standard KM in (1). It is then extended to probabilistic, distribution estimates of S(t|x). 

The point-estimate-based KM, denoted PKM, estimates the population survival function 

accounting for covariates using predictions T n ∼ g xn , where g(xn) is some predictive 

function, or a summary from a probabilistic estimate of the conditional density f(t|xn), e.g., 
T n ∼ g q t |xn  where g(·) = mean(·) and q(t|xn) is the approximated conditional learned from 

dataset D. We then write

SPKM ti = 1 −
∑n:yn = 1 I ti − 1 ≤ T n < ti

N − ∑n = 1
N I T n < ti − 1

SPKM ti − 1 , (2)

where SPKM t0 = 1, I(a) is an indicator function such that I(a) = 1 if a holds or I(a) = 0
otherwise. It follows from (2) that SPKM ti = SKM ti , when T n represents an observed (ground 

truth) time-to-event from p(t).

To account for predictive uncertainly, i.e., for probabilistic estimates q(t|xn), we extend (2) to 

distribution-based Kaplan-Meier (DKM) estimator. Specifically, we write
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SDKM ti = 1 − ∑n:yn = 1 Fn ti xn − Fn ti − 1 xn

N − ∑j = 1 Fn ti − 1 xn
SDKM tt − 1 , (3)

where Fn(ti|xn) is the estimated cumulative density function for subject n conditioned on 

covariates xn and evaluated at ti. Note that SDKM ti = Eq t |x1 …q t |xN [SPKM ti ] so (3) averages over 

(samples of) q(t|xn) rather than being evaluated on summaries (e.g., averages) of q(t|xn) 

as in (2). For probabilistic estimates q(t|xn) of f(t|xn), the estimator in (3) is attractive 

because it accounts for the predictive uncertainty of the model, thus on a population level, it 

comprehensively captures the uncertainty of the estimated conditional survival distribution.

Calibration in Time-to-Event Models

In the context of time-to-event modeling, calibration refers to the concept of obtaining a 

predictor of time-to-event (that may or may not be probabilistic) whose predictions match, 

on a population level, the survival distribution S(t). Figure 1 shows estimated survival 

distributions on the support dataset (see Section 5 for details) for five different models 

(DATE, DRAFT, SFM, CPH and S-CRPS) using DKM in (3), as well as the ground 

truth (Empirical) using KM in (1). Error bars (shaded regions) are calculated using the 

exponential Greenwood’s formula [24].

From Figure 1, we see that DKM in (3) can be used to visually assess the calibration of 

estimated event times from different models relative to the ground truth. Specifically, we 

see that one of the models, SFM (the proposed model) matches the ground truth (Empirical) 

substantially better than the alternatives (see Section 5 for details). Strikingly, the other three 

models underestimate survival almost everywhere. In the experiments, we will use KM and 

DKM to more directly visualize calibration, and summarize it in terms of calibration slope. 

Further, below we leverage DKM to encourage calibration during model training, i.e., that 

DKM for a given model that approximates q(t, xn) matches as well as possible the true 

survival distribution estimated via KM.

3 Survival Function Matching

We propose a nonparametric model for survival-function matching. Specifically, we 

approximate the density f(t|x) implicitly as q(t|x) via deterministic function Gθ(x, ϵ) which 

we specify as a neural network parameterized by θ and where ϵ is a source of stochasticity, 

distributed according to some simple distribution, e.g., uniform or Gaussian. In this manner, 

we do not impose/assume an explicit form on q(t|x), we only seek to efficiently synthesize 

samples from it. This type of model has been considered recently within an adversarial-

learning setup [7], but in the proposed work adversarial learning is not required, thus 

simplifying learning. Further, [7] did not consider calibration.

Calibration objective

Assume as above that T is the set of distinct and ordered observed event times (censored or 

non-censored). To estimate the parameters of the model Gθ(x, ϵ) that generates time-to-event 

samples on a population level, we match synthesized samples to the empirical survival 
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function, S(t), thus producing calibrated predictions. We propose optimizing the following 

objective

ℓcal(θ; D) = 1
T ∑

ti ∈ T
SPKM

p(t) ti − SPKM

Gθ(x, ϵ)
ti 1, (4)

where |T| is the cardinality of T, and SPKM
p(t) ti  and SPKM

Gθ(x, ϵ)
ti  are obtained from p(t) and 

samples from Gθ(x, ϵ), respectively. This is connected to KM, because SPKM
p(t) ti  are obtained 

from p(t).

The objective in (4) seeks to obtain model parameters, θ, for which model and empirical 

survival functions match. Note that the objective accounts for both censoring and non-

censored events. Provided that the conditional survival distribution S(t|x) = P(τ > t|x)for 

τ ≥ 0 is the complement of conditional cumulative density function F(t|x), matching the 

conditional survival function also matches the conditional time density f(t|x), i.e., the time-

to-event distribution.

Learning with (4) is challenging because ℓcal(θ; D) is a discrete function, and thus 

backpropagation is difficult. Several techniques have been developed to efficiently obtain 

unbiased and low-variance gradients for backpropagation with discrete objectives or 

sampling distributions, thus alleviating some of its challenges. Such techniques include 

REINFORCE [51], reparameterization tricks [29, 42], and more recently RELAX [19], 

a technique that combines both REINFORCE and reparameterization tricks via a variance-

reduction neural network.

To circumvent the challenges of optimizing over the discrete function in (2) and favor 

simplicity, we instead optimize over its expectation in (3), which is continuous. However, 

replacing (2) with (3) is not only inefficient, as it requires generating multiple samples 

from Gθ(x, ϵ), but also challenging because F(t|x), the conditional cumulative function 

for Gθ(x, ϵ) is not available in closed-form. Conveniently, we can replace the indicator 

functions I(a) in (2) with Heaviside step functions, H(b) = 1
2 (sign(b) + 1), therefore obtaining 

a differentiable formulation:

SPKM ti = 1 −
∑n:yn = 1 H T n − ti − 1 − H T n − ti

N − ∑n = 1
N H ti − 1 − T n

SPKM ti − 1 . (5)

When evaluating the objective, ℓcal(θ; D) in (4), T n is either a sample from the model, 

T n = Gθ xn, ϵ , or an observed time T n ∼ p(t), for SPKM
Gθ(x, ϵ)

ti  or SPKM
p(t) ti , respectively.

Accuracy objective

The objective ℓcal(θ; D) in (4) optimizes over a population estimate that encourages 

calibration. However, calibration alone does not result in time-to-event samples from Gθ(x, 

ϵ) that are accurate or concentrated wrt the ground truth. This happens because, for a 

given problem, there exist many solutions that yield well-calibrated predictions that are 

not necessarily accurate, thus not practically useful. For instance, take the extreme case 
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for which a model learns to estimate p(t) independent of (ignoring) the covariates, x, 

thus effectively recovering the KM estimator in 1. So motivated, we also specify accuracy-

enforcing objective functions for censored and non-censored observations by borrowing 

from the recently proposed DATE model [7]. Specifically, we split the dataset D into two 

disjoint sets Dc and Dnc, for censored and non-censored observations, respectively, and let (t, 

x) ~ pc and (t, x) ~ pnc represent, respectively, empirical distributions for these sets. We write 

objective functions for Dc and Dnc as

ℓacc θ; Dc, Dnc = E(t, x) ∼ pc, ϵ ∼ pϵ max 0, t − Gθ(x, ϵ) + E(t, x) ∼ pnc, ϵ ∼ pϵ t − Gθ(x, ϵ) , (6)

where ϵ ~ pϵ has a simple distribution (uniform or Gaussian), max(0, ·) in the first term 

encourages that time-to-event samples from the model, evaluated on censored observations 

yn = 0, are larger than the censoring time. The second term, absolute error, encourages 

time-to-event samples to be accurate, i.e., as close as possible to the ground truth, for 

non-censored (observed) observations.

Consolidated objective

The complete objective function for the proposed Survival Function Matching (SFM) model 

is ℓ(θ; D) = ℓcal(θ; D) + λℓacc θ; Dc, Dnc , where λ > 0 is a free parameter controlling the 

trade-off between the accuracy objective and the survival function matching objective in (4). 

In the experiments we let λ = 1, however, λ can be optimized by grid search if desired.

The complete objective is optimized using stochastic gradient descent on minibatches 

from D. Note that ℓcal(θ; D) is a population-level objective that may be affected by the 

minibatch size, however, empirically we did not observe substantial differences in the 

performance metrics when varying the minibatch size (see the Supplementary Material). We 

justify the model being insensitive to the minibatch size owing to the insight that learning 

with minibatches can be understood as encouraging the model to be calibrated for every 

minibatch, thus consequently also encouraging global calibration.

4 Related Work

Existing calibration literature in predictive models has primarily focused on recalibration 

techniques for predictions from classification [21] or regression models [33]. For 

classification tasks, the Brier score [6] is a commonly used proper score metric, quantifying 

the accuracy of probabilistic predictions, and thus it is often used to assess calibration. 

The Brier score has also been used to asses calibration in time-to-event models [3, 34, 49, 

54], however, this score has to be evaluated at pre-specified (thresholded) time horizons. 

Alternatively, S-CRPS [2] considers the integral of the Brier score evaluated at all possible 

thresholds [17], which is a more principled and comprehensive approach than calibration at 

pre-specifying time horizon thresholds.

Please add a Supplementary Material subhead at the end of the manuscript with the following paragraph text: Supplementary material 
may be found at: https://github.com/paidamoyo/adversarial_time_to_event.
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The approach presented here is inspired by [2]. They considered calibration slope as a 

metric for evaluating performance in time-to-event models. However, our formulation is 

very different from that of [2], in the sense that they encourage calibration by optimizing 

a proper score rule, the Continuous Ranked Probability Score (CRPS), whereas we tackle 

it directly as a survival-distribution-matching problem. In the experiments in Section 5, 

we show empirically that our more direct approach to calibration consistently outperforms 

CRPS.

Our work is related to other recently proposed time-to-event approaches, including 

Survival CRPS (S-CRPS) [2], that uses an AFT (log-normal distribution) specification; 

the conditional-GAN approach [DATE, 7]; the AFT-based DRAFT model [7]; the Weibull-

based Deep Survival Analysis (DSA) [41]; nonparametric DSA based on normalizing flows 
[36]; and Gaussian-process-based models [1, 13, 34]. Interestingly, excluding approaches 

that address thresholded calibration with Brier-scores [3, 34, 49, 54], only S-CRPS [2] 

considers global calibration as a performance metric. All the others focus on accuracy-

centric performance estimates, e.g., C-Index and relative absolute error.

Optimal mass transport approaches for distribution matching in machine learning tasks 

have received considerable attention recently [8, 45]. For one-dimensional problems, it has 

been shown that the characterization of the p-Wasserstein metric has a simple form [32] 

W p(P , Q) = ∫0
1 F −1(z) − G−1(z) pdz 1/p

 where, F(z)−1 and G(z)−1, for z ϵ (0, 1), are the quantile 

functions of p(t) and q(t), respectively, and F(t) and G(t), their corresponding cumulative 

density functions. Interestingly for p =1, Wp(P, Q) is also known as the Monge-Rubenstein 
metric [48] or the earth mover’s distance [44], and it is essentially the absolute difference 

between the quantile functions for p(t) and q(t). By contrast, the SFM objective in (4) is the 

absolute difference between the cumulative density functions for p(t) and q(t), provided that 

F(t) = 1 − S(t). As a result, minimizing (4) and Wp(P, Q) are closely related approaches to 

matching p(t) and q(t). However, the latter explicitly imposes survival-distribution matching, 

which we consider more appropriate considering the goal is to obtain calibrated predictions 

in the context of time-to-event modeling.

5 Experiments

We qualitatively and quantitatively compare the proposed approach, SFM, against DATE 

[7], DRAFT [7], and CPH [9] and S-CRPS [2]. Complete details of model architectures, 

optimization, validation and testing are in the Supplementary Material.

Datasets

We consider five diverse datasets: i) flchain: a public dataset investigating non-clonal serum 

immunoglobin free light chains effects on survival time [12]. ii) SUPPORT: a public dataset 

for a survival-time study of seriously-ill hospitalized adults [31]. iii) seer: a public dataset 

provided by the Surveillance, Epidemiology, and End Results (SEER) Program. We restrict 

the dataset to a 10-year follow-up breast cancer subcohort with three competing risks (breast 

cancer, cardiovascular and others). See [43] for preprocessing details. iv) EHR: a large 

study from the Duke University Health System centered around multiple inpatient visits 
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due to comorbidities in patients with Type-2 diabetes [7]. v) sleep: a subset of the Sleep 

Heart Health Study (SHHS) [39], a multi-center cohort study implemented by the National 

Heart Lung & Blood Institute to determine the cardiovascular and other consequences of 

sleep-disordered breathing.

Table 1 presents summary statistics of the datasets, where d denotes the size of the 

individual covariate vector x after one-hot encoding for categorical (cat) variables. Events 
indicates the proportion of the non-censored events, i.e., the events of interest for which yi = 

1. Missing indicates the proportion of missing entries in the N × d covariate matrix, and tmax 

is the time range for both censored and non-censored events. For all datasets except seer, that 

uses months, events are measured in days. In the experiments we do not convert time to a 

common scale and model it as is.

Details of the public datasets: flchain, support and seer, including preprocessing procedures, 

are provided in the above references. The other two datasets, ehr and sleep are not public 

but can be obtained upon request, see [7] and [53], respectively. For SLEEP we focus on the 

baseline clinical visit and aggregated demographics, medications and questionnaire data as 

covariates.

As shown in Table 1, survival datasets often contain substantial missingness, e.g. up to 

23% in SEER data. Interestingly, [36] showed via the information-theoretic data processing 

inequality that there is no additional information to be gained by actively imputing 

missing values during training with an autoencoding arm, when compared to a simpler 

pre-imputation approach in which missing values are imputed with median and mode 

for continuous and categorical covariates, respectively. In view of this, here we adopt a 

pre-imputation strategy.

Quantitative evaluation

For a comprehensive quantitative evaluation of time-to-event models we consider three 

metrics that highlight different aspects of model performance: i) Concordance Index (C-

Index) [22] to quantify preservation of pairwise orderings wrt ground truth events, ii) 
Coefficient of Variation (CoV) to assess uncertainty concentration by quantifying the 

dispersion of estimated time-to-event distributions, and iii) Calibration to asses the statistical 

consistency of the conditional survival distribution learned by a model relative to that 

of the ground truth. As previously discussed, a high-performing model is one that not 

only preserves pairwise ordering of event times, but also results in concentrated and 

well-calibrated time-to-event distributions. As discussed below, SFM outperforms other 

approaches in terms of calibration while being competitive in terms of C-Index (time 

ordering) and CoV (concentration).

Calibration—We evaluate calibration both visually and quantitatively. For the visual 

assessment, we plot the conditional survival distributions estimated from the model 

predictions using DKM in (3) and compare it with the empirical survival distribution 

(ground truth) using KM in (1), as shown in Figure 1. Alternatively, we plot the estimated 

conditional cumulative density function for each model using 1 − SDKM ti  against the 

marginal cumulative density function for the ground truth using 1 − SKM ti . In both cases, 
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ti ∈ T. If the estimated cumulative density matches the ground truth, the plotted curve will 

describe a diagonal line with unit slope. Curves above and below the diagonal underestimate 
and overestimate risk, respectively. Thus, for the quantitative assessment we calculate the 

calibration slope, which is obtained from the curve described by 1 − SDKM ti  vs. 1 − SKM ti . 

Since the cumulative density F(t) is unknown for sampling-based approaches, e.g., DATE 

and SFM, we use a Gaussian Kernel Density Estimator (KDE) [46] on samples from the 

model, tns s = 1
200 .

Results in Table 2 show that in terms of calibration slope fully nonparametric models, 

namely SFM and DATE, are better calibrated than S-CRPS and DRAFT, both parametrized 

as log-normally distributed models. Our approach is the best performing model across all 

datasets, followed by DATE, S-CRPS, CPH then DRAFT. We attribute these results to the 

fact that we directly match the survival function as part of model training. However, it is 

surprising that DATE and S-CRPS do not perform nearly as well considering that DATE 

adversarially matches the time-to-event distribution, thus indirectly matching the cumulative 

distribution, and S-CRPS that optimizes a proper scoring rule (the integral of Brier score at 

all possible thresholds [17]) that in principle should produce calibrated predictions.

For the ehr data it is not surprising that none of the models are well calibrated because 

observations in this dataset are not i.i.d. due to patients having multiple encounters. Since 

the models and KM-based estimators considered implicitly assume datasets are composed 

of i.i.d. observations, calibration does not necessarily hold. This necessitates further 

investigation, which we leave as interesting future work. However, to test the hypothesis 

that the model should be better calibrated in the i.i.d. case, we restricted the ehr dataset to 

the first encounter per patient (N =19,064), which results in a better calibrated SFM model 

(see the Supplementary Material).

Concordance Index—C-Index is arguably the most commonly used performance metric 

in survival analysis. This metric is useful to assess relative risk because it quantifies ordering 

rather than temporal accuracy. Models with high C-Index are good for the purpose of 

ranking observations into different risk categories, especially in a medical settings. Since 

the C-Index is evaluated on point estimates, we summarize time-to-event distributions as 

medians, i.e., t = median( tns s = 1
200 ), where tns is a sample from the trained model, tns ~ Gθ(xn, 

ϵs), on the test set.

Results in Table 2 show that none of the models has a clear advantage over the others, as 

the C-Index is largely comparable for the remaining four datasets. Apart from the small and 

high event rate support dataset where S-CRPS and DRAFT (both parametric log-normally 

distributed models) achieve (statistically) significantly higher C-Index compared to SFM 

(and CPH).

Coefficient of Variation—The Coefficient of Variation (CoV) quantifies the dispersion of 

a probability distribution. It is formally defined as σμ−1, where σ and μ are respectively the 

standard deviation and mean of the distribution being tested. To summarize the variation of 

the time-to-event distributions estimated by different models on the test set, we use Mean 
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CoV, which is defined across all time-to-event predictions, i.e, Nte
−1∑n = 1

Nte σnμn
−1, where Nte is 

the size of the test set and σi and μi are sample standard deviations and means over tns s = 1
200 . A 

model with concentrated time-to-event distributions is one for which mean CoV is as small 

as possible.

Figure 2 shows test set CoV distributions. We see that i) DRAFT and S-CRPS have 

considerably wider variation in CoV thus better 95% posterior coverage (see legend) 

compared to SFM and DATE; and ii) SFM and DATE are comparable, though DATE is 

slightly better. Note that we cannot evaluate CoV or coverage for CPH since in its standard 

form it only produces point estimates.

Table 2 shows that across all datasets DATE, SFM and S-CRPS are on average low-variance 

models while DRAFT is a considerably higher-variance model. DATE and SFM are the best-

performing in terms predicting concentrated event times given that mean CoV < 0.5. High- 

variance time-to-event distributions are not desirable because when prediction uncertainty is 

large relative to the time range, they cannot be used to inform decision making. Examples of 

time-to-event distributions for all models as shown in the Supplementary Material.

Qualitative evaluation of calibration

There are several metrics for measuring the quality of calibration, e.g., calibration slope and 

Brier score [37]. However, none of these summaries of calibration are as richly informative 

as visually comparing survival functions or cumulative density functions as described above. 

In Figure 2 we show calibration curves for two different datasets, seer and sleep, the largest 

and smallest dataset, respectively. See the Supplementary Material for figures corresponding 

to all other datasets including the conditional survival functions as in Figure 1. From these 

results (consistent across all datasets) we see that i) SFM performs better than the other 

approaches considered; ii) DRAFT is the worst performer; and iii) all approaches are poorly 

calibrated on seer data once half of the population has had events.

Under further examination of the seer data, we found there is a large subset of the population 

that gets administratively censored at t = 80 months (see the Supplementary Material), 

which explains the generalized sudden divergence of calibration in Figure 2. This type of 

informative censoring is not random and needs to be modeled appropriately. However, this 

extension is beyond the current scope and thus left as future work. Nonetheless, to test this 

idea, we truncated the data beyond t = 88 months and verified that the model is considerably 

better calibrated (see the Supplementary Material).

6 Conclusions

We have introduced a distribution-based Kaplan-Meier (DKM) estimator for evaluating 

calibration in time-to-event predictions. Leveraging this estimator, we introduced sFM, a 

survival-function- matched neural-network-based model for synthesizing calibrated time-to-

event predictions. Our learning strategy matches the desired survival distribution without 

the need of an adversarial objective. Further, we showed that our survival distribution 

approach is related to earth mover’s minimization. The proposed model outperforms 

other methods in estimating concentrated and calibrated time-to-event distributions, while 
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remaining competitive in terms of concordance index. As future work, we plan to extend 

the proposed approach to calibration in the non-i.i.d. setting, and to account for informative 

missingness.

A Coefficient of Variation Results

See figures 3, 4 and 5, for Coefficient of Variation (CoV) results.

B Calibration and Survival Function Results

The model calibration and survival plots for datasets SUPPORT, FLCHAIN, SLEEP, all 

EHR (non iid), subset EHR (iid) and SEER are shown in Figures 6, 7, 8, 9, 10 and 11 

respectively.

B.1 SEER: Informative Censoring—Figure 12 shows number of censoring and non-

censored events over time. See Figure 13, for estimated calibration and survival function 

results for subset seer dataset when truncated at 88 months.

C Time-to-Event Distributions

Figures 14, 15, 16, 17 and 18, show the time-to-Event distributions heatmap over the time 

range tmax.

D Batch Size Sensitivity Analysis

Table 3, shows SFM performance metrics across a range of batch sizes.

E Experimental Setup

In all experiments, SFM, DATE, DRAFT and S-CRPS are specified in terms of two-layer 

MLPs of 50 hidden units with Rectified Linear Unit (ReLU) activation functions, batch 

normalization [25] and apply dropout of p = 0.2 on all layers. We set the minibatch size to 

M = 350 and use the Adam [28] optimizer with the following hyperparameters: learning rate 

3 × 10−4, first moment 0.9, second moment 0.99, and epsilon 1 × 10−8. We initialize all the 

network weights according to Xavier [16]. SFM and DATE inject noise in all layers, see [7] 

for more details. Datasets are split into training, validation and test sets as 80%, 10% and 

10% partitions, respectively, stratified by non-censored event proportion. The validation set 

is used for early stopping and learning model hyperparameters. All models are trained using 

one NVIDIA P100 GPU with 16GB memory.
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Figure 1: 
Survival function estimates for SUPPORT data. Ground truth (Empirical) is compared to test 

set predictions from five models.
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Figure 2: 
Test set calibration and variation visualized for two datasets: seer and sleep (rows). Left: 

proportion of events of interest vs. predicted events. A perfectly calibrated model will 

follow the (dashed) diagonal line. Right: coefficient of variation (CoV) distributions. The 

legend shows the percentage of test set events covered by 95% intervals from predicted 

time-to-event distributions.
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Figure 3: 
Coefficient of Variation(CoV) distributions for (left) sleep and (right) flchain datasets. The 

legend shows the percentage of test set events covered by 95% intervals from predicted 

time-to-event distributions.
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Figure 4: 
Coefficient of Variation(CoV) distributions for (left) seer and (right) support datasets. The 

legend shows the percentage of test set events covered by 95% intervals from predicted 

time-to-event distributions.
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Figure 5: 
Coefficient of Variation (CoV) distributions for ehr dataset. The legend shows the percentage 

of test set events covered by 95% intervals from predicted time-to-event distributions.
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Figure 6: 
Calibration (left) and Survival function estimates (right) for support data. Ground truth 

(Empirical) is compared to predictions from four models (DATE, DRAFT, SFM (our 

proposed model), S-CRPS and CPH).
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Figure 7: 
Calibration(left) and Survival function estimates (right) for flchain data. Ground truth 

(Empirical) is compared to predictions from four models (DATE, DRAFT, SFM (proposed 

model), S-CRPS and CPH).
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Figure 8: 
Calibration (left) and Survival function estimates (right) for sleep data. Ground truth 

(Empirical) is compared to predictions from four models (DATE, DRAFT, SFM (our 

proposed model) S-CRPS, and CPH).
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Figure 9: 
Calibration (left) and Survival function estimates (right) for ehr all (non iid) data. Ground 

truth (Empirical) is compared to predictions from four models (DATE, DRAFT, SFM (our 

proposed model), S-CRPS, and CPH).
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Figure 10: 
Calibration (left) and Survival function estimates (right) for ehr subset (iid) data. Ground 

truth (Empirical) is compared to predictions from four models (DATE, DRAFT, SFM (our 

proposed model) and S-CRPS).
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Figure 11: 
Calibration(left) and Survival function estimates (right) for seer data. Ground truth 

(Empirical) is compared to predictions from four models (DATE, DRAFT, SFM (our 

proposed model), S-CRPS and CPH).

Chapfuwa et al. Page 25

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2022 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12: 
Count of censored and non-censored events as a function of time for SEER data.
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Figure 13: 
Calibration(left) and Survival function estimates (right) for subset seer data truncated at 

88 months. Ground truth (Empirical) is compared to predictions from four models (DATE, 

DRAFT, SFM (our proposed model) and S-CRPS).
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Figure 14: 
Heatmap of time-to-event distributions on EHR data for DRAFT (top-left), S-CRPS (top-

right), DATE (bottom-left) and SFM (bottom-right). The x-axis is the time range tmax.
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Figure 15: 
Heatmap of time-to-event distributions on SEER dataset for DRAFT (top-left), S-CRPS 

(top-right), DATE (bottom-left) and SFM (bottom-right). The x-axis is the time range tmax.
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Figure 16: 
Heatmap of time-to-event distributions on FLCHAIN data for DRAFT (top-left), S-CRPS 

(top-right), DATE (bottom-left) and SFM (bottom-right). The x-axis is the time range tmax.
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Figure 17: 
Heatmap of time-to-event distributions on SUPPORT data for DRAFT (top-left), S-CRPS 

(top-right), DATE (bottom-left) and SFM (bottom-right). The x-axis is the time range tmax.
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Figure 18: 
Heatmap of time-to-event distributions on SLEEP data for DRAFT (top-left), S-CRPS 

(top-right), DATE (bottom-left) and SFM (bottom-right). The x-axis is the time range tmax.
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Chapfuwa et al. Page 33

Table 1:

Summary statistics of the datasets used in the experiments. The time range, tmax, is noted in days except for 

seer for which time is measured in months.

EHR FLCHAIN SUPPORT SEER SLEEP

Events (%) 23.9 27.5 68.1 51.0 23.8

N 394,823 7,894 9,105 68,082 5026

d (cat) 729 (106) 26 (21) 59 (31) 789 (771) 206

Missing (%) 1.9 2.1 12.6 23.4 18.2

tmax 365 5,215 2,029 120 5,794
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Table 2:

Performance metrics. SFM is the proposed model.

EHR FLCHAIN SUPPORT SEER SLEEP

Calibration slope

DATE 0.7537 0.9668 0.9068 0.9161 0.9454

DRAFT 3.2138 5.4183 2.9640 2.0763 25.2855

S-CRPS 1.6246 1.9662 1.1795 1.1613 2.5746

CPH 2.5543 1.9116 1.3909 1.4358 3.8278

SFM 0.7734 0.9807 0.9405 0.9540 1.0235

Mean CoV

DATE 0.2477 0.3585 0.2987 0.1485 0.5168

DRAFT 5.0305 6.2952 3.8689 3.4501 8.4918

S-CRPS 0.8585 0.9412 0.7351 0.6036 1.0240

CPH - - - - -

SFM 0.2953 0.4484 0.3930 0.1993 0.5045

C-Index

DATE 0.7756 0.8264 0.8421 0.8320 0.7416

DRAFT 0.7796 0.8341 0.8560 0.8310 0.7617

S-CRPS 0.7704 0.8286 0.8685 0.8298 0.7529

CPH 0.7542 0.8344 0.8389 0.8223 0.6435

SFM 0.7786 0.8318 0.8319 0.8314 0.7491
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Table 3:

SFM batch size sensitivity on flchain dataset.

100 250 500 750 1000

Calibration slope

1.0110 0.9766 0.9807 0.9864 0.9916

Mean CoV

0.4740 0.4026 0.4484 0.4332 0.4672

C-Index

0.8302 0.8294 0.8318 0.8296 0.8287
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