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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic 

plaques and neurofibrillary tangles. The impaired synaptic plasticity and dendritic loss at the 

synaptic level is an early event associated with the AD pathogenesis. The abnormal accumulation 

of soluble oligomeric amyloid-β (Aβ), the major toxic component in amyloid plaques, is viewed 

to trigger synaptic dysfunctions through binding to several presynaptic and postsynaptic partners 

and thus to disrupt synaptic transmission. Over time, the abnormalities in neural transmission 

will result in cognitive deficits, which are commonly manifested as memory loss in AD patients. 

Synaptic plasticity is regulated through glutamate transmission, which is mediated by various 

glutamate receptors. Here we review recent progresses in the study of metabotropic glutamate 

receptors (mGluRs) in AD cognition. We will discuss the role of mGluRs in synaptic plasticity and 

their modulation as a possible strategy for AD cognitive improvement.
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INTRODUCTION

Glutamate, as a critical excitatory neurotransmitter and primary player in the synaptic 

plasticity, exerts its physiological functions through binding to its specific receptors [1]. 

Four classes of receptors have been shown to mediate glutamate transmission: N-methyl­

D-aspartate receptors (NMDAs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPAs), kainate receptors, and metabotropic glutamate receptors (mGluRs). 

NMDAs and AMPAs, as well as less abundant kainate receptors, belong to ionotropic 

glutamate receptors (iGluRs), which are ligand-gated ion channels and require glutamate 

for conducting rapid excitatory neural transmission [2, 3]. mGluRs require a cascade of 

signals to transmit a glutamate stimulus from the cell surface to the nucleus [4]. It has been 

well documented that the levels of glutamate present at any given time in the brain must 
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be optimally maintained for a normal function of the nervous systems [5]; coordination of 

various iGluRs and mGluRs controls the major and vital functions of glutamate synapses. 

Because of its indispensable roles in learning and memory as well as synaptogenesis, 

even the slightest dysregulation in glutamate signaling can inadvertently lead to cognitive 

dysfunction [6, 7]. Reduced glutamate neurotransmission has been found in association 

with impaired learning and memory in Alzheimer’s disease (AD) patients [8, 9]. Both 

iGluRs and mGluRs are found to mediate synaptic failures in AD [10–14]. Memantine, 

known to modulate NMDA receptor function, is currently prescribed for AD treatment while 

Ampakines, known as positive allosteric modulators of AMPA receptors, were explored for 

memory storage and consolidation in AD. In this review, we focus on the action of mGluRs 

in modulating synaptic transmission in AD, an area that is under investigated.

mGluRs STRUCTURE AND ACTIVATION MECHANISM

mGluRs belong to the class C of G-protein coupled receptors (GPCRs), which have a 

large extracellular ligand-binding domain, a typical heptahelical membrane structure, and 

variable lengths of a C-terminal tail. Membrane-bound GPCRs are activated by extracellular 

or allosteric binding of a ligand following which the coupled G-protein signaling ensues, 

relaying signals to various downstream effector molecules [15]. Akin to other class C 

GPCRs, mGluRs structurally comprise of an extracellular domain, bearing the orthosteric 

binding site for glutamate, and can dimerize constitutively [16, 17]. The conformational 

changes, occurring in the extracellular domain in response to ligand binding, are transmitted 

to the helices in the intracellular transmembrane (TM) domain of the receptor that facilitates 

receptor binding to a G-protein, a process that is popularly known as G-protein coupling 

of mGluRs [18, 19]. In addition to the orthosteric binding of glutamate, mGluRs can also 

bind certain molecules allosterically. The allosteric sites are more receptor subtype-specific 

and can sensitize or desensitize the receptor. Therefore, allosteric binding molecules can be 

either allosteric agonists, allosteric antagonists, or allosteric modulators [positive allosteric 

modulators (PAMs) and negative allosteric modulator (NAMs)] [20, 21]. While allosteric 

agonists can activate the receptor even when there’s no glutamate binding, allosteric 

modulators fail to do so. Upon binding at the allosteric site of the receptor, PAMs and 

NAMs indirectly modulate the effects of glutamate transmission [22].

CLASSIFICATION AND EXPRESSIONS OF mGluRs

There are 8 different types of mGluRs, which can be further classified into 3 groups (Table 

1) based on their signaling events, sequence similarity, and pharmacological effects [23–25]. 

The group I mGluRs consist of two members, mGluR1 and mGluR5. The group II also has 

two members, mGluR2 and mGluR3. The group III has four members: mGluR4, mGluR6, 

mGluR7, and mGluR8.

Group I mGluRs are predominantly present at the excitatory synapse (Fig. 1), but 

their locations may vary based on the type of different isoforms [26]. The distribution 

of mGluR1 in the hippocampus and cerebellum has been extensively studied, and its 

expression correlates with the establishment of the glutamatergic neurotransmission system 

and synaptogenesis in these brain regions [27]. mGluR5 receptor is expressed in the 
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hippocampus, amygdala, olfactory bulb, dorsal striatum, nucleus accumbens, and lateral 

septum [28, 29]. At the synapse, both mGluR1 and mGluR5 appear to be mostly located 

at postsynaptic terminals, and Homer family proteins regulate the positioning of these 

receptors close to second messengers [30]. Upon activation, they follow the Gq route 

of G-protein signaling and activate phospholipase C-β (PLC-β), thus generating inositol 

triphosphate (IP3) and diacylglycerol (DAG) to trigger intracellular calcium mobilization 

and PKC activation [31]. Group I mGluRs can sometimes act independent of G-protein­

coupled signaling by phosphorylating other target proteins such as transcription factors and 

ion channels [32]. MAPK/ERK and mTOR/P70 S6 kinase may also be activated by type I 

receptors and contribute to synaptic plasticity [33].

Neuronal group II mGluRs are found both pre- and postsynaptically in broad brain regions 

including the limbic system, sensory neurons of cortex, dorsal and ventral striatum, 

amygdala, and thalamus [34–36]. Presynaptic group II mGluRs are often localized to 

the preterminal region of axons of glutamatergic neurons, away from the active zone, 

and are viewed as autoreceptors controlling the release of glutamate in response to 

excessive glutamate release [37, 38]. Presynaptic group II mGluRs have also been found 

on GABAergic neurons, and their activation negatively feeds back on GABA release [39]. 

In layer 4 of primary sensory cortical neurons, mGluR2 has a postsynaptic localization 

and functions as a negative regulator of glutamate transmission [40]. Immuno-electron 

microscopic results show that most of mGluR3 is located in presynaptic elements and not 

closely associated with glutamate and GABA release sites, but about 20% neuronal mGluR3 

is found in spines of dentate neurons, away from glutamatergic synapses [38].

Group II mGluRs regulate hippocampal synaptic plasticity by inhibiting glutamate release 

and exerting a suppressive effect on LTP. This attenuation of glutamate release is due to 

activation of their coupling to Gi/Go proteins, in which the activated receptor acts as a 

guanine nucleotide exchange factor by replacing GDP with GTP in Gαβγ trimeric complex 

[41]. GTP-bound Gα, after being dissociated from Gβγ, separately activates their respective 

downstream signaling enzymes. They negatively regulate the expression of adenylate cyclase 

(AC) thus reducing intracellular cAMP levels and inhibiting PKA, or decreasing voltage­

gated Ca2+ channel activation [15, 42], thereby inhibiting glutamatergic neurotransmission. 

They are activated by significant synaptic glutamate release or astrocytic glutamate [39].

Group III mGluRs have been found predominantly in presynaptic active zones, with the 

exception of mGluR6, which is exclusively present at postsynaptic sites in the retina and 

transmits signals to cGMP phosphodiesterase [43]. Among the group III mGlu Rs, mGluR7 

is most prominently expressed in neuronal cells of cortex, olfactory bulb, hippocampus, 

thalamic nuclei, cerebellum, and is located within the presynaptic active zone of both 

glutamatergic and GABAergic synapses, acting to inhibit glutamate or GABA release 

[44, 45]. mGluR7 has 5 spliced forms with mGluR7a most broadly expressed. In globus 

pallidus, striatal, and retinal synapses, mGluR7 is not only present in pre-synaptic synapses 

but surprisingly found in postsynaptical sites as well [46, 47]. In the CNS, mGluR4 is 

mostly present in the cerebellum, but is also detected in the cerebral cortex, olfactory 

bulb, hippocampus, lateral septum, septofimbrial nucleus, striatum, thalamic nuclei, lateral 

mammillary nucleus, pontine nuclei, and dorsal horn [48]. mGluR4 shares a similar 
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expression profile to mGluR7, albeit in reduced or comparable levels. Expression of 

mGluR8 is more restricted in the sense that it is only found in some cortical areas and 

the thalamus with reduced expression in olfactory bulb, neocortex, hippocampus, amygdala, 

and cerebellum, and its expression level is normally lower than that of mGluR4 and mGluR7 

[49].

Sharing about 70% sequence homology with Group II mGluRs, group III mGluRs also 

signal through a distinct pathway by coupling to Gi/o proteins [50]. Besides maintaining an 

equilibrium between their active and inactive states, these mGluRs also exhibit a constitutive 

activity independent of agonist binding. Consequently, they negatively impact excitatory 

neurotransmission [51].

While most mGluRs are mainly localized in either pre- or postsynaptic neuronal sites, 

multiple mGluRs are expressed by non-neuronal cells. For example, immunohistochemical 

staining shows expression of mGluR1 in astrocytes, microglia, and oligodendrocytes 

while mGluR5 is mainly found in microglia [52–54] and mGluR5a in developmental 

oligodendrocyte precursor cells (OPCs). Among group II mGluRs, mGluR3 is more 

expressed by glial cells than neurons [55]. Early studies showed that mGluR3, but 

not mGluR2, is found postsynaptically and on astrocytes [38, 56, 57]. Glial mGluR3 

activation regulates excitatory amino acid transporters (EAATs) [58], such as increasing the 

production of glutamate transporters GLAST and GLT-1 [59]; glial mGluR3 also controls 

the production of neurotrophic factors like TGF-β [60], and is involved in the astrocytic­

neuronal communication [55]. More recently, mGluR3 was also detected in microglia, 

OPCs, and oligodendrocytes [52]. Moreover, low levels of mGluR2 are detected in mature 

MBP+ oligodendrocytes in early developmental stages but downregulated in the adult [61–

63]. Group III mGluR4, mGluR7, and mGluR8 have also been found in microglia, reactive 

astrocytes, and oligodendrocytes [64, 65]. Functionally, mGluRs expressed by glial cells 

contribute to synaptic function in the brain, particularly in the context of glial uptake and 

synthesis of glutamate. It has been shown that the deletion of mGluR5 only in astrocytes 

impairs high-frequency glutamate uptake [66]. Activation of certain mGluRs in glial cells is 

shown to alter synaptic function and protect against neurodegeneration [63].

PHYSIOLOGICAL ROLE OF mGluRs

Synaptic plasticity is the neural process in which neuronal networks and their connections 

are either strengthened or weakened at appropriate synapses through calcium waves. 

Synaptic strength can be reflected through measures of long-term potentiation (LTP), 

referring to improved and extended signal transmission, and long-term depression (LTD), 

which is the inhibition of excitatory neurotransmission [25]. LTP and LTD largely govern 

motor control, memory, and learning in most of the brain areas studied so far. Acting at 

either pre- or postsynaptically, mGluRs regulate synaptic plasticity by controlling neuronal 

excitability or neurotransmitter release (Table 2). For instance, deficiency in mGluR1 

in mice decreases LTP and cognitive functions [67–69], while deficiency in mGluR5 

decreases CA1 LTP by altering a component of NMDA receptors and restraining synaptic 

flexibility [70, 71]. mGluR7 is also required for LTP induction at hippocampal SC-CA1 

synapses through decreasing GABAergic synaptic transmission in CA1 pyramidal cells [72]. 
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Their sustained effects regulate neuronal plasticity, maintain CNS function, and contribute 

to pathophysiological conditions related to anxiety, fear extinction, and spatial working 

memory [73]. It was also noted that mGluR2 is actually required for the development of 

mossy fiber synapses [74].

Postsynaptic functions

By localizing at dendritic fields or peri-synaptic sites surrounding the ionotropic receptors, 

group I mGluRs (mGluR1/mGluR5) are shown to modulate synaptic strength through 

redistribution of AMPA and NMDA receptors at excitatory synapses, but they are not 

normally needed for the initiation of LTP [75]. In subiculum areas, mGluRs are shown 

to independently induce LTP based on the sliding-threshold model of synaptic plasticity 

[76]. It is shown that induction of LTP and LTD in CA1-subiculun synapses depends 

upon the relative activation states of NMDARs and mGluRs. In regular spiking cells, this 

threshold shifts toward mGluR activation in response to low-frequency afferent stimulation 

that triggers calcium signaling and masks NMDAR-mediated LTD [76, 77]. Reduced 

mGluR activity decreases LTP amplitude and prevents neuronal excitotoxicity under normal 

physiological conditions [78]. Postsynaptically localized mGluRs appear to trigger LTD by 

enhancing endocytosis of ionotropic AMPA receptor subunits (i.e., GluR1 and 2 in CA1 and 

GluR2 only in cerebellar Purkinje cells), leading to a long-term reduction in the number 

of postsynaptic surface AMPAR [79]. In striatal regions, postsynaptically localized type I 

mGluRs are found to mediate LTD initiation but not its maintenance [80].

Presynaptic functions

At the presynaptic site, mGluRs can regulate synaptic plasticity by affecting intracellular 

calcium levels to modulate neurotransmitter release, mostly by altering membrane potential 

and internal storage of calcium ions [81]. In many published studies using mGluR agonists, 

activation of presynaptic group II or III mGluRs inhibits excitatory synaptic transmission 

at specific synapses by reducing glutamate release [48]. 4C3HPG, a group II agonist (and 

group I mGluR antagonist), was found to inhibit LTP expression in the dentate gyrus in 
vivo [82]. However, transgenic mice and more specific drugs must be used to tease apart the 

individual contributions of mGluR2 and mGluR3 to synaptic changes. mGluR2 knock-out 

mice exhibit normal basal synaptic transmission and LTP, but impaired LTD, at mossy fiber­

CA3 synapses in the hippocampus [83]. In vitro, activation of mGluR3 receptors by group II 

agonist NAAG leads to inhibition of hippocampal LTP [84], and induction of chemical LTD 

[85]. mGluR3 antagonism via β-NAAG blocked LTD but not LTP in the dentate gyrus in 
vivo. It has been suggested that presynaptic and postsynaptic mGluR3 have distinct roles in 

synaptic plasticity: postsynaptic mGluR3 are necessary for LTD while presynaptic mGluR3 

modulates both LTP and LTD [86].

Activation of group II and III mGluRs (presynaptically localized) can also lead to the 

development of LTD through G protein-coupled receptors by dissociation of Gαi with 

Gβγ. The released Gαi and the second messenger nitric oxide are necessary steps in the 

presynaptic LTD cascade, while Gβγ directly bind voltage-dependent Ca2+ channel to 

reduce calcium influx to decrease transmitter release [87, 88]. It has also been shown that 

Gβγ binds directly to the C-terminus region of the SNARE protein SNAP-25, and this 
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binding induces LTD of vesicular glutamate release [89]. On the other hand, inhibition 

of group III mGluRs promotes NMDA and protein synthesis-dependent induction of long­

lasting LTP at the otherwise LTP deficient (SC) CA2 synapses [90]. These receptors can also 

activate other signaling pathways, including mitogen-activated protein (MAP) kinase and 

PI-3 (phosphatidylinositol-3) kinase pathways [15, 91, 92].

Group II mGluRs have been shown to associate with a number of interaction partners, 

including calmodulin [15], β-arrestins [93], glutamate receptor-interacting protein [94], 

protein interacting with PRKCA 1 [94], Na+/H+ exchanger regulatory factor 1 and 2 [95], 

protein kinase A [96], protein phosphatase 2C [97], tamalin [98], and Ran binding protein in 

the microtubule-organizing center [99]. In addition, group II mGluRs directly and indirectly 

interact with members of other mGluR classes. Recent spectroscopic and biochemical 

studies show that mGluRs can heterodimerize, which has important functional implications. 

mGluR2 can form dimers of equal affinity to members of group II mGluRs, and with lower 

affinity with group III mGluRs [100]. mGluR2/4 heterodimeric complexes are found to 

differentially regulate the responses to various positive or negative allosteric modulators 

of mGluRs [101]. In the hippocampus, mGluR2 heterodimerizes with mGluR7, and this 

complex exhibits both fast kinetics and cooperativity that boosts the affinity and efficacy of 

each subunit, priming the receptor for activation even in absence of agonist. These properties 

appear to make mGluR2/7 uniquely suited to activate in response to synaptic glutamate 

[102]. Finally, mGluR3 and mGluR5 interact synergistically through cross-talk of signaling 

pathways, where it was found that mGluR3 activation is required for maximal mGluR5 

signaling, and mGluR5 activation is required for the induction of mGluR3-dependent LTD 

in the PFC [103].

Other regulatory functions

In addition to the effect on synaptic plasticity, mGluRs present in the hypothalamus 

and pituitary can also regulate neuroendocrine functions by controlling the secretion of 

various hormones [104]. For example, gonadotropin-releasing hormone (GnRH) neurons 

receive input from GABAergic afferents via GABAA receptors, and presynaptic mGluRs 

can regulate GABAergic neuronal GABA release to GnRH neurons and control GABAA 

receptor-mediated postsynaptic currents in GnRH neurons for generation/modulation of 

rhythmic GnRH release [105, 106]. In the spinal cord, all mGluRs except mGluR6 are 

expressed within the nociceptive pathways: group I mGluRs are pro-nociceptive while group 

II and III mGluRs are anti-nociceptive [107]. mGluRs also play a role in the auditory 

system by enhancing the currents emanating from voltage-gated K+ channels in the neurons 

responsible for time coding in the auditory brainstem. The cochlear regions show an intense 

expression of group I mGluRs and a region-specific expression of the other two groups 

[108]. While many comprehensive reviews have discussed these aspects [109–113], this 

review will focus on mGluRs in AD cognitive functions.

PIVOTAL ROLE OF mGluRs IN AD PATHOPHYSIOLOGY

The brain usually shrinks to some degree in healthy aging, but surprisingly, does not 

lose large numbers of neurons under healthy condition [114, 115]. In AD, erroneous 
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synaptic activity precedes memory loss, corroborated by the fact that the synaptic density 

at hippocampal and cortical regions is reduced. A plethora of literature have documented 

various synaptic dysfunctions in AD brains [116–121]. Synaptic decline in AD animal 

studies is often reflected by a significant reduction of LTP or increase in LTD in AD mouse 

models [122–124]. A remarkable and early synaptic decline in AD has also been associated 

with altered glutamatergic systems [125]. Glutamatergic synapses, mainly involving NMDA 

and AMPA receptors, are directly relevant to LTP/LTD changes. Upon LTP induction, 

AMPA receptors are recruited at synapses, and dendritic spines are increased in number 

while LTD leads to synaptic loss and spine shrinkage [126, 127].

AD, as one of the most prevalent forms of age-dependent progressive neurodegenerative 

disorders in patients experiencing cognitive deficits, behavioral changes, and personality 

alterations, is best recognized as a significant memory loss, occurring even in the mild 

cognitive impairment stage [128]. Gradual structural and functional damages to the 

hippocampus and cortical regions, resulting from excessive Aβ aggregation and deposition, 

neurofibrillary tangles (NFT), and progressive neuronal loss, are believed to cause 

synaptic dysfunctions in AD brains [14, 129]. Neuronal loss could stem from glutamate 

excitotoxicity, which is a process by which abnormal glutamate levels exert an excitatory 

shock to neurons and can cause cell death. When glutamate receptors are over-activated, a 

massive surge in calcium influx occurs and perturbs normal cellular physiological processes, 

causing changes in mitochondria function, intracellular and extracellular signaling cascades, 

and oxidative stress [130, 131]. Depending upon the cellular stage and state of neurons 

and external factors, the contribution of different types of iGluRs and mGluRs towards 

excitotoxicity may vary relative to each other [132]. Under normal physiological conditions, 

excitotoxic levels of glutamate at synaptic clefts can be prevented by rapid conversion of 

glutamate to glutamine in glial cells. Presynaptic neurons then uptake glutamine, after which 

it is converted to glutamate by intracellular glutaminase, and normal synaptic signaling 

events can thus be maintained [133]. Abnormal Aβ levels in the brain have been shown to 

regulate glutamate levels at synaptic clefts [134, 135].

Aβ peptides, namely Aβ40 and Aβ42, are generated from large transmembrane amyloid-β 
protein precursor (AβPP), sequentially cleaved by β- and γ-secretases. Aβ exists in the 

monomeric form, but can self-aggregate to form dimer and oligomers, and even higher order 

structures called Aβ fibrils with aging [136, 137]. Amyloid plaques mainly consist of Aβ 
soluble oligomers and insoluble aggregates. Under physiological conditions, Aβ is released 

at synapses of neurons and may promote normal memory and synaptic plasticity, especially 

LTP at picomolar levels [138]. Augmentation of LTP by increase of cGMP levels may also 

require Aβ at physiologically-controlled levels [139]. Aβ peptides are shown to stimulate 

presynaptic α7 nicotinic receptors to induce synaptic plasticity [140]. APP KO mice exhibit 

deficits in memory and LTP, emphasizing the fact that Aβ may have a modulatory effect on 

synaptic plasticity and neurotransmission [141, 142]. On the other hand, under pathological 

conditions, the soluble form of Aβ oligomers is shown to be highly neurotoxic [143]. 

This is likely because pathologically increased Aβ oligomers block uptake of glutamate 

thereby leading to elevated glutamate concentrations in synaptic clefts, and cause neuronal 

hyper-excitation due to overstimulating NMDA receptors [144]. This event inhibits LTP 

by desensitizing NMDA receptors, resulting in synaptic depression and the eventual loss 
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of synapses and neuronal death [145]. This Aβ-mediated synaptic loss can occur early in 

the course of AD and is also accompanied by oxidative stress and tau phosphorylation. 

Examination of postmortem brains of AD patients reveals excessive free radical generation 

and altered nitric oxide cascade in correlation with loss of synapses [146–148]. Hence, a 

precise regulation of Aβ production and release at synapses is required for maintenance of 

synaptic plasticity [149–152].

Relevance of mGluRs in AD synaptic dysregulation

Active synaptic transmission requires not only functional iGluRs (mostly glutamate and 

AMPA receptors) but also mGluRs [153]. Aβ oligomers have been shown to contribute 

to synaptic deficits, either directly or indirectly, by interacting with iGluRs as well as 

mGluRs [154]. The effect of Aβ oligomers on iGluRs in AD synaptic deficits has been 

well documented [155–158] and this review focuses recent publications on mGluRs in this 

aspect. Altered mGluR levels or activities have been associated with AD pathogenesis by 

changing glutamatergic synaptic functions [10]. Each mGluR has been explored in various 

conditions and we will dissect their contributions to AD synaptic dysfunctions (Table 3). 

Following sub-sections will summarize our current knowledge.

Group I mGluRs inAD

In AD research, the role of group I mGluRs (mGluR1 and mGluR5) has been studied 

to a good extent, and their levels are found to be reduced in AD brains. Studies using 

postmortem brain samples of AD patients have revealed reduced levels of these two mGluRs 

in the hippocampus and cortex, and changes are region- and receptor subtype-specific. For 

example, mGluR1 levels are reduced in the hippocampal CA1 region in AD brains [159]. 

Interestingly, a study in Japanese population using positron emission tomography (PET) 

imaging did not find any significant difference in the mGluR1 availability between AD and 

control groups, especially in the early stages [160]. However, they did not rule out possible 

changes associated with the progression of AD, which will require further longitudinal 

follow-up. Indeed, in a separate study, both mGluR1 and mGluR5, quantified by radioligand 

binding assays, were found to be significantly decreased in pure AD cerebral cortex [161]. 

In particular, the decrease in mGluR1 levels occurred in cases with early AD changes. 

Moreover, mGluR1 levels in pure AD cases were lower than those obtained in patients with 

Lewy body dementia and its reduction is correlated with progression of illness, indicating 

a strong correlation to neuropathological changes. Expression levels of the phospholipase 

Cβ1 (PLCβ1) isoform, which acts as the effector of group I mGluRs, is also significantly 

decreased in AD [161]. mGluR5 levels have been found to be significantly decreased in 16­

month-old Tg-ArcSwe (an AD mice model) when compared with control mice [162]. After 

the compound [18F]FPEB was developed for specific binding to mGluR5, [18F]FPEB-PET 

was conducted in 16 mild AD patients and 15 age-matched normal controls, and reductions 

of mGluR5 binding in the hippocampus of early AD was revealed [163]. Aβ oligomers form 

a complex with cellular prion protein (prp) and mGluR5, and this complex alter signaling 

involving Fyn and PyK2. Consequently, neuronal functions including reduction of dendritic 

spines and synaptic memory are disrupted, and blocking this interaction is explored as a 

potential strategy for AD treatment.

Srivastava et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2021 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Since Group I mGluRs/PLC signaling is downregulated and desensitized in AD cases and 

worsen with progression of AD pathologies, it is not surprising to speculate that group I 

mGluR dysfunction is likely one culprit for the cognitive impairment and dementia in pure 

AD patients. Activation of group I mGluRs may need to be explored as a potential strategy 

for reversing pathological changes in these dementia patients. Encouragingly, a couple of 

studies show that activation of group I mGluRs accelerates nonamyloidogenic processing 

of AβPP by α-secretase, potentially protecting from Aβ-mediated neurotoxicity [164, 165]. 

Thus, dysfunction of group I mGluRs is likely associated with AD disease progression and 

contributes to AD cognitive failure.

Group II mGluRs in AD

In the hippocampus of AD patients, mGluR2 expression is increased in the CA1 and CA3 

pyramidal neurons compared to age-matched controls, and immunostaining of mGluR2 

exhibited significant overlap with hyperphosphorylated tau-positive neurons [166], implying 

a role of mGluR2 in the pathogenesis of AD. The dual mGlu2/3 receptor agonist LY379268 

was found to induce ERK activation in rat primary cortical neurons [92], and this activation 

directly increased tau phosphorylation in primary neurons [167]. Since ERK is chronically 

elevated in AD neurons and is shown to phosphorylate tau in regions of the AD brain that 

harbors NFT [168], activation of mGlu2/3 receptor may facilitate tau pathology. However, 

the ERK pathway functions in cell proliferation, differentiation, and survival—indeed, it is 

commonly implicated in human cancers—and thus while NFT have historically been seen as 

detrimental to neurons, some authors suggest that tau phosphorylation represents a neuronal 

compensatory response to stress and is associated with survival [169, 170].

On the flip side, group II mGluR activation is protective for neurons against excitotoxicity 

via the inhibition of glutamate release [171–173]. Recent efforts have been directed toward 

teasing apart the individual contributions of mGluR2 and mGluR3 to neuronal survival and 

synaptic function and dysfunction in the setting of AD. Overall, AD appears to be associated 

with reductions in mGluR3 but increases in mGluR2 function. activation of mGluR2, but 

not mGluR3, inhibits GABA release and becomes harmful to neurons subjected to an 

excitotoxic insult; in mixed cortical cultures, the addition of group II agonist LY379268 

reduced K+ depolarization-evoked GABA release in neurons cultured from wildtype or 

mGluR3 KO, but not mGluR2 KO mice [174]. Also, LY379268 treatment protects cultured 

neurons from NMDA-mediated excitotoxicity only when astrocytic mGluR3 is present, 

an effect that can be amplified by the absence of neuronal mGlu2 receptors [174]. 

Furthermore, the mGluR2 activation by the PAM LY566332 potentiates Aβ toxicity in vitro 
regardless of whether glial mGlu3 receptors is present, an effect that is abrogated when 

neurons lack mGlu2 receptors [175]. It is further shown that group II agonist LY379268 is 

neuroprotective against Aβ toxicity in mixed cultures, likely through a paracrine mechanism 

mediated by TGF-β1; Anti-TGF-β antibodies also eliminate the neuroprotective action 

of LY379268 in cultures challenged with Aβ25–35 or Aβ1–42 [175]. LY379268 treatment 

abrogates its neuronal protection if co-cultured astrocytes lack mGluR3. The selective 

mGluR3 NAM LY2389575 independently amplifies Aβ toxicity; LY379268, which is 

otherwise highly protective, becomes neurotoxic in the presence of LY2389575. These 
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findings suggest that mGluR3 is protective against Aβ-induced toxicity, while mGluR2 

promotes Aβ toxicity. Hence, the ratio of mGluR3:mGluR2 activity modulates AD risk.

Group II mGluRs have emerged as a possible target for AD therapeutic intervention to 

reduce Aβ burden at the synapse. This thought is based on the hypothesis that activation 

of group II mGluRs may trigger synaptic activation of all three secretases, as well as 

preferential production and release of Aβ42 peptides from nerve terminals [138]. Group II 

mGluR agonist DCG-IV administration leads to initially increased levels of AβPP CTFs 

of isolated neuronal synaptosomes taken from TgCRND8 mice. This phase was shortly 

followed by a CTF cleavage characterized by sustained accumulation of Aβ42 peptides, but 

surprisingly little effect on the release of Aβ40 peptides [138]. Consequently, the Aβ42:Aβ40 

ratio is increased, mimicking a common feature of hereditary AD and animal models of AD 

[176], which suggests a role of group II mGluRs in amyloidogenic synaptic events. Indeed, 

when Dutch Aβ-oligomer-forming APP transgenic mice (APP E693Q) were chronically 

administered the group II mGluR antagonist BCI-838, these mice exhibited a reversal of 

transgene-related learning and memory impairment, increased hippocampal neurogenesis, 

reduced anxiety, and reduced Aβ monomers and oligomers in the hippocampus and cortex 

[177].

Group III mGluRs in AD

The role of group III receptors in AD pathogenesis is still being explored, though it is 

believed that their activation has neuroprotective effects in the case of AD through regulation 

of the NMDAR and PI3K pathway [166]. Although less studied than other groups, group 

III mGluRs play an important role in nervous system disorders and their activation has 

been found to be beneficial against neurodegeneration [178]. Identification of selective 

compounds for its subtypes has catapulted studies focusing on the physiological roles and 

therapeutic potential of group III mGluRs [179]. Group III mGluRs are believed to exert 

neuroprotective effects by inhibiting glutamate release and dampening its excitotoxicity 

[180]. In case of AD, they reportedly confer neuroprotection by regulating neurotransmitter 

release and improving AD symptoms while possessing an improved safety profile. The 

agonists of group III also reduce the levels of pro-inflammatory cytokines from activated 

astrocytes, thus preventing cellular demise due to neuroinflammation, a common hallmark 

of AD [181]. Disruption of calcium homeostasis is one of the primary outcomes of Aβ 
neurotoxicity. In vitro studies show that a pretreatment of neuronal cells with group III 

mGluR agonists rescued the cells from Aβ-induced neurotoxicity by reducing the elevated 

intracellular calcium levels that would otherwise be damaging [182].

mGluR4 agonists have been found to protect degenerating neurons in the caudate nucleus 

of wildtype mice but not in the mGluR4 knockout mice, suggesting its ability to induce 

neuroprotection [54]. Its activation also promoted a decline in neurotoxicity associated with 

excessive activation of microglia by Aβ, a hallmark of AD pathology, suggesting a potential 

use of mGluR4 agonists in AD therapy [183, 184]. Besides being neuroprotective, mGluR4 

also influences LTP at CA1 synapses. The mGluR4−/− mice exhibit improved LTP in the 

CA1 region of hippocampus, but no such effect has been observed in the prefrontal cortex or 

dentate gyrus, likely due to the varied expression profile of mGluR4 in these brain regions. 
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Again, the critical involvement of synaptic plasticity at CA1 synapses in AD, mGluR4 

inhibition is a potential therapeutic target [185].

Despite a paucity of suitable pharmacological compounds and ligands against mGluR7, 

studies conducted with knockout mice at the cellular and molecular levels reveal that 

this particular receptor holds a lot of potential in therapeutic implications against 

neurodegenerative disorders like AD [186]. Unlike other group III members, mGluR7 is 

highly abundant in basal forebrain neurons. When this receptor is activated, it suppresses 

NMDAR currents thus protecting neurons against NMDAR-mediated excitotoxicity. 

However, Aβ inhibits this protective action of mGluR7, specifically in cholinergic neurons 

in the basal forebrain area [187]. mGluR7 is also known as the emergency brake system 

of the cell in the case of abnormal elevation in glutamate levels due to its minimal affinity 

for glutamate. This was further corroborated by a study involving mGluR7 KO mice that 

exhibited spontaneous seizures in absence of mGluR7 [15, 188]. Another study reported a 

reduction in mGluR7 levels in response to elevated miRNA-34a levels in 3×Tg-AD mice 

models. GRM7, the gene encoding mGluR7, is a target of miR-34a associated with anxiety 

[189]. The finding corroborated an earlier study involving mGluR7 KO mice exhibiting 

anxiety-like behavior [190], confirming its role in cognition and behavior.

Mice with targeted mGluR8 gene deletion exhibit subtle behavioral changes, mainly related 

to a diminished acclimatization to novel surroundings, interrupted context-based freezing 

response against fear, as well as hyperactivity and anxiety [191]. These changes are likely 

due to reduced glutamate release along with an abnormal GABA release and lead to 

the dysfunctional hippocampus. Since hippocampal neurotransmission anomalies are some 

of the pronounced effects of AD, activation of mGluR8 should be explored as an AD 

therapeutic target [192].

SUMMARY

Glutamate excitotoxicity occurs when the glutamate receptors are activated beyond a normal 

threshold, resulting in the loss of dendrites, cell bodies, and other postsynaptic structures. 

This is one of the major underlying reasons for synaptic failures and neurodegeneration 

in AD [193]. The ability of mGluRs to modulate glutamate release bodes very well with 

their contributions to the synaptic failure of AD. Perplexingly, modulation of mGluR activity 

for AD therapeutic intervention remains underexplored. If research efforts will be growing 

in this area, including more functional and pharmacological studies as well as pre-clinical 

explorations, growing knowledge will eventually shed light on novel discoveries of mGluR 

modulators in AD treatment.
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Fig. 1. 
Distribution of different groups of mGluRs at glutamatergic synapse. Group I mGluR1/5 

are mostly localized postsynaptically. mGluR2/3 are mainly in presynaptic site, located 

perisynaptically, but in certain brain regions group II mGluRs are localized in postsynaptic 

sites. mGluR4/7/8 are found near presynaptic active zones. The presynaptic group II and III 

mGluRs have an inhibitory effect on the release of glutamate from the synaptic vesicles 

as well as on calcium signaling. The postsynaptic group I mGluRs promote a rapid 

calcium influx upon their activation and contribute toward LTP induction. The glial cells 

(astrocytes, microglia, oligodendrocytes) also reportedly express mGluR1/5, mGluR2/3, 

and mGluR4/7/8 that play a significant role in glutamate neurotransmission, glial cell 

proliferation and release of cytokines.
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