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Learning Objectives

After reading this article, the participant should be able to: 1. Understand the basics of biofilm 

infection and be able to distinguish between planktonic and biofilm modes of growth. 2. Have a 

working knowledge of conventional and emerging antibiofilm therapies and their modes of action 

as it pertains to wound care. 3. Understand the challenges associated with testing and marketing 

antibiofilm strategies and the context within which these strategies may have effective value.

Summary

The CDC estimates for human infectious diseases caused by bacteria with a biofilm phenotype 

is 65% and NIH estimates is closer to 80%. Biofilm are hostile microbial aggregates because 

within their polymeric matrix cocoons, they are protected from antimicrobial therapy and attack 

from host defenses. Biofilm infected wounds, even when closed, show functional deficits such 

as deficient extracellular matrix and impaired barrier function, which are likely to cause wound 

recidivism. The management of invasive wound infection often includes systemic antimicrobial 

therapy in combination with debridement of wounds to a healthy tissue bed as determined by 

the surgeon who has no way of visualizing the biofilm. The exceedingly high incidence of false 

negative cultures for bacteria in a biofilm state leads to missed diagnoses of wound infection. 

The use of topical and parenteral antimicrobial therapy without wound debridement have had 

limited impact on decreasing biofilm infection, which remains a major problem in wound care. 

Current claims to manage wound biofilm infection rest on limited early-stage data. In most cases, 

such data originate from limited experimental systems that lack host immune defense. In making 

decisions on the choice of commercial products to manage wound biofilm infection it is important 

to critically appreciate the mechanism of action and significance of the relevant experimental 

system. In this work, we critically review different categories of anti-biofilm products with 

emphasis on their strengths and limitations as evident from the published literature.
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Introduction

At any site of infection, microbes are currently known to exist in two distinct phenotypic 

states – planktonic (free-living) or biofilm (sessile/attached/aggregated). Planktonic 

microbes can attach to a suitable surface (biotic or abiotic) and develop into polymicrobial 

biofilm aggregates. Biofilm structures contain aggregated microbes that are encased within 

a protective polymeric matrix called the extracellular polymeric substance (EPS) and able to 

self-adapt to survive in their particular environment(1, 2). The formation of biofilms requires 

a complex interplay of genetic and environmental (surface, availability of nutrients, etc.) 

stimuli. It is not clear if all bacteria have the inherent capability of forming biofilm, the 

impetus for which is driven by environmental signals that drive genetic changes to initiate 

biofilm mode of growth. Non-biofilm forming strains are known to exist and as sometimes 

used as controls for experimental studies. However, it is theorized that planktonic mode of 

growth is a laboratory induced phenomenon in the presence of abundant nutrients and that 

the biofilm mode of growth is a default mechanism that enables bacterial survival in their 

natural (non-laboratory) environment(3, 4). In the biofilm form, microbes have improved 

tolerance for antibiotics and host immune defenses(1, 5–8). Specifically, they can share 

plasmids that encode resistance genes and although some immune cells appear to interact 

with biofilms (Fig. 1), their function is ‘frustrated’ and incomplete(9–15). Pre-clinical 

studies with Staphylococcus aureus biofilms, have shown they produce a cytotoxin called 

leukocidin that kills neutrophils rendering them ineffective at clearing the biofilm(15).

Presently, wound healing endpoint is based on visual observations. Per the FDA, a wound 

covered by skin for at least 2 weeks at 2 consecutive visits without discharge is clinically 

decided to be closed(16). The emergent paradigm of wound biofilm infection has helped 

uncover a glaring knowledge gap that epithelial covering of wound and lack of discharge 

may be grossly inadequate to support a decision of wound closure. Even in the presence 

or history of biofilm infection, the closure rate as determined by wound size may not be 

significantly impeded nor will there be any discharge, but restoration of skin barrier function 

at the site of wound closure is significantly impaired (17–19). Thus, there is an unrecognized 

capacity to harm functional wound healing because skin covering the wound cannot perform 

it’s critical role as a barrier against infection or regulate evaporative water loss. These 

studies heighten the need to revisit current clinical standards of a wound closure decision 

by adding restoration of intact skin barrier functionality as a criteria for healed wounds.

(17–19). Additionally, biofilm infection severely compromises the extracellular matrix 

composition (upregulated collagen degrading enzymes and inhibited collagen synthesis) 

of the repaired skin by decreasing the wound site tensile strength making it susceptible to 

wound recurrence(19)

Several current technologies demonstrate promise in wound diagnostics(20). Barrier 

function of the skin can be readily detected at the point of care using trans-epidermal water 

loss (TEWL). TEWL detection devices are FDA approved for use in dermatological care 

and are often used in non-wound related clinical diagnostics(21–29). Indeed, observations 

from ongoing studies in patients with wounds that have been deemed “closed” by a clinician 

identified deficient barrier function (high TEWL) in over a third of all cases. Taken together, 

these observations lend credence to the notions that: (i) restoration of barrier function should 
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be factored in to a functional wound closure decision, and (ii) that TEWL readings could be 

used as a biomarker of wound recurrence. Currently, NIH sponsored clinical studies are in 

progress testing the significance of TEWL in wound care (clinicaltrials.gov NCT02577120).

Biofilm infections are a pernicious factor in human health(30, 31). The Centers for Disease 

Control (CDC), National Institutes of Health (NIH) and the Food and Drug Administration 

(FDA). Per CDC estimates, 65% of all human infectious diseases are caused by biofilm 

bacteria. NIH estimates that this number is closer to 80%(8). Biofilm formation has been 

associated with infection of virtually all types of implantable medical devices including but 

not limited to intravenous catheters in catheter-related blood stream infections, orthopedic 

implants, urinary catheters, craniofacial and dental implants(5, 6, 32–48). It is now 

federally regulated that pre-market submissions of medical devices must include anti-biofilm 

strategies(49). The hunt for anti-biofilm solutions in healthcare has gained momentum(1, 2, 

50–55). The objective of this work, is to discuss anti-biofilm strategies employed in wound 

care. (Video1) (See Video 1 [online] which displays strategies to manage biofilm infection in 

wound care)

Biofilm management in wound care.

Strategies to manage biofilm infection in wound care setting may be clustered into three 

broad categories based on the aspect of biofilm lifecycle that is targeted: a. adhesion 

inhibitors, b. biofilm maturation (communication) inhibitors, and c. promoters of disruption. 

To achieve these, several types of physical, chemical and biological agents/methods have 

been tested. None of these have been formally risen to the strength of standard of care 

primarily because of scanty clinical evidence. A few key agents/methods are listed in 

Tables 1–2. Of note, vast majority of these products have not gone through FDA clinical 

trials to specifically secure anti-biofilm claim. Yet in wound care education sessions at 

national meetings, products are presented as biofilm directed management products with 

minimal substantiated evidence supporting their true application as antibiofilm strategies. 

Care providers must be mindful of this gap in data and scientific rigor as part of their biofilm 

education at the present time.

Criteria for defining biofilm infection

Biofilm infection as defined in vivo based on criteria laid out by Parsek and Singh, 

include: i) aggregate embedded in extrapolymeric substance (EPS) matrix ii) adherence 

to a surface or each other; iii) persistent and localized infection; and iv) resistance to 

anti-microbial treatments(56). In addition, a clinically relevant model of biofilm infection 

must allow for host-microbe interaction under conditions of competent immune system(57, 

58). Scanning electron microscopy (SEM) is currently a widely acknowledged gold standard 

to demonstrate polymicrobial aggregates adhered to wound surfaces and embedded in 

EPS. Colony forming unit (CFU) viability assays are not reliable because these assays 

do not account for viable but non-culturable (VBNC) persister bacteria, which are 

metabolically inactive, transient bacterial states with an increased tolerance to stressors, 

such as antimicrobial therapy and starvation(59, 60). We review the following ‘anti-biofilm’ 

strategies below in the context of these criteria and to address knowledge gaps the common 
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surgeon working in this area may have. Also interspersed are areas of controversy that are 

briefly clarified.

Conventional Strategies

(a) Debridement.

Historically, the management of invasive wound infection included systemic antimicrobial 

therapy in combination with debridement. While debridement can be very powerful in 

debulking hostile biofilm aggregates, lack of visualization of biofilm aggregates during 

debridement makes it a hit-or-miss type of approach that limits effectiveness. In worse 

case scenarios not under the control of the care provider, debridement may inadvertently 

push the unseen biofilm structures deeper as demonstrated in a pre-clinical studies where 

debridement was conducted by a plastic surgeon(18). A clinical case is presented in 

Figs. 2–3. Used alone debridement may not be sufficient for biofilm removal. However, 

in combination with other synergistic methods, it could promote chronic wound healing 

and decrease wound recurrence. For example, the use of resorbable antibiotic beads for 

aggressive antibiotic delivery to debrided pressure ulcers was found to significantly decrease 

(12.5% combination vs. 39.4% debridement only, p = 0.03) the recurrence rate of the 

ulcers(61). Despite its obvious shortcomings, sharp surgical debridement is still generally 

considered the gold standard for the management of biofilm because it disrupts the EPS and 

converts biofilm bacteria to planktonic bacteria susceptible to antimicrobial therapy for a 

brief window of time until the biofilm can be re-established(62, 63)

(b) Maggot therapy, involving the use of maggot excretions/secretions (ES) have been tested 

using in vitro and ex vivo studies for debridement and shown to be efficient in disrupting 

biofilms of various bacterial species including P.aeruginosa and S.aureus biofilms(64–66) 

and Enterobacter cloacae(67). However, it was also documented that maggot therapy may 

be selective in its inhibitory effect. Studies showed that ES could enhance or promote 

biofilm formation of Proteus mirabilis(67). A clinical trial using larval debridement therapy 

as an anti-biofilm therapy was completed in 2018 (clinicaltrials.gov NCT02294175), but no 

publications are documented as yet.

(c) Ultrasound therapy (UST) involves the use of low-frequency (20–60Hz) sound waves 

to clean the wound and directly stimulate immune cells(68–70). UST debridement has 

been investigated as a supportive therapy for chronic wounds, and is hypothesized to both 

debride the wound and promote healing by increasing cellular activity, promoting synthesis 

of growth factors, promoting fibrinolysis, and disrupting biofilm(71–74). While dispersal 

of biofilms by UST has been studied in vitro(75), in vivo studies are limited. One study 

used CFU viability assay to assess the effect of UST. There was no significant decrease 

in bacterial count over the treatment period(76). At present it remains speculative whether 

UST has any impact on biofilm specific disruption in vivo. Interestingly, low-frequency 

direct contact UST was found to be effective in dispersing biofilms from metallic implant 

materials and making them susceptible to disinfectant treatment(77). The use of UST with 

microbubbles (MB) containing antimicrobial agents is emerging as the next-generation 

advancement to regular UST and shown to be inhibitory to S.epidermidis and A.baumannii 
in in vitro studies(78, 79). Two in vivo studies have been performed using a mouse 
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orthopedic implant model (Staphyloccus sp.) and a rabbit catheter model (S.epidermidis) 

that demonstrated potential synergistic effect against biofilms without exerting toxic effects 

on the animal host(80, 81). Once developed further, UST (with or without microbubbles) 

could have promising biofilm disrupting value for devices and implants.

(d) Physical methods.

While debridement is a physical method targeting a specific facet of the surgical/operative 

process, other physical strategies such as non-thermal plasma, photodynamic therapy and 

nanotechnology address aspects in the peri-operative realm. The mode of action (MOA) 

of these methods typically involve preventing adhesion or promoting dispersion and are 

generally applied to inanimate surfaces or objects. (i) Non-thermal plasma. Non-thermal or 

atmospheric cold plasma (ACP) involves the generation of photons, electrons, neutrons and 

protons when exposed to the constant supply of energy to a gas(82–84). The anti-biofilm 

effects of ACP are thought to be due to the generation of reactive oxygen (ROS) and 

nitrogen (RNS) species (including organic radicals). ACP has been tested in vitro and in a 

few small-animal studies as an anti-biofilm strategy(82). Clinically, ACPs are advantageous 

primarily because of the ability to control and target the reactive species to cause matrix 

disruption, quorum sensing inhibition and induction of dispersal(82). However, in some 

cases, plasma–biofilm interactions that may result in the development of persisters. (ii) 

Photodynamic therapy (PDT). PDT involves the use of a non-toxic photoactive dye (e.g., 

acridine orange, toluidine blue, photofrin, etc.(85)) that when exposed to light of a specific 

wavelength in the presence of oxygen, get activated and produces toxic oxygen species 

(e.g., free radicals, singlet oxygen). Its use for controlling biofilms has been documented 

in oral care and has sparked much interest in wound care. Due to the limited penetration 

capability, PDT is possibly most applicable to superficial infections. A few reports have 

studied the application of PDT against bacterial and fungal biofilms both in vitro and in 
vivo(86–90). Some unwanted side effects of PDT include increased biofilm-forming ability 

of S. aureus(91). Furthermore, PDT can cause allergic reactions and skin photosensitivity 

at the site of application. The application of PDT in the clinical setting for wound care 

requires significant testing and evaluation. (iii) Nanomaterials. The increased reactivity of 

nanomaterials (nanometer or submicron scale) and ease of control of its chemical and 

physical properties (23) has resulted in a surge of interest as a therapeutic option for 

treatment of biofilm infection. Examples include i. nanoparticles (NP) made of metal or 

metal oxide that disrupt the cell membrane directly or producing free radicals, ii. controlled 

and sustained site specific delivery of drugs using NPs such as liposomes or polymeric 

nanoparticles, iii. physical, irreversible disruption of biofilms using combination therapy 

such as gold nanoparticles or magnetic nanoparticles (MNPs, such as γFe2O3 maghemite 

or Fe3O4 magnetite nanoparticles) with near-infrared (NIR) light or alternate magnetic field 

(AMF), and iv. coating surfaces with NPs to prevent adhesion of bacteria and development 

of biofilms(92).

Chemical methods

(a) Silver based management.: The use of silver as an antimicrobial agent dates back to 

ancient Egypt, Greece and Rome, where silver was used as a metal salt to clean wounds or 

as threads for sutures. The antimicrobial property of silver manifests when silver is in ionic 
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form (Ag+). Ag+ have shown effectivity against bacteria (including methicillin resistant 

S.aureus (MRSA) and vancomycin-resistant Enterococci (VRE)), viruses and fungi(93) in 

planktonic form. On contact with wound exudate, silver ions can be released from dressings 

into the wound bed and kill the planktonic bacteria. The efficacy of silver based wound 

dressings has increased in the advent of silver nanoparticles (AgNP). AgNPs are less 

reactive and toxic (to human cells) than ionic silver and more applicable to diverse clinical 

and therapeutic applications(94).

Several studies have been performed to test the anti-biofilm effect of silver. Most of these 

studies are preliminary because they are in vitro based and test the early stages (e.g., initial 

adhesion) of biofilm development. Given the known bactericidal nature of Ag+ against 

planktonic microbes, it is not surprising that these studies show favorable effects on biofilm 

development. Treating early stages with silver will kill microbes because they are still in the 

planktonic state and therefore biofilms will not develop. Few in vitro studies have addressed 

the impact of silver on mature biofilms including a 2016 study by Bowler and Parsons, 

where the authors showed the ability of a pH regulated augmented silver hydrofiber dressing 

to significantly decrease biofilm(95). This study is limited by its approach in that it uses 

a standard colony forming unit (CFU) viability assay as a means to claim anti-biofilm 

status. Other studies, including those from our laboratories using a chronic burn biofilm 

porcine model have shown that once biofilm is established, silver treatments are of limited 

benefit(18, 96). Various silver dressings have been tested in porcine models. A silver gelling 

fiber dressing was used against P. aeruginosa wound biofilm in a short term model (7 

days) and demonstrated an apparent decrease in bacterial biomass(97). The limitations of 

this study include the absence of standard criteria testing(56) including the gold standard 

scanning electron microscopy (SEM) to demonstrate actual biofilm development in the 

wounds. Furthermore, the short term study does not address the chronic, persistent nature 

of a true biofilm and may be preliminary in its findings. Among the limited clinical studies 

performed with silver based dressings, no clear biofilm indicators have been tested to 

validate its anti-biofilm capability. Coating medical devices with ionic or metallic silver 

has not shown much promise possibly due to inactivation by organic material such as 

blood(98). AgNP coated catheters did not allow the biofilm formation by a number of 

pathogens such E.coli, Enterococcus sp, S.aureus, coagulase-negative Staphylococci when 

tested in vitro(99). Clinical studies testing the effects of AgNP impregnated coatings on 

biofilm prevention remain to be reported. Studies have been performed in several small 

and large animal models to show the efficacy of AgNP coated stents and catheters in 

reducing or preventing biofilm infection(99–102). At high doses, AgNPs could be toxic 

to human cells(103). Another serious side effect is an increased thrombin formation and 

platelet activation leading to a thrombosis risk of patients in clinics(104). Further studies are 

warranted to address safe applications of AgNP, particularly in the context of direct contact 

with human cells and tissues.

(b) Iodine.: Iodine is an antiseptic that impacts bacterial cells by multiple 

mechanisms(105). The neutral and lipophilic nature of iodine could enhance the penetration 

of this molecule into biofilms(105–108). Iodine, like silver can kill planktonic cells rapidly. 

But unlike silver, is also able to inhibit mature biofilms of Staphylococcus aureus, and 
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P. aeruginosa when treated over an extended period. Extended release of iodine beyond 

the period of strong initial kill may be critical to continue exposing persister cells 

to antimicrobial molecules, potentially resulting in ultimate death of the persisters and 

preventing biofilm reformation from these dormant but viable cells. Modern formulations of 

iodine, particularly in the cadexomer-iodine (CI) combinations, that sequester iodine without 

limiting its inhibitory functions have been shown to have anti-biofilm effects and also wound 

healing capabilities in experimental animal models(105, 108). Rigorous in vivo studies and 

human clinical trials are warranted.

(c) Hypochlorous acid.: HOCl is known to rapidly eradicate pathogenic bacteria and is less 

toxic to mammalian cells than hydrogen peroxide. HOCl has uses as a wound cleansing 

agent and has been shown to promote wound healing in a rodent model(109–111). It is the 

active component of two common wound irrigating agents – Dakins solution and Vashe. 

Conflicting evidence, based primarily on in vitro studies, present an unclear picture about 

the efficacy of these solutions against biofilms of different bacterial species exists. One study 

identified that HOCl was bactericidal against Streptococcus strains but unable to disrupt 

biofilm(112). Another study claimed in vivo evidence of the efficacy of HOCl against 

biofilm from swab samples and exudates collected from treated venous stasis ulcers. The 

issue with this study is that it is unclear if any of these wounds were confirmed as being 

infected with biofilm forming bacteria(113). In this same study, in vitro efficacy against 

biofilm forming Pseudomonas and Staphylococcus strains were demonstrated. It is possible 

that an anti-biofilm effect could be strain specific. Additional studies are required to dissect 

the true efficacy of this chemical agent against biofilm mode of growth. HOCl is thought to 

be the byproduct of electrical treatment modalities and is briefly discussed in the Emerging 
strategies section.

(d) Quorum sensing inhibitors.: Bacteria communicate to adapt their behavior 

collectively to their environment by a molecular phenomenon called quorum sensing (QS) 

that involves the synthesis and response to small molecules called auto-inducers (AIs) 

(114). QS drives the synthesis of virulence factors such as pyocyanin (P.aeruginosa), biofilm 

formation, and other activities(115). The inhibition of QS is called quorum quenching 

(QQ). Inhibitors with QQ effect are numerous and range from natural (e.g., certain types 

of honey(116, 117)) to synthetic (e.g., furanones(118–120)) and have been used for direct 

testing against biofilm forming bacteria in vitro. Some of these inhibitors have also been 

considered for treatment of medical devices such as catheters, dressings, orthopedic and 

trauma devices(121), as a means to prevent the development of biofilm.

Natural products

Manuka honey.: Manuka honey (MH), derived from the Manuka tree has non-hydrogen 

peroxide based antimicrobial properties attributed to its high content of methylglyoxal 

and leptosperin. A few in vitro studies have been performed on biofilm forming strains 

using MH alone(122–126) or in combination with antibiotics(127, 128). Reports suggest 

a synergistic anti-biofilm effect of MH together with antibiotics(129). One report however 

indicated the emergence of persister strains of P.aeruginosa in MH treated samples(130). 

MH based wound dressings are available in the market and FDA cleared for use for the 
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management of chronic wounds and burns(131). Several have been tested for antibacterial 

(planktonic) activity in a clinical setting(132–136). Few in vivo studies to date have 

specifically addressed antibiofilm activity of MH(137, 138). Rigorous clinical studies are 

warranted.

Emerging strategies

(a) Electroceuticals.: Electric principle based approaches are an emerging area of 

wound therapeutics(17, 139–147). Wireless electroceutical wound dressing (WED) inhibits 

P. aeruginosa biofilms by interfering with the QS pathway and antibiotic resistance 

mechanisms(148). Preclinical porcine studies showed that WED could prevent or treat P. 
aeruginosa and Acinetobacter baumannii mixed biofilms and improve visual and functional 

wound healing(17, 57, 149). WED was found to improve the healing impact of negative 

pressure wound therapy (NPWT) with the need for fewer dressing changes in a limited 

size clinical case series(150). An independent group showed that WED could inhibit 

various other pathogenic biofilm forming bacteria in vitro(151, 152). A second generation 

patterned electroceutical dressing (PED) was developed to treat deeper biofilm infections 

and was recently shown to be safe for human application(153). An in vitro agar based 

model using a bioluminescent strain of P.aeruginosa measured biofilm inhibition when 

direct current was applied. SEM imaging identified a disrupted biofilm architecture. 

Mechanistically, hypochlorous acid (HOCl) was hypothesized to be responsible for the 

observed eradication of these biofilm forming bacteria, based on pH measurement and the 

presence of chlorotyrosine in the cellular lysates tested(154). e-Scaffolds that generate HOCl 

have been tested for their ability to inhibit biofilm formation using an ex vivo porcine 

ear model, promoted by the addition of maltodextrin (a hyper-osmotic agent)(155, 156). 

Limitations of such study include the lack of host immune defense system as part of the 

experimental model. Further clinical and mechanistic studies are warranted.

(b) Phage therapy.: The basic concept involves the use of a virus to directly lyse a 

bacterial cell. Phages are very specific for the bacteria being targeted and can only gain 

entry into a cell in response to specific receptor mediated interactions(157, 158). Recent 

studies however indicate that phages may impact the host immune system thereby promoting 

bacterial infections(159–162). Bacteriophages have been extensively studied as therapeutic 

agents using ex vivo or in vivo wound models including acute burn wound infections, alone 

or in conjunction with other therapeutics(163). Phage infections can degrade biofilm matrix 

by inducing protease synthesis and cause whole bacterial cell lysis(164–166). A better 

understanding of underlying mechanisms must be gained to pave the way towards clinical 

testing of this interesting therapeutic strategy.

Challenges/Closing Concept

The ideal anti-biofilm strategy in the context of wound therapy would eradicate the biofilm 

and either promote wound closure or at least have no adverse effect on wound healing. 

There are anti-biofilm strategies tested and marketed that appear to be effective against 

bacterial biofilms, but they do not fully consider all microbial (fungal, protozoan) pathogens. 

Furthermore, for biofilm of relevance to human health, there are two primary factors: 
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(i) microbial mechanisms, and (ii) host response, which modulates microbial mechanisms 

over time(57). This iterative interaction between microbes and host defenses helps shape a 

pathogenic chronic biofilm. Therapies marketed as “anti-biofilm” may not necessarily be 

useful in fighting wound infections especially if they have been tested primarily in immune 
incompetent (independent of host immune function) systems(15, 57). Such approaches 

are powerful in understanding microbiological processes but limited in addressing host

associated biofilm responses. Translational relevance of anti-biofilm therapies are better 

tested in the context of immune competent pre-clinical models that capture the persistent 

nature of biofilm infected chronic wounds(57). While pre-clinical studies ensure safety and 

efficacy of therapeutics, there are limitations because of the disparate anatomy and biology 

of different animal models compared to humans. The successful translation of antibiofilm 

therapies to the clinic would be better served by patient-based mechanistic and outcome 

studies to support definitive anti-biofilm claims in wound care. A modified representation of 

levels of evidence in the context of anti-biofilm strategies is presented in Fig. 4. Most of the 

currently available anti-biofilm strategies fall within levels 3–5. Evidence at level 5 should 

be regarded as too preliminary to act upon clinically. The discipline awaits level 2 evidence 

that would pave the way to specific FDA claims relevant to efficacy in managing wound 

biofilm infection. Products in levels 4 (large animal) and 5 would be the most promising 

based on current levels of evidence.

In summary, biofilm infection is a common but unrecognized contributor to wound 

chronicity. It causes loss of skin barrier function and loss of evaporative water regulation. 

It disables the host innate immune response and weakens the extracellular matrix at 

the wound site. Clinicians are further challenged by the fact that bacteria in a biofilm 

state do not reliably grow in culture and the only way to definitively diagnose biofilm 

infection is through scanning electron microscopy, which is not clinically available. 

Challenges in biofilm detection and lack of rigorous testing in clinical trials severely 

limits clinical decision support. Based on the material discussed in this work the following 

recommendations are made regarding clinical management of biofilm in chronic wounds: 

1) assume biofilm infection is present if wound healing is stalled, 2) debridement to 

convert bacteria from biofilm to planktonic state is essential to render them susceptible 

to treatment. Sharp debridement remains the gold standard. Non-contact methods, such 

as ultrasound, should be considered if pain is a limiting factor. 3) Tissue specimens 

should be collected after debridement to increase the yield from microbiology cultures. 4) 

debridement must be followed by immediate topical antimicrobial therapy to prevent biofilm 

from being re-established. 4) Wireless electroceutical dressings have the most scientifically 

rigorous pre-clinical testing and FDA products of this type are available, but insurance 

coverage may be limited. Cadexomer iodine is an alternative product with some evidence of 

biofilm eradication and is readily available 5) Absorbable antibiotic impregnated beads are 

effective topical antimicrobial therapy in the setting of flap closure of wounds. 6) Topical 

antimicrobial therapy may not be sufficient alone, especially in the setting of underlying 

osteomyelitis and flap closure, so systemic antibiotic therapy should be included.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 3D imaging of biofilm and host immune cells.
Porcine burn wound tissue infected with Pseudomonas aeruginosa and Acinetobacter 

baumannii mixed species biofilm were processed and imaged using STEM/FIB-SEM 

imaging. Shown is a representative 3D image created from individual slices generated by 

the imager. Phagocytic cells are shown in pink interacting with extrapolymeric substance 

(EPS; grey haze, red arrow head) coated biofilm aggregates of P.aeruginosa (purple) and 

A.baumannii (green). Some of the phagocytic cells in this image appear to be disintegrating 

(yellow arrow head).
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Figure 2. Aggressive tangential excision is not sufficient to eliminate biofilm infection: A case 
report.
A 82Y Caucasian male sustained 37% TBSA burns to his left lower extremity and posterior 

trunk. Upon presentation to the ED had escharotomy on left leg and was admitted to SICU 

for fluid resuscitation using West Penn formula. Prior to excision all burn wounds were 

dressed with silvadene. On post-burn day (PBD) 3 he was taken to the OR for debridement 

and grafting of his left lower extremity. He had aggressive tangential excision to fascia 

on the leg and split-thickness skin graft coverage of his lower extremity burns. The post

debridement fascial wound bed was biopsied and tested positive for biofilm infection by 

SEM as shown. On PBD 6 he was taken back to the OR for excision and grafting of the 

remainder of his burn wounds on his posterior trunk and thigh. All grafts were treated with 

Sulfamylon soaks (5% solution). The patient had poor graft take at the site of the wound 

tissue biopsy with >30% graft loss. The patient developed progressive organ failure and died 

on PBD18.
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Figure 3. Biofilm in a central-line catheter taken from an in-patient with burn injury.
A. Island of biofilm cells (green) embedded in matrix (gold) in lumen of catheter. B. 

Collection of bacteria embedded in matrix surrounding red blood cells (red) in catheter tip.
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Figure 4. 
Levels of Evidence modified for Anti-biofilm strategies.
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Table 1.

Traditional Strategies

Strategy Pros Cons

Debridement
• Standard technique utilized by most surgeons
• Could be used in combination with other therapies to treat 
biofilm

• On its own, debridement could push biofilm 
fragments deeper into wound tissue promoting chronic 
wound infection

Silver-based 
treatments

• Could be used in combination with other therapies that 
disrupt biofilm to release planktonic bacteria
• May be more effective in preventing the initial steps of 
biofilm formation

• Ineffective against biofilm

Iodine

• Broad spectrum inhibitory effects of CI against microbial 
biofilms.
• Despite the use over many decades, resistance to iodine has 
been much less of a problem compared to antibiotic therapy.

Physical methods • Best used on abiotic surfaces such as catheters
• Wide variety of options available

• Narrow spectrum inhibition
• May have negative effects against host tissue

Quorum sensing 
inhibitors

• Wide variety of QS inhibitors or quenchers are available for 
use in therapeutics

• Narrow-spectrum in application (specific for the 
strain being targeted).
• Efficacy of these inhibitors have primarily been 
identified in in vitro studies. The few in vivo studies 
(amoeba, Caenorhabditis elegans and mouse models) 
performed have not shown much promise.
• Possibility of the microbe developing resistance to 
the inhibitor.
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Table 2.

Emergent Strategies

Strategy Pros Cons

Electroceuticals • Broad spectrum application to treat a wide variety of pathogenic 
biofilms either alone or in combination with other treatments such an 
antibiotics

• Apart from WED/PED, other 
electrochemical approaches may not be 
practically used
• Limited clinical studies

• WED and PED are available in a ready-to-use dressing format that 
is easy to apply with minimal training.
• Resistance unlikely

Phage therapy • Phages are easy to propagate and are highly specific for the 
bacterial strain targeted.

• The high specificity makes the phage a 
narrow spectrum application.

• Development of resistance is low and it can be targeted to dormant 
and persister cells.

• Stability and shelf life of phage treatments 
may be a problem.
• The concept of using a “virus” to treat 
bacterial infections is not an easy sell to 
clinicians.

Probiotics • Broad spectrum effectivity with low possibility of resistance 
development.
• Low toxicity and off-target effects and inexpensive to produce.

• Insufficient clinical evaluations to test the 
translational value of this intervention as a 
valid anti- biofilm therapy.

Antimicrobial 
peptides

• Broad spectrum inhibition of Gram positive and negative biofilms 
(IDR-1018, LL-37, DJK-5)

• AMPs are susceptible to host proteases

• AMPs have poor bioavailability

• Synthetic AMPs can be modified to provide additional bioactive 
properties (e.g., RN3).

• Expensive to synthesize

• Insufficient clinical support via studies

Dispersal agents • Could be used in combination therapies where the dispersal agent 
could disrupt the biofilm and release planktonic cells that can be 
targeted by antibiotics or other approaches.

• Limited in vivo preclinical and clinical 
studies.

• Possibility of resistance development against 
these agents.

• Potential host toxicity (proteases can cause 
collateral damage).

• Possibility of releasing an abundance of 
planktonic microbes that could overload the 
host response system and cause additional 
pathogenic effects.
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