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Gliomas exist within the framework of complex neuronal circuitry in which network
dynamics influence both tumor biology and cognition. The generalized impairment of
cognition or loss of language function is a common occurrence for glioma patients.
The interface between intrinsic brain tumors such as gliomas and functional cognitive
networks are poorly understood. The ability to communicate effectively is critically
important for receiving oncological therapies and maintaining a high quality of life.
Although the propensity of gliomas to infiltrate cortical and subcortical structures and
disrupt key anatomic language pathways is well documented, there is new evidence
offering insight into the network and cellular mechanisms underpinning glioma-related
aphasia and aphasia recovery. In this review, we will outline the current understanding
of the mechanisms of cognitive dysfunction and recovery, using aphasia as an illustrative
model.
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G liomas make up the majority of primary
intrinsic brain tumors.1,2 Molecular
characterization and epidemiology

studies have greatly enhanced our understanding
of molecular drivers of progression with implica-
tions for overall and progression-free survival.3-5
However, the truth remains that gliomas exist
within the framework of complex neuronal
circuitry in which network dynamics both
influence tumor biology and impact cognition.
Cognitive dysfunction, such as aphasia (or
the generalized loss of language function and
communication), is a widely observed occurrence
for glioma patients.6,7 Globally, the interactions
between intrinsic brain tumors, such as gliomas,
and functional cognitive networks are poorly
understood. Aphasia, therefore, in addition to
having a profound impact on an individual’s
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health-related quality of life, also serves as an
excellent model for understanding glioma-
related cognitive dysfunction in a broader
sense.8
Classically, language processing is thought

to occur through dorsal and ventral streams
along the dominant hemisphere perisylvian
network.9,10 Glioma-related aphasia is thought
to occur in the setting of three clinical occur-
rences: (1) infiltration of low- and high-grade
gliomas into cortical and subcortical struc-
tures, (2) lesions created during cytoreduction
surgery, or (3) through therapeutic interventions
such as brain irradiation. Anatomic considera-
tions alone do not fully account for aphasia or
aphasia recovery. Interestingly, multiple studies
have revealed normal language performance in
patients with low- and high-grade glioma within
dominant hemisphere language areas. Therefore,
cortical regions presumed to contain popula-
tions of neurons responsible for motor speech
initiation (Broca’s area) or language compre-
hension (Wernicke’s area) may not be static or
may be variably positioned in the setting of
adult glioma.11 Absence of language impair-
ments when gliomas invade anatomic struc-
tures subserving behavior has been attributed to
glioma-induced neural network plasticity. It is
believed that language homologue areas in the
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contralateral hemisphere or language-eloquent networks in the
peritumoral area undergo neuroplastic reorganization and take
over the function of damaged components of language cortex in
the affected hemisphere.12,13

The physiological underpinning of language processing in
adults has been characterized by ablative lesions defined by
vascular territories following stroke.14 The study of cognition,
particularly language in adult glioma patients, has permitted
a broader understanding of language processing and recovery.
The ability to communicate in an unhindered fashion remains
a potent predictor of social, emotional, and psychological well-
being.15 Although the propensity of gliomas to infiltrate cortical
and subcortical structures and disrupt key anatomic language
pathways is well documented, there is new evidence offering
insight into the network and cellular mechanisms underpinning
glioma-related aphasia and aphasia recovery, which we will
highlight in this review. We begin by outlining the current
understanding of the mechanisms of cognitive dysfunction using
aphasia as an illustrative model. We then describe potential
contributing sources of cognitive recovery, describing both
macroscopic level network dynamics and potential cellular
mechanisms leading to clinical recovery. A working under-
standing of these interactions are important as neurosurgeons
make critical decisions about patient selection and surgical goals
at both initial diagnosis and the point of recurrence.

MECHANISMS OF APHASIA IN ADULT GLIOMA

For several decades, the field of language neurobiology was
dominated by the classic model of language processing in which
cortical structures, namely Broca’s and Wernicke’s areas and
arcuate fasciculus (AF), which connects these 2 brain regions,
were considered to be predominantly responsible for language
production and comprehension.16,17 However, this localizationist
view of language organization was limited in explaining all phono-
logical, syntactic, and lexical disorders.16,18 Voxel lesion mapping
and functional imaging studies in patients with aphasia uncovered
numerous cortical and subcortical regions, including the anterior
superior temporal lobe, middle temporal gyrus, inferior parietal
lobe, insula, and basal ganglia. These data confirmed the impor-
tance of structures outside of the canonical Broca’s andWernicke’s
areas. Normal language processing requires a large-scale neural
network spanning cortical and subcortical regions and their inter-
connecting pathways, including both active and latent compo-
nents.18-20 A contemporary model thereby employs dual-stream
models of language processing which incorporates language-
relevant cortico-subcortical structures and their interconnecting
white matter fiber tracts.9,21-23
With a reported prevalence of 8% to 48%, aphasia is one

of the most prominent neurological impairments in the setting
of glioma.24 Transient aphasias, which are commonly reported
during the immediate postoperative period, range from 17%
to 100%.25 When gliomas are situated within the dominant

hemisphere perisylvian language network of the frontal-parietal-
temporal-insular lobes, normal language processing may be
disrupted (Figure 1). Unlike stroke models of aphasia, glioma-
related aphasia may change at times, mirroring the disease
trajectory. The result of these distinct yet overlapping forces
creates a longitudinal picture of aphasia which fluctuates,
including periods of symptom-free time, alternating with phases
of increased symptom burden (Figure 2).

Aphasia Resulting FromGlioma Infiltration Into Cortical
and Subcortical Structures
Tumor proliferation may disrupt essential pathways for

language processing. Diffusion tensor imaging (DTI) has been
widely used as a noninvasive imaging tool to study brain
white matter microstructure and to provide valuable information
regarding glioma proximity to subcortical white matter struc-
tures.26,27 Using DTI tractography, Ormond et al28 studied the
impact of gliomas on white matter integrity and showed large-
scale white matter alterations characterized by edema, degra-
dation, and demyelination of language tract irrespective of the
tumor grade. Altered white matter fiber tract density, which was
characterized by a 2-fold decrease in the absolute number of AF
fibers, was observed in glioma patients who developed transient
aphasia.29
Furthermore, tumor invasion may interface with language

tracts in three distinct patterns: (1) infiltration, (2) disruption,
and (3) displacement of fiber tracts.30 It is possible that a combi-
nation of all 3 processes may manifest in any individual patient.
The underlying reason behind why gliomas cause varied alter-
ations of the state of the white matter tracts remains unknown;
however, as published by Witwer et al,30 it is thought to depend
on WHO grade, molecular subclassification, and location.31-33
Depending upon the proximity of the tumor lesion to the
eloquent cortex, glioma patients can exhibit aphasia as early as the
time of initial diagnosis34,35 or the point of progression.36 Both
low- and high-grade gliomas, in addition to surrounding peritu-
moral structures, exhibit neuronal activity during language task
performance, and it remains unknown whether this physiology
is due to maintained intratumoral astrocyte-neuron connections
or if glioma-neuron interactions contribute to language network
connectivity (Figure 1).

Aphasia Resulting From Cytoreduction Surgery
The impact of glioma proliferation on language and cognition

may occur slowly over the course of months to years, depending
on the glioma grade and extent of language network disruption.
In contrast, glioma resection by itself can instantaneously impact
outcomes. Intraoperative cortical and subcortical functional
mapping remains the gold standard intraoperative technique
to identify essential language sites. Importantly, direct cortical
stimulation (DCS) causes a brief reversible lesion, thereby inter-
rupting network processing during intraoperative mapping. DCS
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FIGURE 1. Illustrative case of electrocorticography during picture naming for a 46-yr-old right-handed patient with
isocitrate dehydrogenase (IDH)-wildtype WHO II astrocytoma reveals increased high gamma signal indicative of neuronal
activity (yellow voxels) within the tumor 300 milliseconds prior to speech onset, illustrating that a subpopulation of cells
within diffuse gliomas may contribute to language network processing.

may elicit a multitude of transient language alterations, such as
dysphasia, aphasia, dysarthria, and phonological paraphasias.16
Several reports have illustrated immediate and short-term postop-
erative language outcomes; however, the published incidence is
dependent on one’s definition of aphasia.37,38 Through these
data, we now know that most patients will experience transient
language impairments following surgical resection, and the long-
term rate of aphasia following surgery remains low.11,39-42
Despite mapping, it remains possible that language sites can

go undetected and removal of this tissue could result in poor
outcomes.7 This is particularly true when surgery involves subcor-
tical white matter structures or violates accessory functional
language pathways.43 Compared to cortical structures in which
neuron-glial interactions are dynamic, reorganization within
white matter is likely limited.43,44 Specifically, injury to the
temporal parietal portion of the superior longitudinal fasciculus
and AF results in severe language impairments.44 The use of
subcortical language mapping during glioma surgery assists in the
identification of relevant dorsal and ventral language tracts.45,46
Moreover, the identification of subcortical language sites through
mapping may predict long-term language impairment in glioma
patients.44,46

Aphasia Resulting From Brain Irradiation and
Chemotherapy
Language and cognitive deficits are commonly reported as

a consequence of radiation treatment administered in patients
with both low- and high-grade gliomas (Figure 2).47,48 Thera-
peutic radiation with a total dose of ≤60 Gray (Gy) has yielded
longer survival in glioma patients.49-51 However, the beneficial

effect of radiation49 must be balanced with a higher risk of
developing late delayed cognitive and language declines.50,52
The same may be true for patients with brain metastases, as
Kerklaan et al53 reported neurological impairments, including
aphasia, in patients who underwent focal brain radiation for high-
grade gliomas or with whole-brain radiation therapy for brain
metastases.
The cellular mechanisms leading to postradiation cognitive

decline are not completely understood. It is, however, known
that decreases in fractional anisotropy (DTI-derived index of
white matter integrity) are associated with cognitive impairment
and are commonly identified in pediatric brain tumor survivors
who received radiation treatment. Brain irradiation is thought to
impact language and cognition through disruption of existing
white matter tracts, as well as impairment of oligodendrocyte
precursor cells (OPCs).54-58 Although not conclusive, white
matter necrosis associated with depletion of oligodendrocytes
or their precursors, as well as impaired neurogenesis in the
subgranular zone of dentate gyrus, accounts for the deleterious
effects of radiation on cognitive outcomes.59,60
Similar to radiation-induced toxic effects, research from

a wide range of preclinical and clinical studies has reported
chemotherapy-induced white matter dysfunction and related
cognitive changes and impairment.48,61-63 Mechanistically,
glial dysregulation, and defective myelination characterized
by microglial and astrocyte activation, as well as incomplete
differentiation and depletion of white matter OPCs, underlies
the observed cognitive impairments following exposure to the
common chemotherapy drug methotrexate in mouse models of
cancer.63,64
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FIGURE 2. Group level statistics for overall language task performance (QAB- Quick Aphasia Battery) for
patients with newly diagnosed WHO III-IV gliomas from the point of diagnosis denoted by B (baseline)
throughout first 27 mo of treatment (n = 43). Overall QAB is influenced by stage of oncological treatment
including initial diagnosis, immediate postoperative period, postresection recovery, initiation of brain
irradiation, and postradiation decline followed by postradiation recovery. Individual tasks include picture
naming, text reading, auditory naming, 4 syllable repetition, and syntax task performance, which fluctuates
throughout stages of treatment (shaded outline is standard error). Note, a score of 4 on the QAB assessment
is a correct answer; a score of 3 is an answer that is correct but is delayed >3 s or self-corrected; a score of
2 equals an answer in which at least half of the phonemes are correct; a score of 1 equals an answer that is
incorrect but somewhat related to target; and a score of 0 is an unrelated response within 6 s or no answer.
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GENETIC PREDISPOSITIONSMAY INFLUENCE
THE SEVERITY OF COGNITIVE DYSFUNCTION
AT THE POINT OF INITIAL DIAGNOSIS AND
THROUGHOUT RECOVERY

Cognitive impairment in multiple domains, including
attention, working memory, executive functions, processing
speed, language comprehension, and speech production is a
common sequela of dominant and non-dominant hemisphere
gliomas.65 However, there may be considerable variability in the
severity of cognitive decline, as well as rate of recovery, between
patients. It is well established that genetic factors, particularly
genes involved in neurotransmission and synaptic plasticity,
play an important role in the development of cognition and
intelligence in both healthy individuals and patients with chronic
disease, including cancer patients.66-69
In an effort to understand the influence of genetic variants on

cognition, as well as to address the interpatient variability in the
cognitive outcomes, several groups have studied single nucleotide
polymorphisms (SNPs) of various gene products implicated in
network connectivity and neurocognitive processing.65,70,71 The
ε4 allele of apolipoprotein E (ApoE), a glycoprotein that plays
a key role in neuronal growth and repair, has been strongly
associated with cognitive impairment in both central nervous
system (CNS) and non-CNS cancer population.72-75 Impor-
tantly, polymorphisms in ApoE are a risk factor for devel-
oping primary progressive aphasia, a neurodegenerative disorder
characterized by gradual selective loss of language function,
without significant decline in other cognitive domains.76,77
Long-term brain tumor carriers of at least one ApoE ε4 allele,
who received standard chemotherapy alone or in combination
with radiotherapy, display poor verbal memory and executive
functions compared to non-ε4 carriers.74 Although the mecha-
nistic significance of the ApoE ε4 allele and other SNPs in
the ApoE gene remains unknown, these alterations appear to
increase the vulnerability of brain tumor patients to cognitive
and language dysfunction following chemoradiation. Mechanis-
tically, the adverse effect of the ε4 allele is thought to occur
through disruption of neuronal repair, glial activation, and excito-
toxicity, thereby resulting in greater inflammation and oxidative
stress affecting oligodendrocytes and myelin production.75,78,79
The prefrontal cortex (PFC) has been studied extensively for

its neuroanatomic connections, electrophysiological properties,
and imaging correlates with cognitive domains of clinical impor-
tance.80,81 The PFC is therefore regarded as a critical region of
the brain for higher-order cognitive processes such as executive
function.80,81 Dopamine (DA), catechol-O-methyltransferase
(COMT), and brain-derived neurotrophic factor (BDNF) are
among a multitude of gene products contributing to network
connectivity in the PFC.82 The association of DA, COMT,
and BDNF SNPs with memory and cognitive function in
healthy individuals, as well as in clinical populations with neuro-
logical, neurodegenerative, and psychiatric disorders, is well

documented.83-85 However, studies exploring a similar associ-
ation in brain tumor patients, and, specifically, whether SNPs
contribute to individual patient vulnerability to treatment-related
neurotoxicity are very limited. Correa et al71 reported lower
scores in delayed recall, attention, and executive functions in
a diverse population of brain tumor survivors with COMT
and BDNF SNPs. Furthermore, patients carrying 2 or any
minor allele of COMT (rs174696 and rs165774) and BDNF
(rs10767664) gene variants showed magnetic resonance imaging
(MRI) changes indicative of impaired white matter integrity.
Interestingly, adult glioma patients with higher performing alleles
of BDNF, dopamine receptor 2, and COMT genes exhibited
minimal cognitive impairment (including semantic fluency) and
greater capacity to return to work compared with patients
found to have low performing alleles.82 In addition to the
above described neuroplasticity related genes, several SNPs in
genes involved in inflammation, DNA repair, and metabolism
pathways have been reported to influence cognition in a variety
of patient populations, including cancer patients.70 The above-
mentioned studies provide evidence of the associations between
SNPs and neurocognitive outcomes in adult brain tumor patients,
thereby opening the possibility of identifying vulnerable patient
populations at the onset of disease.

NETWORK AND CELLULARMECHANISMS OF
APHASIA RECOVERY

Although many glioma patients experience language and
cognitive dysfunction, many experience clinical recovery,
especially during periods of stable disease (Figure 2).25 Across
several chronic disease models, a multitude of studies have
documented restoration of motor and language dysfunction
following stroke, epilepsy, and glioma.13,86-88 However,
compared to stroke and epilepsy, limited data exist regarding
the trajectory and mechanisms of cognitive recovery in the adult
glioma patient population.
CNS imaging techniques such as positron emission tomog-

raphy and functional magnetic resonance imaging have been
widely used to study language and cognitive recovery in stroke
patients.89,90 Increased activation of the language networks in
the peri-infarct or ipsilateral areas was shown to correlate with
improved performance in language tasks in patients recovering
from stroke-induced aphasia.91 Besides the ipsilesional adaptive
changes occurring during recovery in stroke patients with left
hemispheric lesions, increased activation of the right hemispheric
(contralateral) cortical regions that are homologous to the struc-
tures invaded has also been demonstrated to mediate aphasia
recovery.86,89,92,93 Some studies have, however, demonstrated
that recruitment/activation of language networks within the
contralateral hemisphere may be associated with poor language
recovery and might indicate faulty recovery attempts.94-96 In this
section, we review the published literature focused on potential
network and cellular level mechanisms of aphasia recovery.
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Network Level Plasticity
Complex cognitive processes such as language rely on

network level activation. Similar to stroke, the mechanism of
aphasia recovery in adult glioma remains poorly understood.
Although some have demonstrated ipsilateral functional reorga-
nization during language recovery,97,98 others found evidence
of contralateral functional reorganization in right hemisphere
regions, which are homologous to the left hemispheric regions
typically employed in language processing.99 Conflicting data
also exist with regard to whether the time of onset of seizures
is a critical factor that determines the recruitment of left- vs
right hemispheric neural networks to aid language recovery. For
example, several groups showed an association between early onset
epilepsy and right hemispheric-lateralized language function that
triggers intrahemispheric language reorganization.100,101 Others
have argued that language reorganization associated with aphasia
recovery involves network level changes in both ipsi- and contrale-
sional hemispheres and that the allotment of left- vs right-
language processing brain regions do not depend on age or time
of onset of seizures.99,102
The severity of symptoms for patients with low-grade gliomas

(LGG) is often less severe when compared with high-grade
patients.1,103,104 Duffau et al13 suggested that differences in
disease trajectory may be due to the slow and progressive growth
of the tumor itself, thereby potentially promoting large-scale
functional rearrangements of peritumoral neural networks due to
activation of latent functional parts of the broader neural language
network.98,100,101 Mechanistically, there are 3 levels of network
reorganization: first, allotment of eloquent neural networks that
are still left intact within the tumor; second, recruitment of neural
networks adjacent to the tumor site; and third, recruitment of
ipsilateral or pre-existing contralateral connections.105 Consistent
with stroke and epilepsy data, activation of the contralateral
connections is thought by some to be less effective than ipsilateral
activation in preserving language functions and, rather, indicative
of an unsuccessful language recovery attempt made by the
affected dominant hemisphere.106 However, this point remains
controversial, as other reports98 demonstrate robust contralateral
hemisphere language activation.
There has been some thought that network level plasticity

may occur quickly, as Duffau and colleagues107,108 demonstrated
patients with a spontaneous increase in neural activity in language
or motor-related regions that were functionally silent prior to
tumor resection. In the longer-term, perilesional network reorga-
nization contributes to language, as DCS-positive cortical regions
identified during initial surgery no longer have functional DCS
significance during second surgery. These data provide the closest
direct causal evidence that surgery-induced network reorgani-
zation can lead to long-term neuroplastic changes. It is therefore
increasingly common to offer a staged surgery approach in LGG,
leaving behind DCS-positive regions with the hopes of returning
to the operating room for greater extent of tumor resection
without compromising normal neurological functions at the

point of recurrence.107,109 Despite the documented neuroplastic
changes occurring during surgery, the majority of LGG patients
often exhibit transient aphasia postsurgically, which could be
due to the removal of functional structures that might still exist
within or in the immediate vicinity of the tumor.110 Restoration
of normal language function usually occurs within 1 to 3 mo of
surgery following awake language mapping in the vast majority of
patients.90,98,105,111

Potential Cellular Contributions to Network Dynamics
Despite the inconsistencies regarding the contributions of

ipsilateral and contralateral language networks to aphasia
recovery, the resulting rewiring of pre-existing connections or
newly formed language and/or motor networks drives functional
recovery in affected patients. The precise neuronal mecha-
nisms underlying functional recovery in humans remains largely
unknown.
Most of the existing data about the pathophysiological

mechanism underlying neuroplasticity stems from animal
models. For example, pharmacological blockade of cortical
GABAergic inhibitory circuits in a small region of the primary
motor cortex in adult rats was shown to rapidly elicit new
representational patterns in the motor cortex area adjacent to the
affected part.112 The authors further demonstrated that a decrease
in intracortical inhibition can unveil pre-existing latent excitatory
connections that are normally masked by inhibitory neurons and
that the balance between excitatory and inhibitory circuits is a
strong dictator of cortical reorganization. Interestingly, downreg-
ulation of GABA-mediated inhibitory networks and an associated
increase in intracortical excitatory activity in regions remote from
the lesion have been implicated in motor function improvement
in patients with stroke.113-115 Similarly, the short-term plastic
changes observed in the primary motor cortex of glioma patients
during surgery was attributed to the sudden unmasking of latent
redundant motor connections.107 Latent or redundant cortical
motor neurons in primary motor and sensory regions have long
been known; even within S1 primary sensory cortex, pure motor
tasks elicit robust motor neuron activation illustrated by DCS
mapping and electrocorticography (Figure 3).

Other potential mechanisms of neuroplasticity include modifi-
cation of synaptic strength via long-term potentiation or
depression, which is in turn mediated through excitatory
and inhibitory neurotransmitter systems.116 Of note, existing
evidence for synaptic efficacy-mediated neuroplasticity and
associated motor functional recovery stems mostly from stroke
patients and animal models of ischemia117-119; data suggesting
this mechanism in the brain tumor patient population, especially
in the context of language recovery, are still largely lacking.
Other mechanisms implicated in the reorganization of neural

networks following brain injury involve the formation, as well
as the integration, of new neurons into the existing neuronal
circuits.120 However, this mechanism is more likely to occur in
acute brain insults, such as stroke, wherein the sudden death
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FIGURE3. Illustrative case of potential latent motor networks within primary sensory cortex in a 52-yr-old with an isocitrate dehydrogenase (IDH)-
wildtype WHO IV glioblastoma involving the right parietal lobe (Sylvian fissure is white dashed line). A, Sagittal T1 postgadolinium enhanced
MRI. B, Intraoperative DCS functional mapping at 2 mA revealed primary motor cortical sites for motor upper face (site #3) and lower face/cheek
(site #4). One gyrus posterior cortical mapping confirmed S1, primary sensory cortex including sensory thumb (site #1), and sensory mouth (site #5).
Cortical stimulation within primary sensory cortex site #2 elicited pure motor hand. C, Postresection sagittal T1 postgadolinium enhanced MRI
shows S1 was preserved given robust motor responses during tumor resection.D, Intraoperative electrocorticography confirmed elevated gamma band
power in cortical site #2 (yellow voxels) within primary sensory cortex during motor activation.

of neurons would trigger neurogenesis to compensate for the
damaged areas. It is thus not surprising that the majority of exper-
imental and clinical studies on neurogenesis-mediated functional
recovery have mainly focused on stroke research.121-123 Intraop-
erative electrical stimulation before and after glioma resection has
uncovered functional reorganization of cortical language sites.104
Disruption of functional networks plus regional hyperexcitability
induced by surgical lesioning itself may result in acute network
remodeling in glioma patients.13
Importantly, it has been reported that the temporal progression

of cerebral insults strongly influences neuroplasticity and that

functional recovery is more efficient in chronic lesions, such as
epilepsy and slow-growing tumors, than in acute lesions such
as stroke.102 Hence, it is logical to think that brain lesions,
depending on their acute or chronic nature, are likely to involve
different patterns of reorganization, and therefore, a broad gener-
alization of the aforementioned stroke mechanisms to other types
of brain injuries may be overly simplistic.
Further studies are warranted to specifically investigate the

microscopic changes associated with the recovery of motor and
language abilities in adult brain tumor patients. Although gliomas
are traditionally considered an ablative process, evidence suggests
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the presence of functional astrocytes and intact neuron-glial
interactions within the tumor.13 There is also strong preclinical
evidence that malignant glioma cells can electrically integrate
into neural circuitry through bona fide neurogliomal synapses
and that excitatory neuronal activity can promote glioma growth
and invasion.124-126 Moreover, a recent study reported a specific
population of cells in glioblastoma that differentially supported
synaptogenesis.127 It is therefore possible that a fourthmechanism
of cognitive recovery should be added to the classical teaching in
which glioma cells integrate into the broader neuronal network.
Future studies aimed at investigating how gliomas maintain
functional network connectivity with surrounding brain would
not only increase our understanding of the neurobiology of
language, but also might add to our understanding of the causal
mechanisms underlying aphasia.

CONCLUSION

Many patients with low-grade glioma histology and favorable
genetics will have extended disease-free survival periods during
which they experience a wide range of language and neurocog-
nitive impairments that compromise both health-related quality
of life as well as survival. In this review, we outlined the current
understanding of the mechanisms of cognitive dysfunction and
recovery using aphasia as an illustrative model. Adult patients
with gliomas experience aphasia because of tumor infiltration into
cortical and subcortical structures, cytoreduction surgery, and
chemoradiation. Cellular and network level processes contribute
to cognitive plasticity.
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