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Based on Salp SwarmAlgorithm (SSA) and SlimeMould Algorithm (SMA), a novel hybrid optimization algorithm, namedHybrid
Slime Mould Salp Swarm Algorithm (HSMSSA), is proposed to solve constrained engineering problems. SSA can obtain good
results in solving some optimization problems. However, it is easy to suffer from local minima and lower density of population.
SMA specializes in global exploration and good robustness, but its convergence rate is too slow to find satisfactory solutions
efficiently. +us, in this paper, considering the characteristics and advantages of both the above optimization algorithms, SMA is
integrated into the leader position updating equations of SSA, which can share helpful information so that the proposed algorithm
can utilize these two algorithms’ advantages to enhance global optimization performance. Furthermore, Levy flight is utilized to
enhance the exploration ability. It is worth noting that a novel strategy called mutation opposition-based learning is proposed to
enhance the performance of the hybrid optimization algorithm on premature convergence avoidance, balance between ex-
ploration and exploitation phases, and finding satisfactory global optimum. To evaluate the efficiency of the proposed algorithm,
HSMSSA is applied to 23 different benchmark functions of the unimodal and multimodal types. Additionally, five classical
constrained engineering problems are utilized to evaluate the proposed technique’s practicable abilities. +e simulation results
show that the HSMSSA method is more competitive and presents more engineering effectiveness for real-world constrained
problems than SMA, SSA, and other comparative algorithms. In the end, we also provide some potential areas for future studies
such as feature selection and multilevel threshold image segmentation.

1. Introduction

In recent years, metaheuristic algorithms have been
widely concerned by a large number of scholars. Com-
pared with other traditional optimization algorithms, the
concept of metaheuristic algorithms is simple. Besides,
they are flexible and can bypass local optima. +us,
metaheuristics have been successfully applied in different
fields to solve various complex optimization problems in
the real world [1–3].

Metaheuristic algorithms include three main categories:
evolution-based, physics-based, and swarm-based tech-
niques. +e inspirations of evolutionary-based methods are
the laws of evolution in nature. +e most popular evolution-
based algorithms include Genetic Algorithm (GA) [4],
Differential Evolution Algorithm (DE) [5], and Biogeogra-
phy-Based Optimizer (BBO) [6]. Physics-based algorithms
mimic the physical rules in the universe. +ere are some
representative algorithms such as Simulated Annealing (SA)
[7], Gravity Search Algorithm (GSA) [8], Black Hole (BH)
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algorithm [9], Multiverse Optimizer (MVO) [10], Artificial
Chemical Reaction Optimization Algorithm (ACROA) [11],
Ray Optimization (RO) [12], Curved Space Optimization
(CSO) [13], Sine Cosine Algorithm (SCA) [14], Arithmetic
Optimization Algorithm (AOA) [15], and Heat Transfer
Relation-based Optimization Algorithm (HTOA) [16]. +e
third category algorithm is swarm-based techniques, which
simulate the social behavior of creatures in nature. Some
optimization techniques of this class include Particle Swarm
Optimization (PSO) [17] Ant Colony Optimization Algo-
rithm (ACO) [18], Firefly Algorithm (FA) [19], Grey Wolf
Optimizer (GWO) [20], Cuckoo Search (CS) Algorithm
[21], Whale Optimization Algorithm (WOA) [22], Bald
Eagle Search (BES) algorithm [23], and Aquila Optimizer
(AO) [24].

It is worth noting that the most widely used swarm-
based optimization algorithm is PSO [25]. PSO simulates
the behavior of birds flying together in flocks. During the
search, they all follow the best solutions in their paths.
Cacciola et al. [26] discussed the problem of corrosion
profile reconstruction starting from electrical data, in
which PSO was utilized to obtain the image of the
reconstructed corrosion profile. +e result shows that PSO
can obtain the optimal solution compared with LSM, and
it takes the least time. +is allows us to recognize the huge
potential of the optimization algorithm.

Salp Swarm Algorithm (SSA) [27] is a swarm-based
algorithm proposed in 2017. SSA is inspired by swarm
behavior, navigation, and foraging of salps in the ocean.
Since SSA has fewer parameters and is easier to be realized in
a program than other algorithms, SSA has been applied to
many optimization problems, such as feature selection,
image segmentation, and constrained engineering problems.
However, like other metaheuristic algorithms, SSA may be
easy to trap into local minima and lower population density.
+erefore, many improved researches have been proposed to
enhance the performance of SSA in many fields. Tubishat
et al. [28] presented a Dynamic SSA (DSSA), which shows
better accuracy than SSA in feature selection. Salgotra et al.
[29] proposed a self-adaptive SSA to enhance exploitation
ability and convergence speed. Neggaz et al. [30] proposed
an improved leader in SSA using Sine Cosine Algorithm and
disrupt operator for feature selection. Jia and Lang [31]
presented an enhanced SSA with a crossover scheme and
Levy flight to improve the movement patterns of salp leaders
and followers. +ere are also other attempts on the hybrid
algorithm of SSA. Saafan and El-gendy [32] proposed a
hybrid improved Whale Optimization Salp Swarm Algo-
rithm (IWOSSA). +e IWOSSA achieves a better balance
between exploration and exploitation phases and avoids
premature convergence effectively. Singh et al. [33] devel-
oped a hybrid SSA with PSO, which integrated the advan-
tages of SSA and PSO to eliminate trapping in local optima
and unbalanced exploitation. Abadi et al. [34] proposed a
hybrid approach by combining SSA with GA, which could
obtain good results in solving some optimization problems.

Slime Mould Algorithm (SMA) [35] is the latest swarm
intelligence algorithm proposed in 2020. +is algorithm
simulates the oscillation mode and the foraging of Slime

Mould in nature. SMA has a unique search mode, which
keeps the algorithm from falling into local optima, and has
superior global exploration capability. +e approach has
been applied in real-world optimization problems like
feature selection [36], parameters optimization of the fuzzy
system [37], multilevel threshold image segmentation [38],
control scheme [39], and parallel connected multistacks fuel
cells [40].

+erefore, based on the capabilities of both above al-
gorithms, we try to do a hybrid operation to improve the
performance of SMA or SSA and then propose a new hybrid
optimization algorithm (HSMSSA) to speed up the con-
vergence rate and enhance the overall optimization per-
formance. +e specific method is that we integrate SMA as
the leader role into SSA and retain the exploitation phase of
SSA. At the same time, inspired by the significant perfor-
mance of opposition-based learning and quasiopposition-
based learning, we propose a new strategy named mu-
tation opposition-based learning (MOBL), which switches
the algorithm between opposition-based learning and
quasiopposition-based learning through a mutation rate
to increase the diversity of the population and speed up
the convergence rate. In addition, Levy flight is utilized to
improve SMA’s exploration capability and balance the
exploration and exploitation phases of the algorithm. +e
proposed HSMSSA algorithm can improve both the ex-
ploration and exploitation abilities. +e proposed
HSMSSA is tested on 23 different benchmark functions
and compared with other optimization algorithms. Fur-
thermore, five constrained engineering problems are also
utilized to evaluate HSMSSA’s capability on real-world
optimization problems. +e experimental results illustrate
that the HSMSSA possesses the superior capability to
search the global minimum and achieve less cost engi-
neering design results than other state-of-the-art meta-
heuristic algorithms.

+e remainder of this paper is organized as follows.
Section 2 provides a brief overview of SSA, SMA, Levy flight,
and mutation opposition-based learning strategy. Section 3
describes the proposed hybrid algorithm in detail. In Section
4, the details of benchmark functions, parameter settings of
the selected algorithms, simulation experiments, and results
analysis are introduced. Conclusions and prospects are given
in Section 5.

2. Preliminaries

2.1. Salp Swarm Algorithm. In the deep sea, salps live in
groups and form a salp chain to move and forage. In the salp
chain, there are leaders and followers. +e leader moves
towards the food and guides the followers. In the process of
moving, leaders explore globally, while followers thoroughly
search locally [27]. +e shapes of a salp and salp chain are
shown in Figure 1.

2.1.1. Leader Salps. +e front salp of the chain is called the
leader, so the following equation is used to perform this
action to the salp leader:

2 Computational Intelligence and Neuroscience



X
1
j �

Fj + c1 (UB − LB)r1 + LB( 􏼁, r2 < 0.5,

Fj − c1 (UB − LB)r1 + LB( 􏼁, r2 ≥ 0.5,

⎧⎨

⎩ (1)

c1 � 2e
− (4t/T)2

, (2)

whereX1
j and Fj represent the new position of the leader and

food source in the jth dimension and r1 and r2 are randomly
generated numbers in the interval [0, 1]. It is worth noting
that c1 is essential for SSA because it balances exploration
and exploitation during the search process. t is the current
iteration and T is the max iteration.

2.1.2. Follower Salps. To update the position of the followers,
the new concept is introduced, which is based on Newton’s
law of motion as in the following equation:

X
i
j �

1
2

gt
2

+ ω0t, i≥ 2, (3)

where Xi
j represents the position of ith follower salp in the

jth dimension and g and ω0 indicate the acceleration and the
velocity, respectively. +e updating process of followers can
be expressed as in the following equation:

X
i
j �

1
2

X
i
j + X

i− 1
j􏼐 􏼑. (4)

+e pseudocode of SSA is presented in Algorithm 1.

2.2. Slime Mould Algorithm. +e main idea of SMA is in-
spired by the behavior and morphological changes of Slime
Mould in foraging. Slime Mould can dynamically change
search mode based on the quality of food sources. If the food

source has a high quality, the Slime Mould will use the
region-limited search method. If the food concentration is
low, the Slime Mould will explore other food sources in the
search space. Furthermore, even if Slime Mould has found a
high-quality food source, it still divides some individuals to
explore another area in the region [35]. +e behavior of
Slime Mould can be mathematically described as follows:

X(t + 1)
���������→

�

r4 ×(UB − LB) + LB, r3 < z,

Xb(t)
�����→

+ vb
→

× W
�→

· XA(t)
������→

− XB(t)
�����→

􏼒 􏼓, r5 <p,

vc
→

× X(t)
����→

, r5 ≥p,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where parameters r3, r4, and r5 are random values in the
range of 0 to 1. UB and LB indicate the upper and lower
bound of search space. z is a constant. Xb(t)

�����→
represents the

best position obtained in all iterations, XA(t)
������→

and XB(t)
�����→

represent two individuals selected randomly from the
population, and X(t)

����→
represents the location of Slime

Mould. vc
→ decreases linearly from one to zero, and vb

→
is an

oscillation parameter in the range [− a, a], in which a is
calculated as follows:

a � arctan h −
t

T
􏼒 􏼓 + 1􏼒 􏼓. (6)

+e coefficient W
�→

is a very important parameter, which
simulates the oscillation frequency of different food con-
centrations so that Slime Mould can approach food more
quickly when they find high-quality food. +e formula of W

�→

is listed as follows:

Figure 1: Individual salp and the swarm of salp [25].
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W(SmellIndex(i))
����������������������→

�

1 + r6 × log
bF − S(i)

bF − wF
+ 1􏼠 􏼡, condition,

1 − r6 × log
bF − S(i)

bF − wF
+ 1􏼠 􏼡, others,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

SmellIndex � sort(S), (8)

where i ∈ 1, 2, . . ., N and S(i) represents the fitness of X.
condition indicates that S(i) ranks first half of the Slime
Mould, and r6 are random numbers uniformly generated in
the interval of [0, 1]. bF represents the optimal fitness ob-
tained in the current iterative process, wF represents the
worst fitness value obtained in the iterative process cur-
rently, and SmellIndex denotes the sequence of fitness values
sorted (ascends in the minimum value problem).

+e p parameter can be described as follows:

p � tanh|S(i) − DF|, (9)

where DF represents the best fitness over all iterations.
Figure 2 visualizes the general logic of SMA.

+e pseudocode of SMA is presented in Algorithm 2.

2.3. Levy Flight. Levy flight is an effective strategy for meta-
heuristic algorithms, successfully designed in many algorithms
[41–44]. Levy flight is a class of non-Gaussian randomprocesses
that follows Levy distribution. It alternates between short-dis-
tance and occasionally long-distance walking, which can be
inferred from Figure 3. +e formula of Levy flight is as follows:

Levy � 0.01 ×
r7 × σ

r8
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(1/β)

,

σ �
Γ(1 + β) × sin(πβ/2)

Γ((1 + β)/2) × β × 2((β− 1)/2)
􏼠 􏼡

(1/β)

,

(10)

where r7 and r8 are random values in the range of [0, 1] and β
is a constant equal to 1.5.

2.4. Mutation Opposition-Based Learning.
Opposition-based learning (OBL) was proposed by Tizhoosh
in 2005 [45]. +e essence of OBL is selecting the best solution
to the next iteration by comparing the current solution and its
opposition-based learning solution. +e OBL strategy has
been successfully used in varieties of metaheuristic algorithms
[46–51] to improve the ability of local optima stagnation
avoidance, and the mathematical expression is as follows:

XOBL(t + 1) � LB + UB − X(t). (11)

Quasiopposition-based learning (QOBL) [52] is an
improved version from OBL, which applies quasiopposite
points instead of opposite points. +ese points produced
through QOBL have more likelihood of being unknown
solutions than the points created by OBL. +e mathematical
formula of QOBL is as follows:

XQOBL(t + 1) �

CS + r9 ×(MP − CS), if MP>CS,

MP + r9 ×(CS − MP), otherwise,

⎧⎪⎨

⎪⎩

CS �
LB + UB

2
,

MP � LB + UB − X(t).

(12)

(1) Initialize the population size N and max iteration T;
(2) Initialize the positions of salp Xi (i� 1, 2, . . ., N)
(3) While (t≤T)
(4) Calculate fitness of each salp;
(5) Denote the best solution as F
(6) update c1 by equation (2);
(7) For i� 1 to N do
(8) if (i� � 1) then
(9) update position of leader salp by equation (1)
(10) Else
(11) update position of follower salp by equation (4)
(12) End if
(13) End for
(14) t� t+ 1;
(15) End While
(16) Return the best solution F;

ALGORITHM 1: Pseudocode of Salp Swarm Algorithm.
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Considering the superior performance of the two kinds
of opposition-based learning, we propose mutation oppo-
sition-based learning (MOBL) by combining the mutation
rate with these two opposition-based learning. By selecting
the mutation rate, we can give full play to the characteristics
of the OBL and QOBL and effectively enhance the ability of
the algorithm to jump out of the local optima. Figure 4 is an
MOBL example, in which Figure 4(a) shows an objective
function and Figure 4(b) displays three candidate solutions
and their OBL solutions or QOBL solutions. +e mathe-
matical formula is as follows:

X(t + 1) �
XOBL(t), if r10 < rate,

XQOBL(t), else,
⎧⎨

⎩ (13)

where rate is mutation rate, and we set it to 0.1.

3. The Proposed Algorithm

3.1. Details of HSMSSA. In SSA, the population is divided
into leader salps and follower salps: leader salps are the first
half of salps in the chain, and follower salps follow the leader.
However, the leader salp has poor randomness and is easy to
fall into local optima. For the SMA algorithm, Slime Mould
selects different search modes according to the positive and
negative feedback of the current food concentration and has
a certain probability of isolating some individuals to explore
other regions in search space. +ese mechanisms increase
the randomness of Slime Mould and enhance the ability to
explore. +e vb parameter is utilized to realize the oscillation
mode of Slime Mould, which is in the range of [− a, a].
However, vb has the drawback of low randomness, which
cannot effectively simulate the process of Slime Mould
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Finding food
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rand≥z
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Distribution St
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t
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fibrillation

Main vein
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diffusion

No venous
structure

r3>z

Figure 2: +e steps of SMA.

(1) Initialize the population size N and max iteration T;
(2) Initialize the positions of Slime Mould Xi (i� 1, 2, . . ., N)
(3) While (t≤T)
(4) Calculate fitness of each Slime Mould;
(5) update bF, wF, and Xb;
(6) Calculate W by equation (3);
(7) For i� 1 to N do
(8) update p, vb, and vc;
(9) update positions by equation (1)
(10) End For
(11) t� t + 1;
(12) End While
(13) Return Xb;

ALGORITHM 2: Pseudocode of Slime Mould Algorithm.
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looking for food sources. +erefore, we introduce Levy flight
into the exploration phase to further enhance the explora-
tion ability. Next, we integrate SMA into SSA, change the
position update method of leader salps, and further improve
the randomness of the algorithm through Levy flight. For
followers, we propose a mutation opposition-based learning
to enhance its population diversity and increase the ability of
the algorithm to jump out of the local optima. +e math-
ematical formula of leader salps is as follows:

X(t + 1)
���������→

�

r4 ×(UB − LB) + LB, r3 < z,

Xb + vb × W × XA − XB( 􏼁 × Levy, r5 <p,

vc × Xi, r5 ≥p.

⎧⎪⎪⎨

⎪⎪⎩

(14)

+e pseudocode of HSMSSA is given in Algorithm 3, and
the summarized flowchart is displayed in Figure 5. As shown in
Algorithm 3, the position of the population is initially generated
randomly. +en, each individual’s fitness will be calculated. For
the entire population in each iteration, parameter W is cal-
culated using equation (7). +e search agents of population size
N are assigned to the two algorithms, which can utilize the
advantages of SSA and SMA, and realize the sharing of helpful
information to achieve global optimization. If the search agent
belongs to the first half of the population, the position will be
updated using equation (14) in SMA with Levy flight. Other-
wise, the position is determined using equation (4) and MOBL.
Finally, if the termination criteria are satisfied, the algorithm
returns the best solution found so far; else the previous steps are
repeated.

3.2. Computational Complexity Analysis. HSMSSA mainly
consists of three components: initialization, fitness evalua-
tion, and position updating. In the initialization phase, the

computational complexity of positions generated is
O(N×D), where D is the dimension size of the problem.
+en, the computational complexity of fitness evaluation for
the solution is O(N) during the iteration process. Finally, we
utilize mutation opposition-based learning to keep the al-
gorithm from falling into local optima; thus, the compu-
tational complexities of position updating of HSMSSA are
O(2×N×D). +erefore, the total computational complexity
of the proposed HSMSSA algorithm is
O(N×D+N+ 2×N×D).

4. Experimental Results and Discussion

+is section compared the HSMSSA with some state-of-the-
art metaheuristics algorithms on 23 benchmark functions to
validate its performance. Moreover, five engineering design
problems are employed as examples for real-world appli-
cations. +e experimentations ran on Windows 10 with
24GB RAM and Intel (R) i5-9500. All simulations were
carried out using MATLAB R2020b.

4.1. Definition of 23 Benchmark Functions. To assess
HSMSSA’s ability of exploration, exploitation, and escaping
from local optima, 23 benchmark functions, including uni-
modal and multimodal functions, are tested [27]. +e uni-
modal benchmark functions (F1–F7) are utilized to examine
the exploitation ability of HSMSSA. +e description of the
unimodal benchmark function is shown in Table 1. +e
multimodal and fixed-dimension multimodal benchmark
functions (F8–F23) shown in Tables 2 and 3 are used to test the
exploration ability of HSMSSA.

In order to show the experimental results more repre-
sentative, the HSMSSA is compared with the basic SMA [35]
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Figure 3: Levy distribution and 2D Levy trajectory.
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Check if i==1
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position of salp

Calculate fitness of
all salps

Check if r3 < z

Check if r5 < p

Update position by
Eq. (4)
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Eq. (17)

Update position by
Eq. (16)
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Eq. (16)
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Figure 5: Flowchart of HSMSSA.
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Figure 4: MOBL example: (a) objective function and (b) candidate solutions (red point), its OBL solution (blue point), and its QOBL
solution (green point).
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and SSA [27], AO [24], AOA [15], WOA [22], SCA [14], and
MVO [10]. For all tests, we set the population size N� 30,
dimension size D� 30, and maximum iteration T� 500,
respectively, for all algorithms with 30 independent runs.
+e parameter settings of each algorithm are shown in
Table 4. After all, average results and standard deviations are
employed to evaluate the results. Note that the best results
will be bolded.

4.1.1. Evaluation of Exploitation Capability (F1–F7). As we
can see, unimodal benchmark functions have only one
global optimum. +ese functions are allowed to evaluate
the exploitation ability of the metaheuristic algorithms. It
can be seen from Table 5 that HSMSSA is very com-
petitive with SMA, SSA, and other metaheuristic algo-
rithms. In particular, HSMSSA can achieve much better
results than other metaheuristic algorithms except F6.
For F1–F4, HSMSSA can find the theoretical optimum.
For all unimodal functions except F5, HSMSSA gets the
smallest average values and standard deviations com-
pared to other algorithms, which indicate the best ac-
curacy and stability. Hence, the exploitation capability of
the proposed HSMSSA algorithm is excellent.

4.1.2. Evaluation of Exploration Capability (F8–F23).
Unlike unimodal functions, multimodal functions have
many local optima.+us, this kind of test problem turns very
useful to evaluate the exploration capability of an optimi-
zation algorithm. +e results shown in Table 5 for functions
F8–F23 indicate that HSMSSA also has an excellent ex-
ploration capability. In fact, we can see that HSMSSA can
find the theoretical optimum in F9, F11, F16–F17, and
F19–F23.+ese results reveal that HSMSSA can also provide
superior exploration capability.

4.1.3. Analysis of Convergence Behavior. +e convergence
curves of some functions are selected and shown in Figure 6,
which show the convergence rate of algorithms. It can be seen
that HSMSSA shows competitive performance compared to
other state-of-the-art algorithms. +e HSMSSA presents a
faster convergence speed than all other algorithms in F7–F13,
F15, and F19–F23. For other benchmark functions, HSMSSA
shows a better capability of local optima avoidance than other
comparison algorithms in F5 and F6.

4.1.4. Qualitative Results and Analysis. Furthermore, Fig-
ure 7 shows the results of several representative test func-
tions on search history, trajectory, average fitness, and

(1) Set the initial values of the population size N and the maximum number of iterations T
(2) Initialize positions of the population X
(3) While t≤T
(4) Check if the position goes out of the search space boundary and bring it back.
(5) Calculate the fitness of each search agent
(6) Update W, bF, and wF
(7) For i� 1 to N
(8) If i� � 1
(9) If r3< z
(10) Update position by equation (14)
(11) Else
(12) IF r5< p
(13) Update position by equation (14)
(14) Else
(15) Update position by equation (14)
(16) End if
(17) End if
(18) Else
(19) Update position by equation (4)
(20) If r10< 0.1
(21) Update the position of MOBL using equation (13)
(22) Else
(23) Update the position of MOBL using equation (13)
(24) End if
(25) End if
(26) Check if the position goes out of the search space boundary and bring it back.
(27) select the best position into the next iteration.
(28) t� t + 1
(29) End for
(30) End while
(31) Return Xbest

ALGORITHM 3: Pseudocode of HSMSSA.
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Table 1: Unimodal benchmark functions.

Function Dim Range Fmin

F1(x) � 􏽐
n
i�1 x2

i 30 [− 100, 100] 0
F2(x) � 􏽐

n
i�1 |xi| + 􏽑

n
i�1 |xi| 30 [− 10, 10] 0

F3(x) � 􏽐
n
i�1(􏽐

i
j− 1 xj)

2 30 [− 100, 100] 0
F4(x) � maxi |xi|, 1≤ i≤ n􏼈 􏼉 30 [− 100, 100] 0
F5(x) � 􏽐

n− 1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [− 30, 30] 0
F6(x) � 􏽐

n
i�1 (xi + 5)2 30 [− 100, 100] 0

F7(x) � 􏽐
n
i�1 ix4

i + random[0, 1) 30 [− 1.28, 1.28] 0

Table 2: Multimodal benchmark functions.

Function Dim Range Fmin

F8(x) � 􏽐
n
i�1 − xi sin(

���
|xi|

􏽰
) 30 [− 500, 500] − 418.9829×Dim

F9(x) � 􏽐
n
i�1[x2

i − 10 cos(2πxi) + 10] 30 [− 5.12, 5.12]

F10(x) � − 20 exp(− 0.2
�����������
(1/n) 􏽐

n
i�1 x2

i

􏽱
) − exp((1/n) 􏽐

n
i�1 cos(2πxi)) + 20 + e 30 [− 32, 32] 0

F11(x) � (1/4000) 􏽐
n
i�1 x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1 30 [− 600, 600] 0

F12(x) � (π/n) 10 sin(πy1) + 􏽘
n− 1
i�1 (yi − 1)

2
[1 + 10 sin2(πyi+1)] + (yn − 1)

2
􏼚 􏼛

+ 􏽘

n

i�1
u(xi, 10, 100, 4),whereyi � 1 + (xi + 1)/4,

u(xi, a, k, m) �

k(xi − a)
m

, xi > a,

0, − a<xi < a,

k(− xi − a)
m

, xi < − a

⎧⎪⎨

⎪⎩

30 [− 50, 50] 0

F13(x) � 0.1(sin2(3πx1) + 􏽘
n

i�1
(xi − 1)

2
[1 + sin2(3πxi + 1)]

+(xn − 1)
2
[1 + sin2(2πxn)] + 􏽘

n

i�1
u(xi, 5, 100, 4)

30 [− 50, 50] 0

Table 3: Fixed-dimension multimodal benchmark functions.

Function Dim Range Fmin

F14(x) � ((1/500) + 􏽐
25
j�11/(j + 􏽐

2
i�1 (xi − aij)

6))− 1 2 [− 65, 65] 0.998

F15(x) � 􏽐
11
i�1[ai − (x1(b2i + bix2)/(b2i + bix3 + x4))]

2 4 [− 5, 5] 0.00030

F16(x) � 4x2
1 − 2.1x4

1 + (1/3)x6
1 + x1x2 − 4x2

2 + x4
2 2 [− 5, 5] − 1.0316

F17(x) � (x2 − (5.1/4π2)x2
1 + (5/π)x1 − 6)2 + 10(1 − (1/8π))cos x1 + 10 2 [− 5, 5] 0.398

F18(x) � [1 + (x1 + x2 + 1)
2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)]

×[30 + (2x1 − 3x2)
2

× (18 − 32x2 + 12x
2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [− 2, 2] 3

F19(x) � − 􏽐
4
i�1 ci exp(− 􏽐

3
j�1 aij(xj − pij)

2) 3 [− 1, 2] − 3.86

F20(x) � − 􏽐
4
i�1 ci exp(− 􏽐

6
j�1 aij(xj − pij)

2) 6 [0, 1] − 3.32

F21(x) � − 􏽐
5
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.1532

F22(x) � − 􏽐
7
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.4028

F23(x) � − 􏽐
10
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.5363
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convergence curve. From search historymaps, we can see the
search agent’s distribution of the HSMSSA while exploring
and exploiting the search space. Because of the fast con-
vergence, the vast majority of search agents are concentrated
near the global optimum. Inspecting trajectory figure in
Figure 5, the first search agent constantly oscillates in the
first dimension of the search space, which suggests that the
search agent investigates the most promising areas and
better solutions widely. +is powerful search capability is
likely to come from the Levy flight andMOBL strategies.+e
average fitness presents if exploration and exploitation are
conducive to improve the first random population, and an
accurate approximation of the global optimum can be found
in the end.

Similarly, it can be noticed that the average fitness os-
cillates in the early iterations and then decreases abruptly
and begins to level off. +e average fitness maps also show
the significant improvement of the first random population
and the final global optimal, accurate approximation ac-
quisition. At last, the convergence curves reveal the best
fitness value found by search agents after each iteration. By
observing this, the HSMSSA shows breakneck convergence
speed.

4.1.5. Wilcoxon Signed-Rank Test. Because the algorithm
results are random, we need to carry out statistical tests to
prove that the results have statistical significance. We use
Wilcoxon signed-ranks (WSR) test results to evaluate the
statistical significance of the two algorithms at 5% sig-
nificance level [53]. +e WSR is a statistical test that is
applied to two different results for searching the signif-
icantly different. As is well-known, a p-value less than
0.05 indicates that it is significantly superior to other
algorithms. Otherwise, the obtained results are not sta-
tistically significant. +e calculated results of the Wil-
coxon signed-rank test between HSMSSA and other
algorithms for each benchmark function are listed in
Table 6. HSMSSA outperforms all other algorithms in
varying degrees. +is superiority is statistically significant
on unimodal functions F2 and F4–F7, which indicates
that HSMSSA possesses high exploitation. HSMSSA also
shows better results on multimodal function F8–F23,
suggesting that HSMSSA has a high capability of ex-
ploration. To sum up, HSMSSA can provide better results
for almost all benchmark functions than other compar-
ative algorithms.

4.2. Experiments on Engineering Design Problems. In this
section, HSMSSA is evaluated to solve five classical engi-
neering design problems: pressure vessel design problem,
tension spring design problem, three-bar truss design
problem, speed reducer problem, and cantilever beam de-
sign. To address these problems, we set the population size
N� 30 and maximum iteration T� 500. +e results of
HSMSSA are compared to various state-of-the-art algo-
rithms in the literature. +e parameter settings are the same
as previous numerical experiments.

4.2.1. Pressure Vessel Design Problem. +e pressure vessel
design problem [53] is to minimize the total cost of cylin-
drical pressure vessel to match pressure requirements and
form the pressure vessel shown in Figure 8. Four parameters
in this problem need to be minimized, including the
thickness of the shell (Ts), the thickness of head (+), inner
radius (R), and the length of the cylindrical section without
the head (L), as shown in Figure 8. +e constraints and
equation are as follows.

Consider

x
→

� x1 x2 x3 x4􏼂 􏼃 � Ts Th R L􏼂 􏼃. (15)

Minimize

f( x
→

) � 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x

2
1x4

+ 19.84x
2
1x3,

(16)

subject to

g1( x
→

) � − x1 + 0.0193x3 ≤ 0,

g2( x
→

) � − x3 + 0.00954x3 ≤ 0,

g3( x
→

) � − πx
2
3x4 −

4
3
πx

3
3 + 1296000≤ 0,

g4( x
→

) � x4 − 240≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Variable range is

0≤ x1 ≤ 99,

0≤ x2 ≤ 99,

10≤x3 ≤ 200,

10≤x4 ≤ 200.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

Table 4: Parameter settings for the comparative algorithms.

Algorithm Parameters
SMA [35] z� 0.03
SSA [27] c1 � [1, 0]; c2 ∈ [0, 1]; c3 ∈ [0, 1]
AO [24] U� 0.00565; r1 � 10; ω� 0.005; α� 0.1; δ � 0.1; G1 ∈ [− 1, 1]; G2 � [2, 0]
AOA [15] α� 5; μ� 0.5;
WOA [22] a1 � [2, 0]; a2 � [− 1, − 2]; b� 1
SCA [14] a� [2, 0]
MVO [10] WEP ∈ [0.2, 1]; TDR ∈ [0, 1]; r1, r2, r3 ∈ [0, 1]
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Figure 6: Convergence curves of 23 benchmark functions.

Computational Intelligence and Neuroscience 13



2

F1

2
×104

×104

1

0
100

0
-100 -100

0
100

100
Search history Trajectory Average fitness Convergence curve

Be
st 

fit
ne

ss
 o

bt
ai

ne
d 

so
 fa

r

50

80

8
100

10-20

10-40

6

4

2

60
40
20

0
-20
-40
-60

0

-50

-100
-100 -50 0

x1 Iteration
50 100 100 200 300 400 500

Iteration Iteration
100 200 300 400 500 20 40 60

x2

F5

15

10

×1010

×108

×108

×104

5

200
0

-200 -200
0

200

200
Search history Trajectory Average fitness Convergence curve

Be
st 

fit
ne

ss
 o

bt
ai

ne
d 

so
 fa

r

100
4

5

105

100

3

2

1

20

10

0

-10

-20

0

-100

-200
-200 -100 0

x1 Iteration
100 200 100 200 300 400 500

Iteration Iteration
100 200 300 400 500 100 200 300 400 500

x2

F9

80

40
60

20

5
0

0
-5 -5

0
5

5
Search history Trajectory Average fitness Convergence curve

Be
st 

fit
ne

ss
 o

bt
ai

ne
d 

so
 fa

r

400

500

10-5

100

300

200

100

0

4

2

0

-2

-4

0

-5
-5 0

x1 Iteration
5 100 200 300 400 500

Iteration Iteration
100 200 300 400 500 2 4 6 8 10

x2

F10

20

10
15

5

20
0

-20 -20
0

20

20
Search history Trajectory Average fitness Convergence curve

Be
st 

fit
ne

ss
 o

bt
ai

ne
d 

so
 fa

r

15

20

10-10

100

10

5

20

10

0

-10

-20

0

10

-20

-10

-20 -10 0
x1 Iteration

2010 100 200 300 400 500
Iteration Iteration

100 200 300 400 500 100 200 300 400 500

x2

F12

140

100
80

120

60
40
20

10
0

-10 -10
0

10

10
Search history Trajectory Average fitness Convergence curve

Be
st 

fit
ne

ss
 o

bt
ai

ne
d 

so
 fa

r
10

8

12

100

10-5

105

6

4

2

40

20

0

-20

-40

0

5

-10

-5

-10 -5 0
x1 Iteration

105 100 200 300 400 500
Iteration Iteration

100 200 300 400 500 100 200 300 400 500

x2

F16

3
2
1
0

-1
1

0
-1 -1

0
1

1
Search history Trajectory Average fitness Convergence curve

Be
st 

fit
ne

ss
 o

bt
ai

ne
d 

so
 fa

r

1000

800

1200 -0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9

-1

600

400

200

0

4
3
2
1
0

-2
-1

-3

0

0.5

-1

-0.5

-1 -0.5 0
x1 Iteration

10.5 100 200 300 400 500
Iteration Iteration

100 200 300 400 500 100 200 300 400 500

x2

F18

2.5
2

1.5
1

0.5

4
0

-4-2 -4 -2 0 2 4

5
Search history Trajectory Average fitness Convergence curve

Be
st 

fit
ne

ss
 o

bt
ai

ne
d 

so
 fa

r

7
6
5

8 40
35
30
25
20
15
10

5

4
3
2
1

1.5
1

0.5
0

-1
-0.5

-1.5

0

-5
-5 0

x1 Iteration
5 100 200 300 400 500

Iteration Iteration
100 200 300 400 500 100 200 300 400 500

x2

×108

Figure 7: Parameter space, search history, trajectory, average fitness, and convergence curves of HSMSSA.
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From the results in Table 7, we can see that HSMSSA can
obtain superior optimal values compared with SMA, SSA,
AO, AOA, WOA, SCA, and MVO.

4.2.2. Tension Spring Design Problem. +is problem [27] tries
to minimize the weight of the tension spring, and there are
three parameters that need to be minimized, including the wire
diameter (d), mean coil diameter (D), and the number of active
coils (N). Figure 9 shows the structure of the tension spring.
+e mathematical of this problem can be written as follows.

Consider

x
→

� x1 x2 x3 x4􏼂 􏼃 � d D N􏼂 􏼃. (19)

Minimize

f( x
→

) � x3 + 2( 􏼁x2x
2
1, (20)

subject to

g1( x
→

) � 1 −
x
3
2x3

71785x
4
1
≤ 0,

g2( x
→

) �
4x

2
2 − x1x2

12566 x2x
3
1 − x

4
1􏼐 􏼑

+
1

5108x
2
1
≤ 0,

g3( x
→

) � 1 −
140.45x1

x
2
2x3
≤ 0,

g4( x
→

) �
x1 + x2

1.5
− 1≤ 0.

(21)

Table 6: +e results of Wilcoxon’s sign rank test for all functions.

Function
HSMSSA versus

SMA SSA AO AOA WOA SCA MVO
F1 NaN 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F2 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F3 NaN 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F4 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F5 6.1035E − 05 6.1035E − 05 4.2725E − 03 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F6 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F7 2.1545E − 02 6.1035E − 05 1.6882E− 01 7.1973E − 01 1.8311E − 04 6.1035E − 05 6.1035E − 05
F8 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F9 NaN 6.1035E − 05 NaN 6.1035E − 05 NaN 6.1035E − 05 6.1035E − 05
F10 NaN 6.1035E − 05 NaN 6.1035E − 05 1.9531E − 03 6.1035E − 05 6.1035E − 05
F11 NaN 6.1035E − 05 NaN 6.1035E − 05 NaN 6.1035E − 05 6.1035E − 05
F12 6.1035E − 05 6.1035E − 05 3.0518E − 04 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F13 6.1035E − 05 6.1035E − 05 3.0518E − 04 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F14 6.1035E − 05 5.0000E − 01 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F15 1.5259E − 03 6.1035E − 05 1.2207E − 04 4.3721E − 02 1.8311E − 04 6.1035E − 05 1.2207E − 04
F16 6.1035E − 05 1.3184E − 02 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F17 6.1035E − 05 6.1035E − 05 6.1035E − 05 4.2725E − 04 6.1035E − 05 6.1035E − 05 6.1035E − 05
F18 1.7334E − 01 6.4697E − 03 4.3252E − 02 3.5339E − 02 4.3252E − 02 4.3252E − 02 4.3252E − 02
F19 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F20 2.5574E − 02 1.0254E − 02 1.1597E − 03 2.2931E− 01 4.5359E − 02 6.1035E − 05 3.5913E − 01
F21 6.1035E − 05 2.5574E − 02 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F22 6.1035E − 05 4.2120E − 01 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
F23 6.1035E − 05 4.2120E − 01 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05 6.1035E − 05
(W|L|T) (17|1|5) (20|3|0) (19|1|3) (21|2|0) (21|0|2) (23|0|0) (22|1|0)

Th R

2R
L

Ts

Figure 8: Pressure vessel design problem.
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Variable range is

0.05≤ x1 ≤ 2.00,

0.25≤ x2 ≤ 1.30,

2.00≤ x3 ≤ 15.00.

(22)

Results of HSMSSA for solving tension spring design
problem are listed in Table 8, which are compared with SMA,
SSA, AO, AOA, WOA, SCA, and MVO. It is evident that
HSMSSA obtained the best results compared to all other
algorithms.

4.2.3. Iree-Bar Truss Design Problem. +ree-bar truss
design is a complex problem in the field of civil engineering
[49]. +e goal of this problem is to achieve the minimum
weight in truss design. Figure 10 shows the design of this
problem. +e formula of this problem can be described as
follows.

Consider

x
→

� x1 x2􏼂 􏼃 � A1 A2􏼂 􏼃. (23)

Minimize

f( x
→

) � 2
�
2

√
x1 + x2( 􏼁∗ l, (24)

subject to

g1( x
→

) �

�
2

√
x1 + x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0,

g2( x
→

) �
x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0,

g3( x
→

) �
1

�
2

√
x2 + x1

P − σ ≤ 0.

(25)

Variable range is

0≤x1,

x2 ≤ 1,
(26)

where l � 100 cm, P � 2KN/cm2, and σ � 2KN/cm2.
Results of HSMSSA for solving the three-bar design

problem are listed in Table 9, which are compared with SMA,
SSA, AO, AOA, WOA, SCA, and MVO. It can be observed
that HSMSSA has an excellent ability to solve the problem in
confined space.

4.2.4. Speed Reducer Problem. In this problem [15], the total
weight of the reducer is minimized by optimizing seven
variables. Figure 11 shows the design of this problem, and
the mathematical formula is as follows.

Minimize

D

d

Figure 9: Tension spring design problem.

Table 7: Comparison of HSMSSA results with other competitors for the pressure vessel design problem.

Algorithm
Optimum variables

Optimum cost
Ts Th R L

HSMSSA 0.8533992 0.4183956 45.8059 135.5385 5961.5318
SMA 0.8744808 0.4273835 46.83887 125.5848 6008.4161
SSA 0.8934774 0.4387327 47.53594 119.2156 6047.6543
AO 0.8828092 0.4312524 47.26462 121.6449 6028.1585
AOA 0.807105 0.4426515 44.63354 147.5659 6052.8917
WOA 0.8310091 0.3646671 44.00895 154.3182 6047.0417
SCA 0.8820038 0.4335084 47.24144 125.7922 6139.5293
MVO 0.8380677 0.4992101 45.82367 135.3623 6253.5397
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Table 8: Comparison of HSMSSA results with other competitors for the tension spring design problem.

Algorithm
Optimum variables

Optimum weight
d D N

HSMSSA 0.05 0.348099 10.6486 0.011007
SMA 0.057372 0.57232 4.1494 0.011584
SSA 0.05936 0.63542 3.4741 0.012256
AO 0.056912 0.55833 4.3271 0.011442
AOA 0.052579 0.41008 8.9843 0.012453
WOA 0.055292 0.47277 6.929 0.012906
SCA 0.0588 0.6172 3.65 0.012057
MVO 0.05251 0.37602 10.33513 0.012790

D

A1 A2

A3
A1=A3

D

D

Figure 10: +ree-bar truss design problem.

Table 9: Comparison of HSMSSA results with other competitors for the three-bar truss design problem.

Algorithm
Optimum variables

Optimum cost
x1 x2

HSMSSA 0.78842 0.40811 263.8523
SMA 0.79109 0.40022 263.8668
SSA 0.77823 0.43736 263.9363
AO 0.77899 0.43541 263.9197
AOA 0.76342 0.48382 264.3549
WOA 0.78357 0.42252 263.886
SCA 0.78058 0.43766 264.5463
MVO 0.75492 0.51216 264.7851

X7

X2 X1 X3

X6

X4X5

Figure 11: Speed reducer problem.
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f( x
→

) � 0.7854x1x
2
2 3.3333x

2
3 + 14.9334x3 − 43.0934􏼐 􏼑

− 1.508x1 x
2
6 + x

2
7􏼐 􏼑 + 7.4777 x

3
6 + x

3
7􏼐 􏼑,

(27)

subject to

g1( x
→

) �
27

x1x
2
2x3

− 1≤ 0,

g2( x
→

) �
397.5

x1x
2
2x

2
3

− 1≤ 0,

g3( x
→

) �
1.93x

3
4

x2x3x
4
6

− 1≤ 0,

g4( x
→

) �
1.93x

3
5

x2x3x
4
7

− 1≤ 0,

g5( x
→

) �

����������������������

745x4/x2x3( 􏼁
2

+ 16.9 × 106
􏽱

110.0x
3
6

− 1≤ 0,

g6( x
→

) �

�����������������������

745x4/x2x3( 􏼁
2

+ 157.5 × 106
􏽱

85.0x
3
6

− 1≤ 0,

g7( x
→

) �
x2x3

40
− 1≤ 0,

g8( x
→

) �
5x2

x1
− 1≤ 0,

g9( x
→

) �
x1

12x2
− 1≤ 0,

g10( x
→

) �
1.5x6 + 1.9

x4
− 1≤ 0,

g11( x
→

) �
1.1x7 + 1.9

x5
− 1≤ 0.

(28)

Variable range is

2.6≤x1 ≤ 3.6,

0.7≤x2 ≤ 0.8,

17≤x3 ≤ 28,

7.3≤x4 ≤ 8.3,

7.8≤x5 ≤ 8.3,

2.9≤x6 ≤ 3.9,

5.0≤x7 ≤ 5.5.

(29)

+e comparison results are listed in Table 10, which
shows the advantage of HSMSSA in realizing the minimum
total weight of the problem.

4.2.5. Cantilever Beam Design. Cantilever beam design is a
type of concrete engineering problem. +is problem aims to
determine theminimal total weight of the cantilever beam by
optimizing the hollow square cross-section parameters [24].
Figure 12 illustrates the design of this problem, and the
mathematical described is as follows.

Consider

x � x1 x2 x3 x4 x5􏼂 􏼃. (30)

Minimize

f( x
→

) � 0.6224 x1 + x2 + x3 + x4 + x5( 􏼁, (31)

subject to

g( x
→

) �
60
x
3
1

+
27
x
3
2

+
19
x
3
3

+
7
x
3
4

+
1
x
3
5

− 1≤ 0. (32)

Variable range is as follows: 0.01≤ x1, x2, x3, x4,

x5 ≤ 100.
+e results are shown in Table 11. From this table, we can

see that the performance of HSMSSA is better than all other
algorithms and the obtained total weight is minimized.

As a summary, this section demonstrates the superiority
of the proposed HSMSSA algorithm in different

Table 10: Comparison of HSMSSA results with other competitors for the speed reducer design problem.

Algorithm
Optimum variables

Optimum weight
x1 x2 x3 x4 x5 x6 x7

HSMSSA 3.4976 0.7 17 7.3 7.8 3.35006 5.28553 2995.4374
SMA 3.51443 0.7 17 7.32444 7.80527 3.35235 5.28494 3002.5941
SSA 3.49767 0.7 17 7.87797 8.09401 3.3943 5.28574 3018.644
AO 3.5138 0.7 17 7.41461 7.81291 3.37709 5.28457 3009.9097
AOA 3.55989 0.7 17 7.49997 8.3 3.4623 5.28512 3061.8731
WOA 3.49739 0.7 17 7.87039 8.0769 3.45309 5.2854 3034.0596
SCA 3.6 0.7 17 7.3 8.3 3.37932 5.2799 3063.9102
MVO 3.6 0.7 17 8.3 8.3 3.38276 5.36041 3111.6609
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characteristics and real case studies. HSMSSA is able to
outperform the basic SMA and SSA and other well-known
algorithms with very competitive results, which are derived
from the robust exploration and exploitation capabilities of
HSMSSA. Excellent performance in solving industrial en-
gineering design problems indicates that HSMSSA can be
widely used in real-world optimization problems.

5. Conclusion

In this paper, a Hybrid Slime Mould Salp Swarm Algorithm
(HSMSSA) is proposed by combining the whole SMA as
leaders and the exploitation phase of SSA as followers. At the
same time, two strategies, including Levy flight andmutation
opposition-based learning, are incorporated to enhance the
capabilities of exploration and exploitation of HSMSSA.+e
23 standard benchmark functions are utilized to evaluate
this algorithm for analyzing its exploration, exploitation,
and local optima avoidance capabilities. +e experimental
results show competitive advantages compared to other
state-of-the-art metaheuristic algorithms, proving that
HSMSSA has better performance than others. Five engi-
neering design problems are solved as well to verify the
superiority of the algorithm further, and the results are also
very competitive with other metaheuristic algorithms.

+e proposed HSMSSA can produce very effective re-
sults for complex benchmark functions and constrained
engineering problems. In the future, HSMSSA can be ap-
plied to real-world optimization problems such as multi-
objective problems, feature selection, multithresholding
image segmentation, convolution neural network, or any
problem that belongs to NP-complete or NP-hard problems.
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