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Summary

Social and environmental stressors are crucial factors in child development. However, there exists

a multitude of measurable social and environmental factors—the effects of which may be

cumulative, interactive, or null. Using a comprehensive cohort of children in North Carolina, we

study the impact of social and environmental variables on 4th end-of-grade exam scores in reading

and mathematics. To identify the essential factors that predict these educational outcomes, we

design new tools for Bayesian linear variable selection using decision analysis. We extract a

predictive optimal subset of explanatory variables by coupling a loss function with a novel model-

based penalization scheme, which leads to coherent Bayesian decision analysis and empirically

improves variable selection, estimation, and prediction on simulated data. The Bayesian linear

model propagates uncertainty quantification to all predictive evaluations, which is important for

interpretable and robust model comparisons. These predictive comparisons are conducted out-of-

sample with a customized approximation algorithm that avoids computationally intensive model

re-fitting. We apply our variable selection techniques to identify the joint collection of social and

environmental stressors—and their interactions—that offer clear and quantifiable improvements in

prediction of reading and mathematics exam scores.
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1 | INTRODUCTION

It is widely agreed that health and well-being are determined by multiple forces.

Environmental exposures such as air pollution and lead adversely affect health and cognitive

development, and are often elevated in disadvantaged communities. These same

communities may also experience a multitude of social stressors: inadequate access to health

care, poor housing, high unemployment, high crime, high poverty, and racial segregation,

among others.1,2 While social and environmental stressor co-exposures may or may not

interact, they almost certainly cumulate. In addition, health and developmental impacts

during childhood are strongly associated with poor outcomes in adults. Thus, understanding

the effects of co-exposures to social and environmental stressors among children is critical to

improving the nation’s health. Here, we develop methods to better understand the

relationships among environmental mixtures and social context, as well as their impacts on

developmental outcomes.

Although the evidence is not yet conclusive, a growing body of epidemiological research

suggests that pre- and post-natal exposure to ambient air pollution, including PM2.5,

adversely impacts neurological development in children.3 Prenatal PM2.5 exposure

specifically has been linked with poorer function across memory and attention domains in

children.4 Meanwhile, there is a plethora of evidence that lead exposure in young children,

even at low levels, is associated with intellectual deficits,5 learning and behavioral disorders,
6 and lower scores on intelligence and standardized tests.7 The adverse effects of childhood

lead exposure persist into adulthood, affecting intelligence and socioeconomic status.8

Social stressors, often present in the same communities as these adverse environmental

exposures, may also affect health and development. Neighborhood measures of poverty,

disadvantage, and deprivation are associated with decrements in cognitive development in

children,9 and a substantial body of evidence links segregation with adverse health

outcomes.10 Despite evidence linking neighborhood conditions with health11 and

developmental outcomes in children,12 the effects of environmental exposures such as air

pollution and lead are not always evaluated in conjunction with neighborhood conditions.

Our overarching objective is to identify the environmental exposures (e.g., air pollution

exposure, lead exposure) and social stressors (e.g., racial residential segregation,

neighborhood deprivation, income status)—as well as their interactions—that predict child

educational outcomes. For this task, we develop new decision tools for Bayesian variable

selection. Although shrinkage and sparsity priors can encode prior beliefs or preferences for

sparsity, the prior alone cannot select variables. In particular, the posterior distribution

encapsulates information about variable importance, but a decision about the active or

inactive variables is still required. A natural solution is a two-stage approach: after obtaining

the posterior distribution of a Bayesian (linear) model, we extract sparse linear summaries

that are optimized for prediction. From a decision analysis perspective, we pair a loss

function with a novel model-based penalization scheme that enables simultaneous

optimization for predictive accuracy and sparsity. Unlike marginal decision criteria that

examine each regression coefficient individually—hard-thresholding,13 posterior inclusion

probabilities,14 or posterior credible intervals that exclude zero15—our approach selects
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variables that are jointly predictive, which is particularly important in the presence of

correlated variables. We quantify the predictive contributions of particular variables or sets

of variables by comparing the out-of-sample predictive accuracy across distinct sparsity

levels. Crucially, we leverage the predictive distribution of the Bayesian linear model to

augment these predictive evaluations with posterior uncertainty quantification. The

uncertainty quantification is valuable for informed comparisons and provides a mechanism

for selecting the smallest subset among nearly-optimal linear models. For computational

scalability, we design an approximation algorithm that avoids intensive model re-fitting for

the out-of-sample evaluations and instead only requires a single model fit.

The statistical analysis is enabled by linking multiple administrative datasets to construct an

analysis dataset that tracks children in North Carolina from birth through time of lead testing

and finally time of 4th grade standardized testing in reading and mathematics. This work is

also responsive to calls from leading researchers in support of research agendas that leverage

longitudinal population-based data linkages.12

The paper is organized as follows: Section 2 introduces the comprehensive database

constructed for our study; in Section 3, we develop in full the Bayesian variable selection

methodology; results are presented in Section 4, which includes a simulation study; we

conclude in Section 5.

2 | DATA

The analysis dataset16 for this study was created by linking three administrative databases

for the State of North Carolina (NC)—detailed birth records, blood lead surveillance data,

and end-of-grade (EOG) standardized testing data—with extensive exposure data. The

exposure data include ambient air quality and temperature, socioeconomic factors, and

indices that measure racial isolation and neighborhood deprivation. In all, 25 variables and

features are included. A short summary of the dataset is included here, with a comprehensive

list of variables provided in the Appendix. More detailed discussion of the dataset is

available in Bravo et al.17

Detailed birth records were obtained from the NC State Center for Health Statistics, Vital

Statistics Department. The data include information on maternal demographics, maternal

and infant health, and maternal obstetrics history for all documented live births in NC. The

analysis dataset restricts to students born in 2000, which facilitates linking with the Census-

based datasets below.

Blood lead surveillance records were obtained from the state registry maintained by the

Childhood Lead Poisoning Prevention Program of the Children’s Environmental Health

Unit, Department of Health and Human Services in Raleigh, NC. Blood lead levels are

stored as integer values. The analysis dataset includes measurements from 2000-2011.

EOG standardized testing data were obtained from the NC Education Research Data

Center of Duke University in Durham, NC. Children in NC in grades 3–8 are tested in

reading and mathematics at the end of the school year.18 The database contains records for

all EOG test results statewide for tests from the 1995–1996 school year to the present; the
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analysis dataset restricts to 4th grade EOG exams in reading and mathematics in 2010-2012.

The dataset also includes identifying information such as name and birth date and data on

demographics and socioeconomics, English proficiency, and school district.

Air pollution exposure metrics are based on daily 24-hour averages of ambient PM2.5

concentrations obtained from two different sources: the US Environmental Protection

Agency National Air Monitor Stations or State and Local Air Monitoring Stations (NAMS/

SLAMS) monitoring network (1999-2000); and publicly available output from the

Community Multiscale Air Quality (CMAQ) downscaler (2010-2012). These exposure

metrics are converted into pre-natal exposure, which is the average exposure by trimester of

pregnancy (1-13 weeks, 14-26 weeks, and 27 weeks to birth); chronic exposure, which is the

average exposure for one year prior to EOG testing; and acute exposure, which is the

average exposure for 30 days prior to EOG testing. The prenatal metrics use the closest

monitor within 30km of the mother’s residence, while the chronic and acute metrics use the

closest monitor within 30km of the child’s residence.

Ambient temperature data were obtained from the State Climate Office of NC.

Temperature exposure was computed as the average exposure by trimester of pregnancy

(1-13 weeks, 14-26 weeks, and 27 weeks to birth) using the nearest weather station within

50km of the mother’s residence.

Racial isolation (RI) and neighborhood deprivation (NDI) are critical indices that

measure social stress. RI is based on 2000 and 2010 Census data using a previously derived

local, spatial measure of RI,19 which is in turn derived from the global spatial isolation index

developed by Reardon and O’Sullivan.20 The RI index ranges from 0 to 1, with values close

to 1 indicating the neighborhood environment is almost entirely non-Hispanic black (NHB).

NDI values were calculated at the census tract level based on 2000 and 2010 Census data

using a previously derived measure of NDI.21 The NDI empirically summarizes eight census

variables representing five socio-demographic domains (income/poverty, education,

employment, housing, and occupation), including: percent of males in management and

professional occupations, percent of crowded housing, percent of households in poverty,

percent of female headed households with dependents, percent of households on public

assistance and households earning <$30,000 per year estimating poverty, percent earning

less than a high school education, and the percent unemployed. Higher values of NDI

indicate more severe neighborhood deprivation. To account for neighborhood dynamics,

each child was assigned an RI and NDI value at time of birth and at time of EOG testing. RI

and NDI at birth were assigned based on the child’s tract of residence at time of birth

(obtained from the detailed birth records), using RI and NDI calculated from 2000 Census

data. RI and NDI at time of EOG testing were assigned based on the child’s tract of

residence at time of testing (obtained from the EOG testing data), using RI and NDI

calculated from 2010 Census data.

Methods for receiving, storing, linking, analyzing, and presenting results related to this study

were all governed by a research protocol approved by the Rice University Institutional

Review Board.

Kowal et al. Page 4

Stat Med. Author manuscript; available in PMC 2022 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 | METHODS

3.1 | The Bayesian linear model

Bayesian linear regression provides a compelling platform from which to address the

challenges in our analysis: the linear modeling structure inherits the interpretability of

classical linear regression, while the prior distribution conveys advantages for regularization

of unimportant variables, (posterior) uncertainty quantification, and improved predictions.

Consider the paired observations yi, xi i = 1
n  where yi ∈ ℝ denotes the response variable and

xi is the p-dimensional predictor, which may include interaction terms. The Bayesian linear

model is

yi = xi′β + ϵi, ϵi ∼iid N 0, σ2 (1)

β ∼ p β (2)

where p(β) denotes a prior distribution on the regression coefficients. The prior distribution

(2) has long served as a mechanism for introducing regularization in the linear model:

Bayesian ridge regression β j ∼ N 0, σβ
2  and the Bayesian lasso22 are adaptations of non-

Bayesian regularization techniques which seek to combat multicollinearity and mitigate the

effects of unimportant predictor variables. More commonly, Bayesian regression utilizes

shrinkage priors such as the horseshoe prior23 and the Dirichlet-Laplace prior,24 which

demonstrate improved point estimation and posterior contraction properties,13,25 especially

for sparse regressions in which many coefficients may be negligible. Shrinkage priors are

continuous distributions, usually scale mixtures of Gaussian distributions, which are

designed for both regularization and computational scalability. By comparison, sparsity-

inducing priors, such as spike-and-slab priors,26,27,28,29 place a positive probability on βj =

0. Although conceptually appealing, sparsity-inducing priors face significant challenges for

computation and inference. Nonetheless, sparsity-inducing priors are compatible with the

methods introduced below.

Regardless of the choice of prior, Bayesian inference proceeds via the posterior distribution

p(β|y) from model (1)–(2). The posterior distribution is rarely available analytically,

especially for shrinkage priors, and therefore posterior inference most commonly uses

Markov Chain Monte Carlo (MCMC) algorithms. For many choices of (2), an efficient

elliptical slice sampler30 is available for obtaining samples from the posterior distribution of

the regression coefficients. Using these samples, posterior summaries such as expectations,

standard deviations, and credible intervals are easily computable.

Although the posterior distribution p(β|y) encapsulates information about variable

importance, additional tools are needed to select and evaluate joint subsets of variables. In

practice, the vast majority of Bayesian variable selection proceeds marginally for each

coefficient βj, including hard-thresholding under shrinkage priors,13 marginal inclusion

probabilities under sparsity-inducing priors,14 or selection based on credible intervals that

omit zero.15 While useful summaries, these approaches fail to consider variables jointly,
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which is particularly important for correlated predictors and interactions. In addition,

marginally-selected variables do not necessarily comprise an adequately predictive linear

basis relative to the full model, and indeed are not constructed or evaluated for this purpose.

The implication is that, for a set of marginally-selected variables, it is incorrect to interpret

them jointly as a predictive model: for instance, we cannot claim that these variables are

sufficient to explain the variability in the data. Marginal selection is not without benefits, for

example as a tool to screen unimportant variables in ultrahigh-dimensional data,31 but must

be interpreted carefully. Alternatively, some point estimation techniques produce sparse

estimates of β within a Bayesian linear model,32 but these methods are not accompanied by

uncertainty quantification for either the coefficients β or metrics for evaluating predictive

accuracy associated with various sparsity levels. Consequently, techniques that provide both

selection and uncertainty quantification for the selection process are at a premium.

3.2 | Decision analysis for Bayesian variable selection

Bayesian variable selection is a decision problem: using the full model posterior, the task is

to determine a minimal subset of variables that nearly preserve—or if possible, improve

upon—the fitness of the full model. Fitness is evaluated using predictive performance and

measured by a loss function, such as squared error loss. Importantly, the loss function may

be augmented with a sparsity-inducing penalty, which admits a formal expression of the

tradeoff between predictive accuracy and model simplicity. Decision analysis proceeds to

minimize the posterior predictive expected loss; intuitively, this procedure averages the loss

function over future or unobserved values of the response variable and then minimizes the

resulting expression. Importantly, we obtain computationally convenient representations of

this objective, with model selection uncertainty quantification (Section 3.4) and rapidly-

computable out-of-sample comparisons (Section 3.5).

For any covariate value x , the linear model assigns a posterior predictive distribution to the

associated response variable y :

p y |y = p y |θ p θ|y dθ, θ = β, σ2
(3)

where y∼|θ N x ′β, σ2  is conditionally independent from the observed data y = (y1, …, yn)′.

Notably, (3) defines a distribution over the possible realizations of the response variable at a

particular covariate value and conditional on all observed data. The posterior predictive

distribution is fundamental for point prediction, but also provides uncertainty quantification

for predictive functionals, such as y  itself and measures of predictive loss (see Section 3.4).

More generally, consider the task of prediction at covariates x i i = 1
n , which may be distinct

from the observed covariates xi i = 1
n . The choice of x i i = 1

n  can target predictions for

specific designs, subject characteristics, or subpopulations of interest. The corresponding

predictive variables are denoted y i i = 1
n , which are the unobserved or future values of the

response variable at each predictor x i. The posterior predictive distribution p y i|y  is given by
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(3) with y i|θ ∼ N x i′β, σ2 , and is not required to be known analytically: samples

y i
s

s = 1
S ∼ p y i|y  are sufficient, which usually are obtained by sampling θs ∼ p(θ|y) from the

posterior and y i
s ∼ p y i|θ

s  from the aforementioned Gaussian distribution. Regardless of the

choice of covariate values x i i = 1
n , the posterior predictive distribution conditions on all

available data.

For simultaneous evaluation of both predictive accuracy and model complexity, we consider

the following loss function:

ℒλ y i = 1
n , δ = 1

n i = 1

n
y i − x i′δ

2 + λ𝒫 δ (4)

where δ is a p-dimensional vector of linear coefficients and 𝒫 is a complexity penalty. The

complexity parameter λ ≥ 0 controls the tradeoff between accuracy and complexity, with

larger values of λ encouraging simpler models. The squared error loss measures fitness of

the linear point prediction x i′δ for some value of δ, which is to be determined. Many choices

of complexity penalization are available, but for the purpose of variable selection, we

consider sparsity-inducing penalties such as ℓ1-penalization and its variants (see Section 3.3).

In this context, a simpler model is one which includes fewer variables, i.e., δj = 0 for some

or many j ∈ {1, …, p}, and the goal is to maximize predictive performance in the presence

of sparsity.

To obtain optimal coefficients δ for a given complexity level λ, we minimize the posterior
predictive expectation of (4), which averages over the uncertainty implicit in each predictive

variable y i conditional on the observed data y:

δ λ = arg min
δ

𝔼 y |y ℒλ y i i = 1
n , δ (5)

where the expectation is taken with respect to (3) for each p y i|y . By varying λ, the solution

in (5) generates a path of optimal coefficients at varying complexity levels. From (3), it

follows that 𝔼 y |y ℒλ y i i = 1
n , δ = 𝔼 θ|y 𝔼 y |θ ℒλ y i i = 1

n , δ . We evaluate these expectations

sequentially. The penalty term is fixed and remains constant throughout, so for notational

simplicity we consider the unpenalized case, λ = 0. Observing 𝔼y |θy i = x i′β, we simplify as

follows:

𝔼 y |θ ℒ0 yi i = 1
n , δ = 1

n i = 1

n
𝔼 y |θ yi − xi′δ

2 = 1
n i = 1

n
𝔼 y |θ yi − xi′β + xi′β − xi′δ

2

= σ2 + 1
n i = 1

n
xi′β − xi′δ

2
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since σ2 = 1
n i = 1

n 𝔼 y |θ y i − x i′β
2. Letting β = 𝔼θ|y β  and σ2 = 𝔼θ|y σ2  be the posterior

expectations, the outer expectation of the loss function simplifies similarly:

𝔼 θ|y σ2 + 1
n i = 1

n
xi′β − xi′δ

2 = σ2 + 1
n i = 1

n
𝔼 θ|y xi′β − xi′β + xi′β − xi′δ

2

= σ2 + 1
n trace X′XΣβ + 1

n i = 1

n
xi′β − xi′δ

2

where X = x1, …, xn ′ is the specified design matrix and Σβ = Cov θ|y β  is the posterior

covariance of β. Conclusively, we omit additive constants that do not depend on δ to identify

an equivalent expression for the optimal parameters from (5):

δ λ = arg min
δ

1
n y − Xδ 2 + λ𝒫 δ (6)

where y = 𝔼 y |y y = Xβ is the point prediction at X under the linear model (1)–(2). This

expectation is easily and quickly computable using posterior draws of β, e.g., y ≈ Xβ  for

β = S−1
s = 1
S βs with βs ∼ p(β|y).

The representation in (6) is valuable: the decision analysis posited in (5) is solved as a

penalized least squares problem. For many choices of penalties 𝒫, efficient algorithms exist

for solving (6); all that is required is the pseudo-response variable y = Xβ and the

accompanying design matrix X. By varying λ, we obtain solutions to (5) that vary in

complexity. When 𝒫 is a sparsity-inducing penalty, we obtain subsets of variables that are

optimized for the point predictions under the full model. For example, the ℓ1-penalty,

𝒫 δ =
j = 1
p |δ j|, induces a lasso regression problem33 with y as data, so the parameters δλ

are computable using standard software such as the glmnet34 package in R.

There is a fundamental distinction between the linear coefficients β and δ. In particular, β is

a parameter of the Bayesian model and therefore is endowed with a prior distribution. By

comparison, δ is any p-dimensional vector, and in that sense is entirely disconnected from

the Bayesian model. The operation in (5) optimizes δ based on the model and the loss

function, and the solution (6) is an expected functional under the posterior distribution.

Hence, it is not coherent to place a prior on δ or λ: these define the actions and loss

functions, respectively, in the decision analysis but they are not parameters of the model.

While the prior on β may record our preference for sparse linear coefficients, this does not

guarantee sparsity of any particular posterior functional or summary. For illustration,

consider the unpenalized case with λ = 0. Using any design matrix X, the (possibly

nonunique) solution to (6) is simply δλ = 0 = β, which is the posterior expectation of the

regression coefficients in (1). However, this quantity is not sparse even in the case of

sparsity-inducing priors and therefore cannot provide variable selection. By allowing λ > 0,

we admit linear coefficients that jointly optimize for prediction and sparsity.
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The decision analysis approach to variable selection has historical roots35 with modern

development.36,37 Related approaches, often termed posterior summarization, have been

developed for multiple linear regression and logistic regression,36 nonlinear regressions,38

time-varying parameter models,39 functional regression,40 graphical models,41 and seeming

unrelated regressions.42 However, existing methods face several important limitations. First,

they all rely on in-sample quantities for evaluation. Out-of-sample metrics are more suitable

for predictive evaluation, which is essential for model comparison and selection. In-sample

metrics have a greater risk of overfitting, and therefore may favor models that are

unnecessarily complex. Second, these methods provide limited guidelines for model

determination, and often use in-sample graphical summaries. It is important to identify both

(i) the best model for predictive accuracy and (ii) the set of models that are close enough to

the best model in predictive performance. Leaving precise definitions to the next section, we

emphasize that these notions fundamentally rely on evaluations of predictive performance—

which is most appropriately determined out-of-sample. Lastly, these approaches commonly

adopt an adaptive penalty akin to the adaptive lasso43 in place of the ℓ1-penalty. However,

these existing adaptive penalization schemes are not coherent within the decision analysis

framework of (4) and (5). This issue is addressed and resolved in the next section.

3.3 | Generalized penalties and the Bayesian adaptive lasso

The task of variable selection requires a sparsity-inducing penalty for 𝒫. Equally important,

the optimal coefficients are only available upon solving the penalized least squares problem

(6). Mutual consideration of sparsity and computational scalability suggests ℓ1-penalization,

for which the penalized least square problem is equivalent to the lasso33 using y as data.

However, the ℓ1-penalty is known to introduce substantial bias for large coefficients, and

cannot simultaneously provide correct variable selection and optimal estimation in a

frequentist context.43 Adaptive penalization methods44,43 attempt to correct the

suboptimality of the ℓ1-penalty and have demonstrated wide success in practice. These

approaches are distinct from the decision analysis framework of (4)–(5): the response

variable in the penalized least squares problem (6) is y and not the original data y. More

generally, classical adaptive penalization methods do not operate in the same Bayesian

framework of (1)–(2), and therefore require additional tools to provide uncertainty

quantification.

In the context of decision analysis for Bayesian variable selection, several authors have

considered adaptive penalties for 𝒫.36,37,38,39,40 These approaches adopt a common form

which mimics the adaptive lasso43:

𝒫0 δ =
j = 1

p
ω j

0|δ j|, ω j
0 = |β j|

−γ
(7)

where β = 𝔼θ|y β  and γ > 0, typically with γ = 136,38,40 or γ = 2.37,39 The adaptive penalty

in (7) does not introduce any additional complexity for computation relative to the ℓ1-penalty.

However, this approach is not coherent within the decision analysis framework of (4)–(5):

the penalty function 𝒫 is treated as known in (4), while (7) requires an estimate of a
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posterior quantity. Implicitly, this approach ignores the uncertainty in unknown model

parameters.

We propose fully Bayesian model-based penalization, which allows the regularization

behavior and notion of complexity in the predictive optimization problem to be informed by

the model within a coherent decision analysis framework. Specifically, we generalize the

loss function (4) as follows:

ℒλ y i = 1
n , δ, θ = 1

n i = 1

n
y i − x i′δ

2 + λ𝒫 δ, θ (8)

where the penalty is now permitted to depend on model parameters θ. Within this

framework, we introduce a Bayesian adaptive lasso penalty:

𝒫 δ, θ =
j = 1

p
ω j|δ j|, ω j = |β j|

−γ (9)

where γ > 0. Notably, (9) depends on the regression coefficients β, which are unknown and

random quantities.

To extract optimal coefficients from the generalized loss function, we now integrate over two

sources of uncertainty: (i) the predictive variables y i and (ii) the model parameters θ, in both

cases conditional on the observed data y. The optimal coefficients are identified by

minimizing the iterated expected loss:

δ λ = arg min
δ

𝔼 θ|y 𝔼 y |y, θ ℒλ y i i = 1
n , δ, θ . (10)

Under the mild condition that 𝔼 θ|y |𝒫 δ, θ | < ∞ for some δ, the arguments in Section 3.2

imply that (10) is equivalent to

δ λ = arg min
δ

1
n y − Xδ 2 + λ𝒫 δ (11)

where 𝒫 δ = 𝔼 θ|y 𝒫 δ, θ  is the posterior expectation under (1)–(2). For the Bayesian

adaptive lasso in (9), the penalty required to solve (11) is

𝒫 δ =
j = 1

p
ω j|δ j| ω j = 𝔼 θ|y |β j|

−γ . (12)

The necessary weights are easily estimable using posterior simulations: ω j ≈ S−1
s = 1
S |β j

s|−γ

with βs ∼ p(β|y). Therefore, the optimal coefficients in (10) are readily available—again

using standard software such as the glmnet34 package in R—with minimal additional costs

relative to (non-adaptive) ℓ1-penalization.
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The adaptive weights in (12) are distinct from both the adaptive lasso43 and previous

approaches for sparse decision analysis.36,37,38,39,40 In the adaptive lasso, the estimator for

the weights is |β j
ols|

−γ
 where β j

ols is the ordinary least squares estimate of βj in (1). Notably,

β j
ols is only well-defined for p < n; by comparison, (12) is valid for p > n for many choices of

shrinkage priors in (2). More specifically, the adaptive lasso requires a consistent estimate of

βj in (1) in order to obtain both selection consistency and an optimal estimation rate. From

the continuous mapping theorem, this is equivalent to consistent estimation of the weight ωj

= |βj|−γ, so in that context there is no need to distinguish between estimation of βj and ωj.

However, from a Bayesian perspective, the order of estimation matters due to the presence of

(posterior) expectations. Jensen’s inequality implies that the proposed weights are larger

than those in 𝒫0:ω j ≥ ω j
0. The discrepancy between the weights is greatest when |β j| is

small; when |β j| is large, the weights are effectively indistinguishable. Therefore, the

proposed penalty is more aggressive in weighting small coefficient estimates toward zero

without introducing additional bias for the large coefficient estimates. Nonetheless, the

effects of small sampled values of |β j
s| on ω j can be mitigated by decreasing γ. More broadly,

the proposed approach is coherent within a decision analysis framework: the loss function

(8) depends on predictive and posterior variables y i and θ, respectively, which are integrated

out using the posterior distribution under model (1)–(2).

3.4 | Model determination from predictive performance

The decision analysis elicits optimal coefficients δλ in (10) for each value of the complexity

parameter, λ. It is informative to evaluate and compare these coefficients at various levels of

complexity. The goal is determine (i) which λ delivers the best predictive performance and

(ii) which complexity levels λ are close enough in predictive accuracy relative to the best

model. Criterion (ii) encapsulates the core tradeoff between accuracy and simplicity:

although the best model might be complex, there may exist one or more simpler models that

achieve nearly the same performance. In the context of variable selection, λ controls the

tradeoff between accuracy and sparsity: for an ℓ1-penalty or the Bayesian adaptive lasso (9),

λ = 0 produces a solution with maximal complexity, so all variables are included, while λ
→ ∞ returns the null model. Alternative specifications of 𝒫 are readily available, such as

stepwise regression with forward selection or backward elimination, for which λ can be

defined to index the model size. However, the resulting solutions δλ are not continuous in λ,

which suggests a lack of stability and robustness.45 Nonetheless, the subsequent

methodology remains valid for any choice of penalty as long as (6) is numerically solvable.

Our approach for evaluating predictive performance follows two core principles, which are

similarly emphasized by Kowal46: (i) predictions should be evaluated out-of-sample and (ii)

evaluations should be accompanied by full uncertainty quantification. Naturally, out-of-

sample predictive evaluations are strongly preferred as more reliable assessments of the

predictive capability of a model. In-sample metrics tend to favor more complex models,

which simultaneously encourages overfitting and undermines the goal of producing simple

or sparse solutions. Yet fundamentally, there is nonignorable uncertainty in the evaluation
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process: predictive performance is inherently random and will vary across different testing

datasets, even for the same values of the predictors. This uncertainty is extremely valuable: it

provides strength of evidence for a model and introduces a notion of equivalence among

models with similar predictive performance. Importantly, the uncertainty quantification is

provided automatically from model (1)–(2) and does not require additional assumptions.

Among frequentist methods, it is common to select the complexity parameter using cross-

validation. It has been shown that accounting for the uncertainty in model evaluation can

improve selection and reduce bias in prediction.47,48 The one-standard-error rule48 is a

popular choice for model selection: instead of selecting the best model, this rule selects the

simplest model within one standard error of the best model. Similarly, Lei47 proposes a K-

fold cross-validation procedure coupled with a multiplier bootstrap to construct a confidence

set of acceptable models. These techniques are successful because they account for

nonignorable uncertainty in the evaluation process, and then leverage that information for

model selection. Our approach is conceptually adjacent to these methods, yet fundamentally

different due to the presence of the Bayesian model (1)–(2). Bayesian analysis attributes

uncertainty to a probability distribution. In the context of predictive evaluation, that

distribution is the posterior predictive distribution. We use this distribution to construct

interpretable metrics of predictive performance accompanied by full posterior uncertainty

quantification.

Note that one approach for decision analytic Bayesian variable selection, called signal

adaptive variable selection (SAVS),37 claims to avoid the issue of selecting λ. However,

SAVS uses the optimization criterion (6) with the penalty (7), but simply sets λ = 1. This

does not obviate the need to select λ: it is just one possible choice for the sparsity level.

Furthermore, this approach fails to provide any (out-of-sample) comparative evaluation for

models of differing sparsity levels, and consequently cannot provide the necessary

uncertainty quantification for predictive performance among models of varying complexity.

In conjunction with the concurrent work by Kowal,46 we introduce two complementary

notions of proximity in predictive performance, which are made precise below. First, let η ≥

0 define a margin for acceptable performance: any model with predictive performance

within η of the best model is considered acceptable. The margin η is selected by the

scientific investigator and varies according to the need to achieve a certain level of accuracy,

including η = 0, and may be expressed relative to the error variance σ2 in (1). Second, note

that predictive performance is inherently random: model accuracy will vary across different

testing datasets, even for the same values of the predictors. In particular, a simplified (or

sparse) model may not perform within η of the best model for a particular testing dataset,

but nonetheless may achieve this margin with some (possibly small) probability. We define ε
∈ [0, 1] to be a probability level such that, according to the predictive distribution (3) under

the linear model, there is at least ε probability that the simpler model matches or exceeds the

predictive ability of the best model (within a margin of η). Acceptable models must satisfy

these criteria, which depend on both the margin η and the probability level ε.
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For concreteness, we proceed to measure accuracy using mean squared error (MSE),

although the subsequent results are generalizable for other performance metrics. The in-
sample MSE is defined by

MSEλ
in = 1

n i = 1

n
yi − xi′δ λ

2
(13)

which evaluates the point prediction parameters δλ at the observed data yi, xi i = 1
n . For an

analogous predictive quantity, consider the MSE evaluated at y i ∼ p y i|y  in (3):

MSEλ
in = 1

n i = 1

n
yi − xi′δ λ

2
(14)

which is the predictive (in-sample) MSE. Notably, (14) incorporates the distribution of

future or unobserved values y i at covariate value xi and conditional on all observed data.

Since MSEλ
in is a predictive quantity, it is accompanied by posterior uncertainty

quantification under model (1)–(2). However, MSEλ
in is an in-sample quantity: the

distribution is conditional on all observed data yi i = 1
n , and therefore incorporates the

information in the observed value of yi at each xi. By comparison, out-of-sample prediction

does not have the benefit of observing each yi, so there is inherently greater uncertainty in

the corresponding predictive distribution of y i. It is the latter setting that is more

representative of practical prediction problems.

To construct out-of-sample MSEs and predictive MSEs, we adjust the key components of

(13) and (14)—namely, the optimal coefficients δλ and the predictive variables yi — to

condition only on a subset of the data, the training data, and evaluate on the remaining (now

out-of-sample) testing data. Repeating this procedure for K distinct and randomly-selected

training/testing splits reduces the sensitivity to any particular split, and produces a Bayesian

K-fold cross-validation procedure. Let ℐk denote the indices of the kth holdout (test)

dataset, k = 1, …, K, with ∪k = 1
K ℐk = 1, …, n . The holdout sets ℐk are typically equally-

sized, mutually exclusive, and selected randomly from {1, …, n}. Let y = y
−ℐk, y

ℐk , so

y
−ℐk and y

ℐk refer to the training and testing datasets, respectively. For each fold k = 1, …,

K, we define the out-of-sample MSE and predictive MSE as follows:

MSEλ
out k = 1

|ℐk| i ∈ ℐk

yi − xi′δ λ

−ℐk
2
, MSEλ

out k

= 1
|ℐk| i ∈ ℐk

y i
−ℐk − xi′δ λ

−ℐk
2 (15)
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where δλ
−ℐk minimizes the expected loss (10), but restricted to the training data y

−ℐk,

δ λ

−ℐk = arg min
δ

𝔼
θ|y

−ℐk
𝔼

y |y
−ℐk, θ

ℒλ y
−ℐk, δ, θ (16)

and similarly y i
−ℐk ∼ p y i|y

−ℐk  is the predictive variable at xi but conditional only on the

training data y
−ℐk. This out-of-sample predictive distribution is fundamentally distinct from

the in-sample predictive distribution, p y i|y = p y i|y
−ℐk, y

ℐk , which inappropriately

conditions on the testing data y
ℐk. The out-of-sample MSEs in (15) better capture the

essence of the prediction task, where the predictand is not available for model-fitting of (1)–

(2) or solving (16). Since these quantities may be sensitive to the specific testing set ℐk, we

average (15) over all K testing sets:

MSEλ
out = 1

K k = 1

K
MSEλ

out(k), MSEλ
out = 1

K k = 1

K
MSEλ

out(k) (17)

which is advocated in the literature.47,46 When the holdout sets are mutually exclusive, each

observation i = 1, …, n appears exactly once in (17). Computation of (17) requires solving

(16) and obtaining the out-of-sample predictive distribution y i
−ℐk ∼ p y i|y

−ℐk . Although

these quantities may be calculated using brute-force model re-fitting for each k = 1, …, K,

we provide a substantially simpler and faster approximation in Section 3.5 which completely

avoids the need for Bayesian model re-fitting.

Given the out-of-sample MSEs, we are now able to define formally the evaluation and

selection procedure. First, we define the best model to be the minimizer of out-of-sample

MSE:

λmin = arg min
λ

MSEλ
out

(18)

which equivalently identifies the complexity parameter λmin corresponding to the smallest

K-fold cross-validated MSE. This choice of λ serves as a reference point: we are interested

in identifying models that perform nearly as well as λmin, and among those, models with

minimal complexity. Next, consider the out-of-sample predictive variable

gapMSEλ
out = MSEλ

out − MSEλmin
out

(19)

which is the gap between model λ and the best model λmin. The set of acceptable models46

is
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∧η, ε = λ : ℙ(gapMSEλ
out ≤ ησ2) ≥ ε . (20)

According to (20), any model with at least ε ∈ [0, 1] probability of matching the accuracy of

the MSEλ
out‐optimal model »min within ησ2 is considered acceptable. The probability ℙ is

computed with respect to the out-of-sample predictive distributions in (17) under model (1)–

(2) and estimated using posterior predictive simulations. The set of acceptable models is

nonempty, since λmin ∈ Λη,ε for all η ≥ 0 and ε ∈ [0, 1]. More useful, (20) gathers the set of

models which demonstrate near-optimal performance—some of which may be more simple

or sparse than λmin.

The acceptable set of models in (20) is equivalently derived using posterior predictive

intervals46: λ ∈ Λη,ε if and only if there exists a (1 – ε) lower posterior predictive credible

interval for gapMSEλ
out /σ2 that includes η. Naturally, if the predictive interval for the increase

in out-of-sample MSE excludes ε, such as ε = 0, then this choice of λ is deemed

unacceptable and omitted from Λη,ε. From this interpretation, (20) is a Bayesian analog of

“cross-validating with confidence” (CVC).47 CVC computes a confidence set of acceptable

models by testing the null hypothesis that each λ produces the best predictive risk; if the null

is rejected, then λ is excluded from the confidence set. By comparison, the proposed

Bayesian approach leverages the posterior predictive distribution—automatically available

from the linear model (1)–(2) with no additional assumptions—which precludes the need for

computationally-intensive bootstrapping procedures, and incorporates a margin η ≥ 0 to

relax the accuracy requirements and permit simpler models.

From the set of acceptable models, we identify the simplest, or most penalized model:

λη, ε = max ∧ηε . (21)

Both λη,ε and Λη,ε depend on the complexity penalty 𝒫 and the solution path. For a

sparsity-inducing penalty 𝒫, λη,ε is the smallest model along the λ path that belongs to the

set of acceptable models Λη,ε. Selection via (21) is a Bayesian analog of the one-standard-

error rule48 which, instead of selecting the best model, selects the simplest model that is

close enough to the best model. The intuition behind (21) is the same, but instead

incorporates uncertainty quantification through the posterior predictive distribution.

3.5 | Approximations for fast out-of-sample validation

The construction of the set of acceptable models Λη,ε hinges on the ability to estimate out-

of-sample quantities, namely, (16) and (17). Re-fitting model (1)–(2) for each training set k
= 1, …, K is impractical and may be computationally infeasible for moderate to large sample

sizes n. We design an alternative approximation based on importance sampling that only

requires a single model fit of (1)–(2) using the full dataset—which is necessary for standard

posterior inference.

To proceed, we begin by simplifying the out-of-sample predictive expected loss in (16).

Following the arguments in Section 3.2 – 3.3, it is straightforward to show
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δ λ

−ℐk = arg min
δ

n − ℐk
−1

j ∉ ℐk

(yλ
−ℐk − x j′δ)

2
+ λ𝒫(δ)

−ℐk
(22)

where y j
−ℐk = 𝔼

y |y
−ℐk

y j = x j′β
−ℐk is the out-of-sample point prediction at x j,

β
−ℐk = 𝔼

θ|y
−ℐk

β is the posterior expectation of β conditional only on the training data

y
−ℐk, and similarly 𝒫 δ

−ℐk = 𝔼
θ|y

−ℐk
𝒫 δ, θ  is the posterior expectation of (9)

conditional only on y
−ℐk. Given estimators of β

−ℐk and 𝒫 δ
−ℐk, the out-of-sample

predictive expected loss (16) is equivalent to a penalized least squares problem (22), which

has the same form as the in-sample version (6) or (11). Importantly, (22) is efficiently solved

for many choices of complexity penalty 𝒫, including the Bayesian adaptive lasso penalty

(9).

Building upon the representation in (22), we proceed to approximate the core quantities

needed for out-of-sample evaluation: β
−ℐk = 𝔼

θ|y
−ℐk

β, 𝒫 δ
−ℐk = 𝔼

θ|y
−ℐk

𝒫 δ, θ , and

y i
−ℐk ∼ p y i|y

−ℐk  for i ∈ ℐk. All approximations are constructed using the same importance

sampling framework. For the regression coefficients, we approximate

β
−ℐk = βp(β | y−ℐk)dβ = βp(θ | y−ℐk)dθ ≈

s = 1

S
βswk

s (23)

where θ = (β, σ2) are model parameters, βs
s = 1
S

 are drawn from a proposal distribution,

and ωk
s

s = 1
S

 are the importance weights. For the proposal distribution, we select the full

posterior, p θ|y = p θ|y
−ℐk, y

ℐk , which will produce an accurate approximation for

p θ|y
−ℐk  unless the testing points y

ℐk are highly influential for the posterior of θ. For this

proposal, the importance weights simplify to

wk
s∝1/ p(yℐk

|θs) =
i ∈ ℐk

1/ p(yi |θ
s), θs p(θ | y)

(24)

under the conditional independence assumption accompanying model (1). The importance

weights in (24) constitute an out-of-sample adjustment: relative to (23), the in-sample

posterior expectation is typically estimated by β = S−1
s = 1
S βs.
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The approximation for the penalty proceeds similarly: 𝒫 δ
−ℐk ≈

s = 1

S
𝒫 δ, θs wk

s, which

further simplifies for the Bayesian adaptive lasso to 𝒫 δ
−ℐk ≈

j = 1

p
ω j|δ j| with

ω j =
s = 1
S wk

s |β j
s|−γ

. Importantly, the out-of-sample adjustment from (24) requires only (i)

the posterior draws θs ∼ p(θ|y) and (ii) computation of the Gaussian likelihood (1), and

therefore incurs minimal additional computational costs. The use of the full posterior

distribution as the proposal for an out-of-sample predictive distribution has been employed

successfully for Bayesian model selection49 and evaluating predictive distributions.50,46

To obtain draws from the out-of-sample predictive distribution y i
−ℐk ∼ p y i|y

−ℐk , we

directly build upon the importance weights constructed in (24). The out-of-sample predictive

distribution has the same form as the (in-sample) predictive distribution (3),

p y i|y
−ℐk = ∫ p y i |θ p θ | y

−ℐk dθ, so draws from this distribution can be generated by

iteratively sampling θs ∼ p θ | y
−ℐk  and y i

s ∼ p y i |θ
s . Again using the full posterior p(θ|y) as

the proposal, we generate draws from the out-of-sample predictive distribution p y i|y
−ℐk

using sampling importance resampling (SIR) based on the importance weights in (24).

Specifically, let S ⪡ S denote the number of SIR simulations. Given samples {θs}s = 1
S

 from

the full posterior, we iterate the following algorithm: (i) sample s* ∈ {1, …, S} with

associated probabilities {wk
1, …, wk

S}; (ii) sample y i
s* ∼ p y i |θ

s*  from the likelihood (1); (iii)

discard s* and wk
s* from the set of indices and weights; (iv) repeat for S  iterations. The final

sample {y i
s*}

s* = 1
S  is distributed p y i|y

−ℐk . Sampling without replacement from step (iii)

helps mitigate the effects of excessively large weights: when wk
s* is large, the same value y i

s*

may be sampled many times and can produce a degenerate sample of {y i
s*}

s* = 1
S .

Using importance sampling and SIR, the out-of-sample predictive evaluations in (17)—

including uncertainty quantification via the predictive MSE—are rapidly computable using

only (i) posterior (predictive) simulations under the linear model (1)–(2), (ii) pointwise

likelihood evaluations for the Gaussian distribution (1), and (iii) the solution to the penalized

least square problem (22). For completeness, the algorithm is presented in Algorithm 1.

Note that steps 2(d) and 3 are the only components that depend on the complexity level λ.

Therefore, the remaining steps represent a one-time cost for use with all approximating

models or penalties. Similarly, only step 3 depends on the choice of metric: alternatives to

MSE, such as mean absolute error, may be included at this stage without affecting the

broader algorithm. For the Bayesian adaptive lasso penalty (9), the optimization in step 2(d)

is done using the glmnet34 package in R. In the event of large importance weights, the out-
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of-sample posterior expectations β
−ℐk and ω j instead may be estimated using the sample

means from the SIR draws, i.e., β
−ℐk ≈ S −1

s* = 1

S
βs* and ω j ≈ S −1

s* = 1
S |β j

s*|−γ
. In

particular, sampling without replacement eliminates the effect of excessively large

importance weights. As a last resort, highly influential test data y
ℐk can be evaluated out-of-

sample without approximation, e.g., by re-fitting the linear model (1)–(2) on the training

data y
−ℐk.

Algorithm 1

Out-of-sample MSE and predictive MSE.

1. Obtain posterior samples θs
s = 1
S ∼ p(θ | y);

2. For each holdout set k = 1, …, K:

 (a) Compute the (log) weights, log Wk
s =c − log p(yℐk

|θs) = −
i ∈ ℐk

log p(yi |θ
s) using the

(Gaussian) log-likelihood in (1), where =c  denotes equality up to a constant;

 (b) Estimate β
−ℐk ≈

s = 1

S
βsWk

s
 and ω j =

s = 1
S Wk

s | β j
s|

−γ
;

 (c) Set y j
−ℐk = x j′β

−ℐk for j ∉ ℐk;

 (d) Compute δλ
−ℐk

 by solving (22) for each λ;

 (e) Sample y i
s *

s * = 1
S

 from p(y i | y
−ℐk) using the SIR algorithm for i ∈ ℐk;

3. Compute MSEλ
out

 using δλ
−ℐk

 and MSEλ
out

 using δλ
−Ik

 and y i
s *

s * = 1
S

 in (17).

Perhaps most interesting, the proposed analysis is conducted entirely with out-of-sample

objectives using in-sample computing. In particular, the evaluation metrics (17) and the set

of acceptable models Λη,ε—as well as the best model λmin and the simplest acceptable

model λη,ε—are all constructed from out-of-sample quantities. At the same time, all of the

necessary computations are performed using in-sample quantities, namely, the posterior

samples under the linear model (1)–(2) coupled with the importance sampling

approximations described above. Consequently, the proposed approach reaps the benefits of

out-of-sample predictive analysis with minimal additional computational burden relative to

the original posterior sampler.

4 | RESULTS

4.1 | Simulation Study

The proposed techniques are evaluated using simulated data. We focus on three key

properties: (i) variable and model selection capabilities, (ii) point prediction accuracy of the
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response variable, and (iii) point estimation accuracy of the regression coefficients. First, we

investigate the ability of the acceptable model sets Λη,ε to identify the correct subset of

active (nonzero) predictors. Naturally, this performance depends on the choice of margin η
and the probability level ε, as well as other features of the simulation design such as the

sample size and the strength of the signal. Next, we study the point prediction accuracy of

the proposed decision analytic approach. The decision analysis optimizes for point

prediction under a sparsity or complexity constraint. Thus, it is important to assess whether

there are empirical gains in accuracy relative to the full Bayesian model, among other

competitors. The estimation accuracy results are similar to the prediction results and are

provided in the Appendix.

The simulated data are constructed to match the general features of the real dataset in

Section 4.2, including the dimensionality of the data, the signal-to-noise ratio, and the

correlations, discreteness, and interactions among the predictor variables. We construct p − 5

main effects and 5 interactions. First, we simulate continuous predictors xi,j from marginal

standard normal distributions with persistent correlation among predictors, Cor(xi,j, xi,j′ =

(0.75)|j−j′|, and randomly permute the columns. Next, discrete covariates are included by

selecting 25% of these p − 5 covariates at random and binarizing at zero, i.e., among the

selected predictors j we update xi,j ← 1{xi,j ≥ 0} for all i = 1, …, n. Matching the pre-

processing steps in Section 4.2, the continuous predictors are centered and scaled to have

sample mean zero and sample standard deviation 0.5, which helps align the continuous and

binary variables on similar scales.51 The 5 interaction effects are then generated via

multiplication. In particular, we include 7 signals among the p – 5 main effects and 2 signals

among the 5 interactions. The main effect signals are β j* = ± 2, while the interactions are

smaller, β j* = ± 1.5, with the signs distributed evenly. Each active interaction corresponds to

at least one active main effect (weak hierarchy), while inactive interactions arise from both

active and inactive main effects. The intercept β0* = 1 is included and fixed throughout.

Letting yi* = xi′β*, we generate response variables yi = yi* + ϵi with independent errors

ϵi ∼ N(0, σtrue
2 ), where σtrue

2 = var(yi*)/SNR and SNR is the signal-to-noise ratio. We consider

the designs (n, p) ∈ {(10,000, 100), (1,000, 100), (200, 500)} with weak (SNR = 0.5) and

strong (SNR = 3) signals. The randomization steps are repeated for each of 500 simulations.

For each simulated dataset, we implement the Bayesian linear regression model (1)–(2) with

a horseshoe prior.23 Samples from the posterior and posterior predictive distributions are

obtained using the elliptical slice sampler in the R package bayeslm.30 We save S = 10,000

MCMC samples θs
s = 1
S ∼ p(θ | y) after discarding 5,000 initial iterations as a burnin. Using

these posterior samples, we solve (10) for δλ across a path of λ values using the glmnet34

package in R. The out-of-sample evaluations from Section 3.4 are applied to this path of λ
values, specifically using K = 10-fold cross-validation and S = S/ = 5,000 SIR samples. For

any choice of η and ε, we subsequently construct the set of acceptable models Λη,ε.

Among competing methods, we include both Bayesian and frequentist alternatives. To

represent the full Bayesian linear model, we compute the posterior means of β, which are
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used in both estimation and prediction, and select variables based on whether the 95%

highest posterior density interval for each βj excludes zero. For frequentist methods, we

include the adaptive lasso43 with ordinary least squares weights; for p > n, we use the (non-

adaptive) lasso.33 The tuning parameter is selected using the one-standard-error rule48 from

10-fold cross-validation and implemented using the glmnet34 package in R. In addition, we

include classical or exhaustive subset selection (after pre-screening to the first 30 predictors

that enter the adaptive lasso model) using the leaps52 package in R with the final subset

determined by Mallow’s Cp. Lastly, we include minimax convex penalization (MCP)53

implemented using ncvreg54 with the tuning parameter selected using 10-fold cross-

validation.

Ideally, the set of acceptable models should include the true model, i.e., the subset of active

variables { j: β j* ≠ 0}. This task necessitates joint selection across all predictors, and is highly

demanding: incorrect labeling of any one variable as active or inactive leads to an incorrect

model. Since the set of acceptable models is nested by (ε, η)—increasing ε ∈ [0, 1] or

decreasing η ≥ 0 shrinks the acceptable set—it is of interest to determine the largest values

of ε and smallest values of η for which the true model is acceptable. For any model indexed

by λ, consider the following constituent of (20):

εmax(λ) = ℙ(gapMSEλ
out ≤ ησ2) . (25)

Equivalently, εmax(λ) is the maximum probability level ε for which λ belongs to the set of

acceptable models with margin η. By design, for any smaller probability level ε′ ≤ εmax(λ)

—which provides more leniency for inaccuracy—λ remains acceptable, λ ∈ Λη,ε′. We are

interested in εmax(λ*), where λ* denotes the true model along the λ path. If the true model

is not along the λ path, we set εmax(λ*) = 0. This definition is important: it interrogates the

ability of the entire procedure—including the elicitation of the λ path—to capture the true

model, rather than merely checking whether the true model belongs to the acceptable set.

Consequently, the true model must be both discovered and evaluated correctly to achieve

εmax(λ*) > 0.

For each simulated dataset, we compute εmax(λ*) for a grid of η values. The results are

presented in Figure 1 for SNR = 3. For the larger sample sizes (n, p) = (10,000, 100) and (n,
p) = (1,000, 100), there is rapid convergence to εmax(λ*) = 1, while ε = 0.05 is capable of

capturing the true model often even without a margin η = 0. The high-dimensional case (n,
p) = (200, 500) is more challenging: convergence to εmax(λ*) = 1 does not occur for a

majority of simulations. The reason is that the λ path in this p > n setting often does not

include the true model, and for those simulations εmax(λ*) = 0. As a result, increasing the

margin η cannot admit the true model in the set of acceptable models. Importantly, these

results suggest that the set of acceptable models produced by a small probability level ε,

such as 0.05, and a small margin, including η = 0, can adequately capture the true model.

However, the quality of the λ path of models is a limiting factor.

By design, the proposed decision analysis produces coefficient estimates that optimize for

point prediction accuracy. Therefore, it is relevant and interesting to evaluate predictions of
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yi*. Informed by Figure 1, we consider the smallest acceptable model λη,ε with η = 0 and ε =

0.05, and compare the predictions and estimates to the aforementioned competitors. In

addition to root mean squared errors (RMSEs) for y*i, we compute the median size of the

selected subsets across simulations for each method. The results are displayed in Figure 2

across various simulation designs. Most notably, the proposed out-of-sample approach is

highly competitive and offers significant improvements relative to the full Bayesian model

(i.e., the posterior mean), classical subset selection, and the adaptive lasso in nearly all cases.

The distinction between the in-sample and out-of-sample version is most noticeable when

the SNR is small, which favors the out-of-sample approach. The main competitor is MCP,

which offers predictive accuracy yet tends to select too many variables. The most

challenging setting is p > n with low SNR: since λη,ε selects as few variables as needed to

satisfy (20), the weak signal results in overly sparse models. Decreasing λ includes

additional variables and, when λ = 0, returns the posterior mean β — which is the best

predictor in this setting. Our analysis in Section 4.2 considers the λ path from this broader

perspective (see Figure 3).

For completeness, we also assess marginal selection properties using true positive rates and

true negative rates averaged across all predictors and simulations. The results are in Table 1.

In general, the out-of-sample approach offers competitive performance that is similar to the

adaptive lasso and MCP, but far superior to classical subset selection which tends to select

too many variables. Most notably, the primary Bayesian competitor—selection based on

HPD intervals—is excessively conservative and fails to identify many of the active variables.

From a Bayesian perspective, joint variable selection using decision analysis offers clear

improvements relative to this popular marginal selection technique.

The Appendix includes RMSEs for β* (Figure B.1) and a sensitivity analysis on the choice

of prior for β. Specifically, Figure B.2 replicates the results in Figure 2 under the Bayesian

lasso prior22 instead of the horseshoe prior. The well-known deficiencies of the Bayesian

lasso55 propagate to the decision analysis, yet the proposed approach maintains large

advantages relative to the full Bayesian model and some frequentist competitors.

4.2 | Analysis of end-of-grade testing data

To identify joint collections of variables with predictive capabilities for educational

outcomes, we apply the proposed methodology to end-of-grade (EOG) reading and

mathematics scores. The EOG reading and mathematics scores were analyzed separately

using the same sample of n = 16,839 students and the same set of p = 37 covariates

including 12 interactions. The continuous predictors are centered and scaled to have sample

mean zero and sample standard deviation 0.5—prior to computing interactions—which

better aligns the continuous and binary variables on comparable scales.51 Posterior inference

from the Bayesian linear model (1)–(2) with a horseshoe prior23 was obtained using the

bayeslm30 package in R. We save S = 10,000 MCMC samples {θs}s = 1
S ∼ p(θ | y) after

discarding 5,000 initial iterations as a burnin and thinning to every 10th iteration for more

satisfactory effective sample sizes. Trace plots confirm convergence and good mixing of the

MCMC samples. As in Section 4.1, we solve (10) for δλ across a path of λ values using the
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R package glmnet,34 and apply the out-of-sample evaluations from Section 3.4 to this path

of λ values using K = 10-fold cross-validation and S = s/ = 5,000 SIR samples.

To quantify how particular variables or sets of variables contribute to the predictive ability of

the model, we present the predictive MSEs for both EOG reading and EOG math scores in

Figure 3 with accompanying variable selection details in Table 2. Specifically, we display

posterior predictive means and 95% intervals for gapMSEλ
out from (19), which is the gap in

predictive accuracy between each model along the λ path and the best model according to

out-of-sample MSE. Figure 3 serves a different purpose from Figure 1: Figure 3 illustrates

the predictive ability across sparsity levels λ, while Figure 1 explores the ability to select the

“true” model as (η, ε) vary. Although λ and (η, ε) are linked, the selection capabilities

(Figure 1) are distinct from relative predictive performance (Figure 3).

For both EOG reading and math scores, λmin is the full model, which is unhelpful for

selecting variables. However, the predictive uncertainty quantification provides an avenue

for selection: by considering models with a nonnegligble probability of improving upon the

best model λmin, we obtain a set acceptable models with far fewer variables. The smallest

acceptable model λη,ε for η = 0 and ε = 0.05 has 21 and 22 covariates for EOG reading and

EOG math scores, respectively, and in each case ensures a probability of at least 5% that this

sparse model is superior to the full model for out-of-sample prediction. Naturally, if we

admit a margin η > 0, we obtain even smaller acceptable models: for η less than 0.4% of the

error variance σ2, the smallest acceptable models for both EOG reading and math scores

have fewer than 15 variables. Figure 3 clearly illustrates that small models with fewer than

10 variables are noncompetitive, while the gains beyond around 25 variables are marginal.

To extract interpretable conclusions from Figure 3, we report the selected variables

corresponding to these sparse models in Table 2. Variables are reported up to the smallest

acceptable model for zero margin η = 0 and probability level ε = 0.05. We characterize the

incremental gains offered by additional sets of predictors—expressed visually by the vertical

jumps in Figure 3—by considering the effect of varying the margin η. For any fixed

probability level, say ε = 0.05, each model along the λ path will be acceptable at some

choice of margin η, which we denote by ηmin(λ) = min{η : λ ∈ Λη,0.05}. For any larger η′
> ηmin(λ), this model λ ∈ Λη′,0.05 remains acceptable. These values ηmin(λ) are

interpretable: they indicate a best case scenario in out-of-sample predictive performance (at

the ε = 0.05 probability level) for each model λ relative to the best model λmin. In

particular, we are interested in large decreases in ηmin(λ) that occur via addition of a small

number of variables. These occurrences are indicated by vertical black lines in Figure 3 and

demarcated in Table 2.

The results from Table 2 indicate substantial overlap in selected variables between EOG

reading and EOG math scores. In addition, many of the basic demographic, social, and

environmental variables are confirmed by adaptive lasso selection and (marginal) selection

via the 95% posterior credible intervals that exclude zero. These variables include maternal

characteristics (education level, ethnicity, age, and marital status), environmental exposures

(temperature, PM2.5, blood lead level), and social conditions (economically disadvantaged,

neighborhood deprivation). The selected environmental exposures and social conditions
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cover a broad temporal spectrum, including the gestational period, at the time of birth,

chronic exposures, and at the time of the exam.

The proposed approach selects additional variables that offer clear and quantifiable

improvements in prediction accuracy. Perhaps most notably, we identify evidence for social
and environmental interactions that predict EOG reading and math scores—even after

adjusting for a multitude of other effects. For both EOG reading and math scores, we find

that chronic PM2.5 interacts with racial isolation at the time of the exam. EOG math scores

are additionally predicted by interactions between blood lead level and neighborhood

deprivation. Given the conservative nature of selection via credible intervals (see Table 1), it

is unsurprising that these variables are undetected by that approach. Yet the evidence for

interactions is nontrivial: these effects are present for ηmin(λ) values as large as 0.307% of

the error variance σ2 for EOG math scores, and of course persist for η = 0. While η = 0 is a

strict criterion, it is necessary to provide the assurance that the smallest acceptable model

λ0,0.05 is not definitively suboptimal relative to larger models. Cumulatively, these results

suggest that a full predictive picture of EOG test scores requires simultaneous consideration

of the exam topic; demographic, socioeconomic, and environmental variables; and

interactions between environmental exposures and social conditions.

5 | DISCUSSION

We have introduced a comprehensive and decision-analytic approach for Bayesian linear

variable selection, which is designed to advance the state-of-the-art in exposure science. By

representing variable selection as a decision problem, we are able to identify joint and

optimal subsets of explanatory variables. The decision problem balances predictive accuracy

with model complexity through a penalized loss function, and uniquely incorporates model

parameters in the complexity penalty to improve selection and estimation capabilities. Out-

of-sample predictive evaluations are conducted for each linear subset of variables, which

inherit a posterior predictive distribution from the underlying Bayesian regression model.

Using this out-of-sample predictive uncertainty quantification, we identify not only the best
subset for prediction, but also those subsets that are nearly optimal with some nonnegligible

probability. The collection of these acceptable models offers insights into the covariates

needed—which and how many—for sufficiently accurate prediction. Comparisons on

simulated datasets demonstrate the excellent variable selection, estimation, and prediction

capabilities of the proposed approach.

Using population data from North Carolina, our analysis brings new understanding to the

cumulative and interactive impact of social and environmental stressors on the educational

growth of children as measured by their 4th grade end-of-grade exam scores in reading and

mathematics. The selected variables span a broad temporal spectrum, including pre- and

post-natal and throughout the life of the child. This more complete predictive picture of

child educational outcomes highlights the critical roles of demographics and other

information at birth, social stressors, environmental exposures, and key social-environmental

interactions.
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The next stage in our methodological development is to extend the decision analysis

selection approach for (i) all pairwise interactions and (ii) nonlinear models. While our focus

is restricted to interactions between social stressors and environmental exposures, other

analyses may require consideration of the complete collection of pairwise interactions.56,57

The proposed model-based penalization strategy (8) offers a path forward and welcomes

hierarchical or interaction-sparsity penalties58—as well as the accompanying estimation

algorithms—into our decision analysis framework. For the nonlinear case, both the Bayesian

linear model (1)–(2) and the formulation of the decision problem (4) will require

modifications to incorporate nonlinearity. In particular, the abundance of nonlinear models

demands careful consideration of the appropriate model specification, as well as the ability

to evaluate the out-of-sample predictive capability of each nonlinear model efficiently. The

decision analysis framework—in conjunction with the proposed fast out-of-sample

approximation algorithms and accompanying mechanisms to elicit acceptable models—

builds upon both Bayesian models and non-Bayesian penalized regression techniques, and

consequently provides a promising path to achieve these goals.
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APPENDIX

A ADDITIONAL DETAILS ON THE DATA

The common restrictions are the following: singletons only (no plural births); no congenital

anomalies; maternal age is 15-44; birth weight is at least 400g; gestational age is 24-42

weeks; mother’s race/ethnicity is non-Hispanic White, non-Hispanic Black, or Hispanic;

birth order is 1-4. One acute PM2.5 outlier (50% larger than all other values) was removed.

We estimated PM2.5 exposures during pregnancy using ambient monitoring data from the

nearest PM2.5 monitor within 30km from a mother’s residence at time of the child’s birth.

Air pollution exposure during pregnancy was calculated based on residence, birth date, and

length of gestation. Specifically, the time period of exposure for each birth was calculated

using the date of birth and the weeks of gestation at delivery, as recorded in the NCDBR.

Using 24-hour average ambient PM2.5 concentrations, we calculated average exposure for

the first (1-13 weeks), second (14-26 weeks weeks), and third (27 weeks-birth) trimester.

We estimated chronic pre-test PM2.5 exposure using downscaler-reported PM2.5

concentrations at the census tract level for the census tract in which the child resided at time

of EOG testing. Chronic pre-test PM2.5 exposure was estimated based on the mean 24-hour

average PM2.5 concentration during the 12 months prior to the test date. The exact test date
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is not recorded in the EOG dataset, but the test month (May or June) is available. Thus, a

mean of 24-hour average PM2.5 concentration was generated for the 12 months prior to the

first of May or June for each year of EOG data.

We estimated acute pre-test PM2.5 exposure using downscaler-reported PM2.5 concentrations

at the census tract level for the census tract in which the child resided at time of testing.

Acute pre-test PM2.5 exposure was estimated based on the daily 24-hour average PM2.5

concentration during the 30 days prior to the test date. Because only the test month is

recorded in the EOG dataset, the acute exposure estimate is based on the mean 24-hour

average PM2.5 concentration in the 30 days prior to the first of May or first of June for each

year of EOG data.

Since the EOG testing dataset spans multiple years (2010-2012), the reading and math

scores were standardized within each year prior to analysis.

Economically disadvantaged students are indicated by participation in the free/reduced price

lunch program (binary variable, 1 = participation in the program).

Air quality during gestation, life of the child, and at time of testing

PM25_T1 PM2.5 24 hour – Average of gestation weeks 1-13 (trimester 1) – ugm3

PM25_T2 PM2.5 24 hour – Average of gestation weeks 14-26 (trimester 2) – ugm3

PM25_T3 PM2.5 24 hour – Average of gestation weeks 27-delivery (trimester 3) – ugm3

Temp_T1 Temperature – Average of gestation weeks 1-13 (trimester 1) – Temperature

Temp_T2 Temperature – Average of gestation weeks 14-26 (trimester 2) – Temperature

Temp_T3 Temperature – Average of gestation weeks 27-delivery (trimester 3) – Temperature

PM25_chronic PM2.5 Mean of 1 year prior to June 1 of the year of the EOG test

PM25_acute PM2.5 Mean of 30 days prior to May 1 of the year of the EOG test

Birth information

BWTpct Birthweight Percentile (based on clinical estimate of gestation)

WeeksGest Weeks Gestation, Clinical estimate

mEdu Mother’s Education Group at time of birth (NoHS = No high school diploma, HS = High school
diploma, College = College diploma)

mRace Mother’s Race/Ethnicity Group (White = White, NH Black = Non-Hispanic Black, Hispanic =
Hispanic)

mAge Mother’s Age at time of birth

Male Male Infant? (1 = Yes)

NotMarried Not Married at time of birth? (1 = Yes)

Smoker Mother Smoked? (1 = Yes)

PTB Pre-Term Birth (<37 wks, Clinical)? (1 = Yes)

Education / EOG test information

EOG_Reading
Reading scale score for chronologically first EOG test taken (4th grade); centered and scaled by year
(2010, 2011, 2012)

EOG_Math Math scale score for chronologically first EOG test taken (4th grade); centered and scaled by year
(2010, 2011, 2012)
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Air quality during gestation, life of the child, and at time of testing

Blood lead level information

Blood_lead Blood Lead Level (micrograms per deciliter); maximum value if there are multiple tests

Social / Economic factors

NDI_birth Neighborhood Deprivation Index, at Birth

NDI_test Neighborhood Deprivation Index, at time of EOG test

RI_birth Residential Isolation for non-Hispanic Black, at Birth

RI_test Residential Isolation for non-Hispanic Black, at time of EOG Test

EconDisadv Participation in the free/reduced price lunch program (1 = Yes)

B ADDITIONAL SIMULATION RESULTS

FIGURE B.1.
Root mean squared errors (boxplots) for β* with median subset sizes (annotations) for high

(top) and low (bottom) SNR with varying n, p. The proposed out-of-sample decision

analytic approach provides highly competitive point estimates with fewer covariates than

competing methods, including large improvements over the full Bayesian model and

frequentist alternatives. Including the intercept, the true model size is 11.
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FIGURE B.2.
Using a Laplace prior for β: root mean squared errors (boxplots) for yi* = xi′β* with median

subset sizes (annotations) for high (top) and low (bottom) SNR with varying n, p. The

decision analytic approach cannot overcome the shortcomings of the Bayesian lasso prior,

but nonetheless maintains large advantages relative to the posterior mean in most cases.

Results (not shown) for estimation of β* are similar.
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FIGURE 1.
The maximum ε-level at which the true model is included for each η-margin (as percent of

σ2). Left to right: (n, p) ∈ {(10,000, 100), (1,000, 100), (200, 500)} for SNR = 3. The

horizontal line indicates ε = 0.05. The points (x-marks) are sample means and the gray bars

are 90% intervals of εmax(λ*) computed across 500 simulations.
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FIGURE 2.
Root mean squared errors (boxplots) for yi* = xi′β* with median subset sizes (annotations) for

high (top) and low (bottom) SNR with varying n, p. The proposed out-of-sample decision

analytic approach provides highly competitive point predictions with fewer covariates than

competing methods, including large improvements over the full Bayesian model and

frequentist alternatives. Including the intercept, the true model size is 11.
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FIGURE 3.
The difference in out-of-sample predictive MSEs between each model along the λ path and

the best λmin model for EOG reading scores (left) and EOG math scores (right) as a percent

of σ2. Expectations (triangles) and 95% intervals (gray bars) from the predictive distribution

are included along with the out-of-sample MSEs (x-marks). The vertical black lines denote

the ηmin(λ) values summarized in Table 2. The solid gray line denotes λ0,0.05 and the dotted

gray line denotes λmin.
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TABLE 1

True positive rates (TPR) and true negative rates (TNR) for synthetic data.

n = 10,000, p = 100, SNR = 0.5

adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 1.00 1.00 1.00 1.00 1.00 1.00

TNR 1.00 0.99 0.86 1.00 1.00 0.99

n = 10,000, p = 100, SNR = 3

adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 1.00 1.00 1.00 1.00 1.00 1.00

TNR 1.00 0.99 1.00 1.00 1.00 0.99

n = 1,000, p = 100, SNR = 0.5

adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 0.90 0.92 0.95 0.77 0.81 0.89

TNR 0.99 0.96 0.86 1.00 1.00 0.99

n = 1,000, p = 100, SNR = 3

adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 1.00 1.00 1.00 1.00 1.00 1.00

TNR 1.00 0.98 0.86 1.00 1.00 0.99

n = 200, p = 500, SNR = 0.5

adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 0.42 0.50 0.54 0.06 0.24 0.30

TNR 0.99 0.98 0.97 1.00 1.00 1.00

n = 200, p = 500, SNR = 3

adaptive lasso MCP subset selection HPD interval proposed(in) proposed(out)

TPR 0.93 0.85 0.93 0.67 0.77 0.79

TNR 0.98 0.99 0.97 1.00 1.00 1.00
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TABLE 2

Variables selected (in order and incrementally) for EOG Reading (left) and Math (right) scores. The margin

ηmin(λ) expresses the difference in predictive MSE between the best model λmin and the noted subset of

variables (in addition to the preceding variables). As the margin decreases to zero, more variables are required

to achieve optimal predictive performance. Variables selected by adaptive lasso (*) or credible intervals that

exclude zero (+) are also denoted. The indicated groupings of ηmin(λ) are marked in Figure 3.

EOG Reading Scores EOG Math Scores

Margin ηmin(λ) Variable Name Margin ηmin(λ) Variable Name

2.76% of σ2

(Intercept)*+

Temp_T2*+

mEdu:College*+

mRace:NH
Black*+

EconDisadv*+

2.6% of σ2

(Intercept)*+

mEdu:College*+

mRace:NH
Black*+

EconDisadv*+

0.4% of σ2

PM25_T1*+

mAge*+

mEdu:HS*+

Male*+

NDI_test*+

0.307% of σ2

Temp_T2*+

Temp_T3*+

PM25_T1*+

BWTpct*+

mEdu:HS*+

mRace:Hispanic*+

NotMarried+

PM25:chronic
x RI_test*+

0.005% of σ2

Temp_T3*+

PM25_chronic
BWTpct+

WeeksGest+

NotMarried+

PTB+

Smoker
Blood_lead+

PM25:chronic
x RI_test

0.013% of σ2

PM25_T3+

mAge+

PM25:chronic
WeeksGest+

Smoker+

Blood_lead+

NDI_test

η = 0 mRace:Hispanic
RI_test η = 0

PTB
RI_birth
Blood_lead x
NDI_birth
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