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Even though genetic perturbations and mutations are important for the development of myeloid malignancies, the effects of an
inflammatory microenvironment are a critical modulator of carcinogenesis. Activation of the innate immune system through
various ligands and signaling pathways is an important driver of myelodysplastic syndromes (MDS) and acute myeloid leukemia
(AML). The DAMPs, or alarmins, which activate the inflammasome pathway via the TLR4/NLR signaling cascade causes the lytic cell
death of hematopoietic stem and progenitor cells (HSPCs), ineffective hematopoiesis, and β-catenin-induced proliferation of cancer
cells, leading to the development of MDS/AML phenotype. It is also associated with other myeloid malignancies and involved in the
pathogenesis of associated cytopenias. Ongoing research suggests the interplay of inflammasome mediators with immune
modulators and transcription factors to have a significant role in the development of myeloid diseases, and possibly therapy
resistance. This review discusses the role and importance of inflammasomes and immune pathways in myeloid malignancies,
particularly MDS/AML, to better understand the disease pathophysiology and decipher the scope of therapeutic interventions.
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INTRODUCTION
Hematopoiesis is the process of blood cell formation that occurs
during embryonic development and across adulthood. It is a
complex multifactorial process that operates in response to stimuli
from cytokines and transcription factors under stringent regula-
tory checks [1, 2]. However, perturbations owing to genetic or
acquired events that affect any step of the pathway can trigger
the development of hematologic disorders, including cancers
[3–5]. In particular, uncontrolled proliferation and expansion of
abnormal myeloid progenitor cells lead to the development of
myeloid malignancies including myelodysplastic syndromes
(MDS), myeloproliferative neoplasms (MPNs), and acute myeloid
leukemia (AML). Depending on factors such as the subtype of a
proliferative cell, response to therapeutics, the necessity for
transplantation, etc., patients are categorized into different groups
of severity, with AML being the most aggressive with poor long-
term survival outcomes. A clinical subtype of AML, secondary AML
(sAML), defined as AML occurring after an antecedent myeloid
disease, has previously been associated with inferior outcomes
compared with de novo AML [6, 7].
Chromosomal abnormalities and gene mutations are known to

have strong associations with myeloid malignancies. One-third of
AML patients harbor mutations in the FLT3 gene. Despite the
nature of mutation-internal tandem duplication (FLT3-ITD) or
point mutation (FLT3-TKD), both causes a constitutive activation of
tyrosine kinase, leading to proliferation and survival of AML.
Patients with FLT3 mutations show poor prognosis, increased risk

of relapse, and lower OS [8, 9]. Despite the recent FDA approval of
several active agents in myeloid malignancies, including in high-
risk MDS and AML, patients with these aggressive diseases
eventually relapse unless bridged to an allogeneic stem cell
transplant. There is a large unmet need for the development of
newer therapeutic agents and rational combinations of
these drugs.
Enhanced expression of proinflammatory cytokines such as

TNF-α, IL-6, TGF-β, IL-8, and IL-1 in bone marrow (BM) of patients
are known to be responsible for ineffective hematopoiesis in MDS
[10–14]. The role of the innate immune system in driving these
inflammatory signals has now been recognized. The innate
immune system is thought to act as a bridge in mediating the
effect of the mutations in myeloid progenitor cells to the
development of the MDS phenotype with the help of accessory
effector proteins [15–17]. Recent studies have emphasized the
importance of alarmins to trigger BM expansion of hematopoietic
inhibitory myeloid-derived suppressor cells (MDSCs) to activate
the inflammasome pathway in MDS [18]. This, in turn, activates a
caspase-1 dependent, novel, pro-inflammatory, pyroptosis-
mediated lytic cell death in the BM, resulting in the death of
healthy hematopoietic stem and progenitor cells (HSPCs) [19]. This
pathway is now recognized as an important driver for the
development of the MDS phenotype.
Multiple reports have extensively discussed the different classes

of myeloid malignancies and mechanisms associated with the
pathophysiology of these diseases [20]. This review focuses on
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highlighting the role of immune dysregulation, and in particular,
inflammasomes in the pathogenesis of myeloid malignancies,
especially MDS/AML, while touching upon the emergence of
promising therapeutic interventions from these pathways.

THE 3I PARADIGM IN MYELOID MALIGNANCIES- IMMUNE
SYSTEM, INFLAMMATION, AND INFLAMMASOMES
The role of immune players and inflammation in MDS/AML has
been widely studied. While increased apoptosis has been
implicated to cause ineffective hematopoiesis in MDS, the
cytokine profile and cellular milieu suggests an aberrant innate
immune activation in MDS. Elevated levels of pro-inflammatory
cytokines such as TNF-α and IL-1 in MDS patients are known to
cause the cell death of BM progenitor cells [3, 21–24]. Overall,
most studies point to the crucial role of the immune system,
inflammation, and inflammasomes in the pathogenesis of myeloid
malignancies.

IMMUNE SYSTEM AND INFLAMMATION IN MDS
The innate immune system is activated through the interactions of
pathogen-associated molecular patterns (PAMPS) against exogen-
ous signals and by damage-associated molecular patterns (DAMPS/
Alarmins) against endogenous signals, both of which operate via
the activation of pattern recognition receptors (PRRs). Of the known
PRRs, Toll-like receptors (TLRs) are the most widely studied, having
roles in eliciting innate and adaptive immune reaction and shows
an increased expression in inflammatory and autoimmune diseases.
TLRs and pro-inflammatory cytokines can activate the hemato-
poietic stem cells (HSCs) directly [16, 17, 25, 26]. In MDS patients,
TLRs are over expressed in HSPCs with respect to age-matched
control subjects [27, 28]. In particular, TLR4 is seen to be
upregulated in HSPCs of MDS patients and correlates with
increased apoptosis of BM-mononuclear cells (BM-MNCs) and
CD34+ cells. Also, TLR1, TLR2, and TLR6 are significantly over-
expressed in the BM CD34+ cells of MDS subjects with a higher
expression of TLR2 in the BM CD34+ cells of low-risk MDS subjects
that induces an increase in the level of β-arrestin-1 and cell death.
Studies have shown restoration of effective erythropoiesis upon
transcriptional silencing of TLR2 [19, 28].
TLR signaling involves two main factors—interleukin receptor-

associated kinases (IRAK1 and IRAK4), and TNF receptor-associated
factor 6 (TRAF6) that leads to NF-κB and MAPK activation [29].
IRAK4 is a serine-threonine kinase that leads to IRAK1 and TRAF6
activation. We and others have shown that IRAK4 is overactivated
in MDS and leads to activation of downstream proliferative
pathways. IRAK4 can exist in various isoforms. The longer IRAK4
isoform contains the death domain that interacts with Myd88
allowing signaling downstream of TLR activation and is expressed
in higher amounts in MDS patients with U2AF1 splicing factor
mutations. Interestingly, IRAK4 activation has also been shown to
be involved in resistance to FLT3 inhibitors in MDS/AML [30].
There is an activation of the innate immune pathway via IRAK1/4
complexes that contribute to adaptive immune resistance in FLT3
mutant AML cells [30, 31]. Increased TLR9 expression post-FLT3i
treatment activates IRAK1/4 signaling. This increased expression of
TLR’s, especially TLR9, has been implicated in the activation of
innate immune pathways in adaptively resistant FLT3-ITD AML
cells [30].
TRAF6 is an adapter protein that possesses nonconventional E3

ubiquitin ligase activity that mediates signaling from several
innate immune receptors and is also reported to be overexpressed
in MDS patients with (del)5q mutations [32]. Studies have shown
that in (del)5q MDS-HSPCs, deletion of miRNA 146a activates
TRAF6 [33, 34]. Such an overexpression of TRAF6 caused
hematopoietic defects in a mouse model of MDS, suggesting a

connection between immune pathway genes with the pathogen-
esis of MDS.
A recent report published by Muto et al. [35] studied a cohort of

MDS patients in which 40% of MDS patients show overexpression
of TRAF6 mRNA with deletion or repression of its negative
regulators in MDS-HSPCs. The MDS-HSPCs showed an elevated
expression of A20, a dual-ubiquitin (DUB) editing protein that
activates the noncanonical NF-κB pathway by terminating the
activation of canonical NF-κB via the TLR signaling pathway. This
shift is believed to sustain the myeloid expansion and provide a
selective advantage for disease cell proliferation as compared to
WT-HSPCs, which operates on the canonical NF-κB pathway [35].
Another component of the innate immune system that is

overactivated in MDS is the IL-8/CXCR2 pathway. IL-8 has been
shown to be overexpressed in MDS stem and progenitor cells and
acts via an autocrine manner using CXCR2 receptors. Over-
expression of the pro-inflammatory cytokine IL-8 and its receptor
CXCR2 is well known for promoting tumor growth and survival,
and also as a predictor of adverse prognosis in MDS/AML [36, 37].
Targeting the IL-8/CXCR2 axis in MDS/AML patient cohorts have
shown promising results, with decreased viability of primary
patients’ HSCs without affecting healthy controls [9]. Also,
inhibition of IL-8/CXCR2 signaling has been shown to inhibit
MDS stem and progenitors [14]. Furthermore, the interleukin 1
receptor accessory protein (IL1RAP) is overactivated in MDS/AML
HSPCs and is enriched in high-risk disease with worse prognosis
[3]. Recent data shows that IL1RAP can act as a coactivator for
FLT3 signaling thus playing a stimulatory role in malignant
myeloid expansion [38]. Overall, these studies show that over-
expression of genes involved in innate immune pathways is
reported in over 50% of MDS patients [32].

ALARMINS AND NLRP3 ACTIVATION IN MDS
S100A8/S100A9 are cytosolic DAMPS, also known as alarmins, that
activates the immune signaling system via the TLR-4/NLR pathway
and play an important role in inflammatory diseases, including
hematologic malignancies. In MDS, the MDSCs are recognized as
the key effectors in the development of cytopenias and are
associated with the cation binding DAMP heterodimer S100A8/
S100A9 complex. The binding of this complex to the CD33
receptor on MDSCs causes activation and expansion of MDSCs,
leading to secretion of immunosuppressive cytokines such as IL-10
and TGF-β, along with the further secretion of S100A8/S100A9,
thereby initiating a vicious cycle of inflammatory cytokine
generation and suppression of hematopoiesis [39]. Transgenic
mice expressing S100A9 (S100A9Tg) mimic the features of human
MDS, which could be reversed by depletion of MDSCs or by using
short hairpin RNA-based (shRNA) silencing of the CD33 receptor,
thereby inhibiting the TLR signaling cascade [40].
The role of alarmins in MDS is twofold: Activating MDSC

expansion along with the NOD-like receptor protein 3 (NLRP3)
receptor, via the TLR-4 receptor signaling pathway. NLRP3, a
cytosolic redox-sensitive sensor, once activated, recruits an
apoptosis-associated speck-like protein (ASC) triggering its poly-
merization and nucleation of large cytoplasmic aggregates to
form ASC specks. This complex, termed the inflammasome,
facilitates the recruitment and catalytic conversion of pro-
Caspase 1 to active Caspase 1, which in turn activates IL-18 and
IL-1β. This further enhances the proinflammatory milieu of the cell,
activating proliferation via the β-catenin pathway while triggering
lytic cell death via a process termed pyroptosis [39]. Caspase 1
activates a pore-forming protein gasdermin D (GSDMD) that
oligomerizes and binds to the plasma membrane of myeloid cells
to form pores. These pores compromise the membrane integrity,
serving as an entry point for cations that release ROS and pro-
inflammatory cytokines into the cytosol causing cell swelling and
death (Fig. 1). NLRP3 inflammasomes, therefore, leads to multiple
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faces of MDS pathogenesis—ineffective hematopoiesis, cytope-
nias, and β-catenin induced proliferation of cancer cells.
The level of S100A9 in plasma is higher in low-risk MDS as

compared to high-risk patients [18]. MDS HSPCs and BM plasma
reports higher S100A9 protein level as compared to age-matched
controls which further increases with hematopoietic lineage
progression in MDS BM-MNCs. Furthermore, treatment of normal
BM-MNCs with recombinant S100A9 (rhS100A9) is sufficient to
induce inflammasome assembly, activation of Caspase 1, and
increase in ROS levels. S100A9Tg mouse model shows higher
expression of WNT/β-catenin target genes, which is partially
reversed by ICTA, an in vivo inhibitor of the NLRP3 inflammasome.
Inhibition of inflammasome signaling by either S100A9 neutraliza-
tion or pharmacological inhibition restores effective hematopoi-
esis in the S100A9Tg transgenic mouse model [18]. In addition,
S100A9 is also known to suppress erythropoietin production,
thereby inhibiting erythropoiesis. Lenalidomide treatment is seen
to reduce the steady-state generation of S100A9, thereby
increasing the levels of Epo and promoting erythropoiesis [41].
This further corroborates the importance of S100A9 in the
pathogenesis of MDS.

INFLAMMASOME ACTIVITY IN AML AND OTHER MYELOID
MALIGNANCIES
The importance of inflammasomes is also reported in other
myeloid malignancies besides MDS. In primary pediatric ALL cells,
NLRP3 inflammasome was found to be activated in response to
doxorubicin-induced chemotherapy. The p20 subunit of caspase 1
was found to be transcriptionally active in the ALL cells while the
NLRP3 expression was found to be modulated by endogenous
expression of a cellular DAMP- HMGB1 [42].
A report published by Höckendorf et al., in 2016 suggested a

tumor suppressor role of the inflammasome in AML [43]. Failure of
inflammasome activation due to loss of RIPK3, a protein kinase, led
to the progression from myeloproliferation in FLT3-ITD mutated
mice to the development of AML. Contrary to this, subsequent
studies reported elevated plasma levels of IL-1β and IL-18 in AML
patients as compared to controls [44, 45]. In a panel of 94 cytokines,

IL-1β showed the highest effect on the growth of primary AML cells,
clustering with GM-CSF and IL-3. In fact, the expression of IL1RAP is
now considered a prognostic marker of AML [3] as it is consistently
expressed across multiple genetic subtypes of AML and even at the
stem cell level. IL1RAP has emerged as an important therapeutic
target. It interacts and mediates pro-proliferative effects in AML stem
cells through FLT3 kinases. This interaction can be further exploited
therapeutically [38]. Interestingly, mRNA expression of NLRP3 and
ASC in the BM-MNCs and plasma IL-18 levels show a significant
decline in AML patients under complete remission as compared to
newly diagnosed ones [44].
A recent article by Hamarsheh et al. [46] shows the activation of

an inflammasome pathway in AML patients with KRAS mutation,
KrasG12D. A mouse model expressing active KrasG12D mutation in the
hematopoietic system showed myeloproliferation and cytopenia,
which can be reversed in KrasG12D mice with NLRP3 deficiency. The
gene expression profile of bone marrow-derived dendritic cells
(BMDCs) from either WT or KrasG12D mice following treatment by
tamoxifen have identified NLRP3/caspase1/IL-1β to be a major
contributing axis. Oncogenic KRAS is found to produce ROS and
thereby activate the inflammasome pathway via RAC1 protein. The
findings were confirmed in AML, CMML, and JMML patient samples
harboring the KRAS mutation. It is, therefore, possible for
inflammasomes to have a diverse role in disease progression,
depending on genetic and epigenetic factors.

THE CROSS-TALK BETWEEN MYELOID TRANSCRIPTION
FACTORS AND THE INFLAMMASOME
Definitive hematopoiesis, which occurs during postembryonic
development, engages multipotent HSCs that migrate to the BM
and give rise to all blood lineages. HSC maturation involves the
differentiation from the blast stage to the diversification of the
lineages, giving rise to the lymphoid (T, B, and NK cells), myeloid
(granulocytes and macrophages), and erythroid cell lineages
(megakaryocytes and erythrocytes) [47, 48].
Two transcription factors, GATA1 and Spi-1 (also known as PU.1),

show a cross-inhibitory relationship and are thought to be
responsible for the decision of erythroid and myeloid fates [49–

Fig. 1 Inflammasome pathway. MDSCs and NLRP3 are activated when DAMPS such as S100A8/S100A9 bind to CD33 and TLR4 receptors,
respectively. Activated redox-sensitive NOD-like receptor protein 3 (NLRP3) recruits and causes polymerization of adapter apoptosis-
associated speck-like protein containing a caspase-recruitment domain (ASC) proteins to form a complex termed as the inflammasome. This
complex serves as a platform for recruitment and autocatalysis of pro-caspase 1 to give rise to active Caspase 1 and thereafter IL-18 and IL-1β
from their precursors. Together with heightened ROS level, these cytokines add to the proinflammatory milieu of the cell. This process is
followed by the release of proinflammatory cytokines in the cytosol via a lytic cell death called pyroptosis.
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51]. Nonetheless, the additional factors and pathways are debated
to be responsible for terminal erythroid and myeloid differentiation
and their regulation [52–55]. As hematopoietic lineage bias is
associated with increased incidence of diseases with prominent
inflammatory components, the pathways and players hitherto
untapped are believed to hold clinical significance.
In the lineage progression of HSCs, the presence of Spi-1 and

GATA-1 transcription factors are necessary for the formation of
common myeloid progenitor cells [52]. Interestingly, in the next
step, their levels separately dictate the decision of differentiation
into either megakaryocyte-erythrocyte progenitor (MEP) or
granulocyte-monocyte progenitor (GMP), as shown in Fig. 2.
Tyrkalska et al. [56] suggest that an underlying inflammatory
background is responsible for the imbalance in the ratio of GATA-1:
Spi-1 and subsequently, the decision of the lineage and its bias.
Inflammasomes are thought to be prerequisite for myeloid
differentiation that operates in an evolutionarily conserved
mechanism by regulating the GATA1: Spi-1 ratio in the cells. In a
zebrafish model, inflammasome deficient larvae express higher
GATA1 at transcript and protein levels, inhibiting myeloid
differentiation and enforcing erythropoiesis. As expected, pharma-
cological inhibition of the inflammasome rescues anemia and
neutrophilic inflammation in the disease model. In mouse HSCs,
Caspase 1 inhibitor upregulates GATA1 levels, with a direct
increase in megakaryocyte-erythrocyte (MegE) colonies and a
decrease in granulocyte-monocyte (GM) colonies. Pharmacological
inhibition of the inflammasome in human erythroleukemic K562
cells leads to the suppression of erythroid differentiation with a
decline in hemoglobin accumulation and decreased GATA1 levels
as compared to DMSO treated control cells. In human HEK293 cells,
Caspase 1 directly cleaves GATA1 at residue D300 thereby causing
its degradation, indicating the likely reason of GATA1 accumulation

on Caspase 1 inhibition. This evolutionarily conserved role of the
inflammasome in the regulation of erythroid versus myeloid fate
suggests a potential new area of drug development [56].
Innate immune players such as TNF-α and IL-1β are known to

upregulate Spi-1 protein in HSC in vitro and in vivo, via activation of
inflammatory signaling [56–58]. As these proinflammatory cytokines
are the released byproducts of inflammasome formation, it is
hypothesized that the mechanism of upregulation of Spi-1 is
superseded by GATA1 downregulation. While few studies have
addressed the missing links in this area of research, the underlying
mechanism of immune regulation, inflammation, and lineage bias in
myeloid malignancies are not well understood and is still in its infancy.

IS INFLAMMASOME PATHWAY THE CONVERGING POINT FOR
THE DEVELOPMENT OF MDS PHENOTYPE?
A recent review discussed the impact of genetic abnormalities and
their relation to immune and inflammasome signaling in MDS [19].
For multiple genetic events, be it somatic mutations or
chromosomal abnormalities, a different player of the immune
system comes into action. For example, epigenetic modifications
in different genes activate distinct immune signaling cascade.
TET2 mutants increase IL-6 production via a decrease in HDAC2
recruitment with a concomitant increase in IL-1β while ASXL1
mutation activates TLR4 signaling and increases NADPH oxidase,
and in turn ROS levels [18, 59, 60]. A similar trend can be observed
for mutation in spliceosome genes. For example, NF-κB activation
in the SF3B1 mutant occurs by downregulation of MAP3K7, but for
the SRSF2 mutant, the activation is due to caspase 8 isoform,
along with an increase in alarmin levels [18, 61]. Chromosomal
abnormalities such as (del)5q mutation causes haploinsufficiency,
increasing alarmins and miR-145/146 levels and subsequently

Fig. 2 Implications of GATA-1 and Spi-1 in myeloid differentiation of hematopoietic pathway. Hematopoietic stem cells (HSC) evolve from
long-term (LT), short term (ST) to multipotent progenitor cells (MPP) from which myeloid and lymphoid cells are formed. At this stage,
multiple cytokines along with transcription factors— Spi-1 and GATA1 provide necessary cues for the development of common myeloid
progenitor (CMP). However, the next line of myeloid differentiation to megakaryocyte-erythrocyte progenitor (MEP) and granulocyte-
monocyte progenitor (GMP) is carried by distinct signaling of GATA1 and Spi-1, respectively. This is followed by the formation of all types of
blood cells namely, megakaryocytes (platelets), erythrocytes (RBCs), neutrophils, basophils, eosinophils, and monocytes.
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activating TRAF6/IRAK1 signaling [62]. All these mutations and
diverse effectors that trigger the activation of different immune
signaling pathways point towards an interesting observation, a
unanimous activation of pyroptosis and the β-catenin signaling
pathway. This suggests the possibility of inflammasomes playing a
central role in the pathogenesis of MDS/AML and the importance
of exploiting this pathway to identify novel therapeutic targets in
MDS/AML.

Therapeutic avenues for inhibiting the myeloid inflammasome
Previous sections of this review have established that innate
immune signaling and subsequent inflammasome activation via
NLRP3 plays a major role in the proliferation and sustenance of
MDS HSPCs. Inflammasome activation has also been linked to
several inflammatory diseases, including MDS. Thus, players
involved in the inflammasome pathway can work as excellent
pharmacological targets against MDS/AML. In this section, we
discuss multiple mechanisms by which inflammasome formation
and activity can be inhibited, and the early-phase clinical trials
showing promise for future clinical practice.
As described before, the alarmins- S100A8/S100A9 bind the

CD33 receptor on MDSCs leading to their activation, expansion,
and ultimate suppression of hematopoiesis. Several monoclonal
antibodies, antibody-drug conjugates (ADC), a bispecific T-cell
engager (BiTE), and a trispecific killer engaged molecule (TriKE)
against CD33, have been developed in hopes of suppressing
MDSC proliferation and renewing hematopoiesis in MDS/AML.
Lintuzumab, a CD33 humanized monoclonal antibody was

studied in older patients with untreated AML. However, the
randomized Phase IIb trial failed to show improvement in overall
survival (OS) in a cohort of 211 patients treated with Lintuzumab in
combination with cytarabine as compared to cytarabine alone
(4.7 months versus 5.1 months), thereby suspending its further
clinical development [63]. A novel radioimmunoconjugate using
Lintuzumab, 225Ac-lintuzumab, however, has shown early promise
in preliminary phase II data in older AML patients unfit for
induction chemotherapy who express CD33 on >25% of blasts [64].
225Ac-lintuzumab links Lintuzumab to a short-range, high-energy,
cytotoxic alpha-particle emitter (225Ac) which uses radiotherapy to
elicit single and double-strand DNA breaks in selectively targeted
CD33 cells. Preliminary data has been reported on nine patients
treated with 225Ac-lintuzumab monotherapy showing an overall
response rate (ORR) of 56% with two complete remissions with
incomplete platelet recovery (CRp) and three complete remissions
with incomplete hematologic recovery (CRi) [64]. 225Ac-lintuzumab
in combination with Venetoclax is also being studied in an early
phase I/II trial in relapsed/refractory AML (NCT03867682).
BI 836858, another CD33 monoclonal antibody glycoengineered

against CD33 has also not shown much promise in untreated
patients with MDS/AML, with only 18% patients achieving a CR/CRi
among 28 patients with untreated AML in the phase I/II dose-
escalation study of BI 836858 in combination with azacitidine (AZA)
as part of the Beat AML dataset [65]. A similar phase I/II study
(NCT02240706) using BI 836858 in patients with low or
intermediate-1 risk MDS has been terminated as the company
decided to stop the clinical development of BI 836858 prematurely
for strategic reasons. As per the study results listed on clinicaltrials.
gov, it appears this drug was limited by both efficacy and toxicity.
Two CD33 ADC have been developed, vadastuximab talirine

and IMGN779, however, all clinical trials of vadastuximab talirine
were suspended after the phase III CASCADE trial (NCT02785900)
was terminated in 2017 after reporting a higher rate of deaths
including fatal infections compared to the control arm despite
promising initial phase I data showing an ORR of 70% [66].
IMGN779, however, is an ADC using an indolinobenzodiazepine
pseudodimer payload, with encouraging initial phase I results
showing manageable tolerability and anti-leukemia activity in
patients with relapsed/refractory AML [67].

Although CD33 targeting has not shown much promise in
humans thus far, the newest BiTe and TriKE agents are using
innovative approaches to target MDSC production. AMV564 is a
novel bivalent, bispecific, CD33/CD3 T-cell engager that binds
CD33 on target cells and CD3 on T-cells leading to T-cell-directed
lysis of CD33+ leukemic blasts and MDSCs, as well as T-cell
expansion, differentiation, and proliferation [68]. GTB-3550 is a
novel CD16/IL-15/CD33 TriKE that induces natural killer cell
function by targeting malignant cells as well as the CD33+ MDSC,
which contribute to tumor-induced immunosuppression. Because
CD16 is the most potent activating receptor on NK cells, this single
agent may induce a targeted cytolytic anti-CD33 tumor response
[69]. Both agents are currently in early phase clinical trials in MDS/
AML patients (Table 1).
Instead of targeting MDSC’s directly through CD33, inhibitors

that specifically target TLR signaling and their downstream
effectors, IRAK and the NLRP3 inflammasome, may provide
another avenue to disrupt pyroptosis-mediated cell death of
HSPC’s and β-catenin-induced proliferation of cancer cells. Most
promising has been the TLR2 humanized monoclonal antibody
Tomaralimab (OPN-305). In a phase II trial using Tomaralimab in
heavily pretreated, transfusion-dependent patients with low or
intermediate-1 risk MDS after failure with prior hypomethylating
agents, 50% (6/12) patients had an overall response in the form of
hematologic improvement with 17% (2/12) patients achieving
transfusion independence. This therapy was well tolerated without
significant toxicities [70]. Another potential way of targeting TLR
signaling may be through proteasome inhibition. In an exploratory
clinical trial using bortezomib in 15 patients with low-risk MDS,
investigators noted that proteosome inhibition with bortezomib
modulated TLR signaling. This occurs by decreasing levels of
phosphorylated p65, a surrogate for NF-κB activation that leads to
a significant p65 downregulation in 54% of patients, which
correlated with clinical response, albeit only 20% of patients had
evidence of short-lived hematologic improvement [71]. The
investigators argued that using a drug with more potent and
specific inhibition of the NF- κB pathway could lead to a more
significant and long-lasting clinical response. One potentially
attractive target is the IRAK4 inhibitor CA-4948, which directly
inhibits NF-κB activation through its interaction with MyD88/
IRAK1/TRAF6 [72]. A phase I dose-escalation trial using CA-4948 in
adult patients with AML or high-risk MDS is currently enrolling and
an early report shows the drug to be safe and well tolerated
(NCT04278768) [73]. IRAK1/4 is also an attractive immune target in
therapy-resistant myeloid malignancies and as previously men-
tioned, contributes to adaptive immune resistance in FLT3 mutant
AML cells that can be therapeutically exploited. A small molecule
dual inhibitor of FLT3/IRAK4 can overcome adaptive resistance in
FLT3-ITD AML preclinical models by inhibiting compensatory IRAK
1/4 activation and downstream immune activation in FLT3-ITD
AML [30]. Furthermore, a combinatory inhibitor targeting the
FLT3/IL-8-CXCR2 axis may also serve to overcome the FLT3
resistance in AML.
In addition, a phase I study evaluating the small molecule

CWP232291, an inhibitor of Wnt signaling that leads to direct
degradation of β-catenin, has shown proof of concept that directly
targeting downstream β-catenin cell proliferation maybe another
novel mechanism for eradication of early leukemic progenitors.
Further exploration as combination therapy is likely required [74].
Sustained levels of IL-1β have also been shown to activate NF-

κB and MAPK signaling leading to an increase in IL-6 production.
Furthermore, it supports MDSC accumulation as observed by the
IL-1 receptor-deficient mouse model that shows inhibition of
tumor progression due to delayed MDSC accumulation. Anti-IL-1β
targets such as IL-1β neutralizing antibody Canakinumab [75],
soluble decoy IL-1 receptor Rilonacept, and recombinant IL-1
receptor antagonist Anakinra [76] have been approved for
autoinflammatory diseases. These can also be promising clinical
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targets against MDS, [77] with two early phase trials using
Canakinumab in low-risk MDS currently recruiting (NCT04810611
and NCT04239157). However, targeting IL-1β alone may be
insufficient as other cytokines such as IL-18 are also involved in
adding to the pro-inflammatory milieu.
As previously mentioned, IL1RAP, a surface molecule that is

consistently overexpressed on AML stem cells interacts with FLT3
kinases and is an important therapeutic target. Anti IL1RAP/CD3
bispecific antibodies have demonstrated a high degree of
specificity and IL1RAP targeting therapies are now going into
first-in-human clinical trials (NCT02842320) in leukemias [78].
Inhibitors that specifically target NLRP3 have not yet made it to

the clinic for MDS/AML, but are currently under preclinical
development, and have shown promising results with lesser
toxicity. The NLRP3 inhibitor MCC950 showed high specificity for
both canonical and noncanonical inflammasome pathway activa-
tion and significant efficacy at nanomolar concentrations [79, 80].
However, anecdotal reports of hepatotoxicity in patients with
rheumatoid arthritis in early phase trials blocked its further
development [67]. Other direct inhibitors of NLRP3 such as 3,4-
methylenedioxy-β-nitrostyrene (MNS) and CY-09 (an analog of CFTR
inhibitor-172 (C172) which inhibits the CFTR channel), specifically
inhibits ATP binding of NLRP3 without affecting other NOD-like
receptors. Tranilast and OLT1177 have shown promising results in
animal models and ex vivo studies and seem to show significant
potential as drug targets against NLRP3 related diseases [81–83].
Bruton tyrosine kinase (BTK) also regulates NLRP3 inflammasome

activity by direct interaction with ASC and NLRP3. Ibrutinib-a BTK
inhibitor prevents the formation of ASC specks and Caspase 1
activation. It was shown to suppress IL-1β maturation and caspase
1 activation in PBMCs of Ibrutinib treated cancer patients and is
currently under phase 1 trials in combination with lenalidomide
and 5′-Azacytidine for MDS (NCT03359460 and NCT02553941).
Unfortunately, a phase II trial of ibrutinib alone or in combination
with cytarabine or AZA in AML patients unfit for standard therapy
or with relapsed/refractory disease, did not show any clinically
relevant anti-leukemia activity [84]. Orally active Caspase 1 inhibitor
such as VX-765 [85] and other caspase 1 inhibitors such as soluble
analogs of Parthenolide (anti-inflammatory sesquiterpene lactone
compound) can also be potential drug targets in hematological
lineage bias disorders such as MDS and AML, which have only been
studied in epilepsy and dermatologic conditions so far. Interest-
ingly, recent reports have identified GSDMD to be a specific

effector protein triggering pyroptosis, making it an attractive target
which could have an important future role in immune therapeutic
approaches designed to target specifically pyroptosis as an
inflammasome activation downstream effect [81, 86].
Inflammasomes and immune response pathways have opened

avenues for several exciting new drug targets for MDS and AML.
As inflammasomes appears to play a role in MDS originating from
multiple genetic defects, promising outcomes are expected from
its drug targets. Table 1 and Fig. 3 shows the potential therapeutic
agents targeting the players of the inflammasome pathway in
myeloid malignancies.

CONCLUSION
Identification of novel pathways that are integral to the myeloid
disease pathophysiology can guide the field towards newer
targets for therapy. Often, pretransplant candidates with FLT3-ITD
mutated AML develop rapid resistance to the FLT3 inhibitors. As
pointed out, inflammasome targeting therapies can be explored
as combinatorial strategies with FLT3 inhibitors to overcome
therapy resistance as ample evidence points towards possible
synergistic mechanisms. Underlying genetics and chronic inflam-
mation can activate the innate immune system to trigger the
inflammasome pathway, which seems to play a central role in the
pathophysiology of myeloid malignancies. While DAMPS such as
S100A8/S100A9 are known to activate the inflammasome path-
way, the signaling mechanism that increases the DAMP levels in
the first place remains unknown. Even though a number of drug
targets have been identified from this pathway, it is a relatively
new field in the context of myeloid malignancies. We anticipate
that understanding the inflammasome pathway, its activators,
inhibitors, and effectors will be crucial for further identification of
novel and improved therapeutic outcomes against these diseases
that currently have a dismal prognosis. With several therapies
targeting the inflammasome currently in clinical development, it is
our sincere hope that some of them will come to fruition and we
will soon have an FDA-approved inflammasome targeting drug in
a clinic for our patients with aggressive myeloid malignancies.
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