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Abstract
Hereditary diffuse gastric cancer (HDGC) is associated with germline deleterious variants in CDH1 and CTNNA1. The
majority of HDGC-suspected patients are still genetically unresolved, raising the need for identification of novel HDGC
predisposing genes. Under the collaborative environment of the SOLVE-RD consortium, re-analysis of whole-exome
sequencing data from unresolved gastric cancer cases (n= 83) identified a mosaic missense variant in PIK3CA in a 25-year-
old female with diffuse gastric cancer (DGC) without familial history for cancer. The variant, c.3140A>G p.(His1047Arg), a
known cancer-related somatic hotspot, was present at a low variant allele frequency (18%) in leukocyte-derived DNA.
Somatic variants in PIK3CA are usually associated with overgrowth, a phenotype that was not observed in this patient. This
report highlights mosaicism as a potential, and understudied, mechanism in the etiology of DGC.

Introduction

In ~10% of the gastric cancer (GC) cases familial aggre-
gation is observed [1]. Two monogenic GC-associated
syndromes have been described so far: (i) Hereditary Dif-
fuse Gastric Cancer syndrome (HDGC; MIM 137215) [2],

and (ii) Gastric Adenocarcinoma and Proximal Polyposis of
the Stomach syndrome (GAPPS) [3].

HDGC is associated with germline deleterious variants in
CDH1 and CTNNA1. However, deleterious variants in
CDH1 or CTNNA1 are identified in only 10-40% of families
fulfilling HDGC clinical criteria [2, 4, 5]. PALB2 and
MYD88 are considered candidate genes for HDGC that need
further confirmation [6, 7].

Currently, a large proportion of clinically and patholo-
gically confirmed HDGC families and individuals devel-
oping diffuse gastric cancer (DGC) at very young age
remain genetically unresolved, raising the need for research
on novel inherited predisposing factors. Here, we report the
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case of a 25-year-old female with DGC, in whom a mosaic
PIK3CA variant was identified in leukocyte-derived DNA
by re-analysis of whole-exome sequencing (WES) data by
the SOLVE-RD consortium.

Materials and methods

Patient cohort

Between January 2019 and September 2019 members of the
European Reference Network on genetic tumor risk
syndromes (ERN-GENTURIS) submitted 294 unresolved
germline WES and whole-genome sequencing (WGS)
datasets from genetic tumor risk syndrome suspected indi-
viduals for re-analysis to SOLVE-RD. From this initial 294
unresolved cases, 83 had a phenotype of non-GAPPS
gastric cancer that were reanalyzed in the present study.
This study was approved by local ethics committees (local
study identification numbers: Ipatimup: 152/18; University
of Cambridge: 97/5/032; Radboudumc: 2018-4985,
2018-4986).

Re-analysis of WES data

For each case, sequencing reads were processed using the
RD-Connect Genome-Phenome Analysis Platform standar-
dized analysis pipeline based upon GATK3.6 best practices
(further information: http://solve-rd.eu/ and http://rd-
connect.eu/). Subsequently, all variants with a read-depth
≥8-fold and a genotype quality of ≥20 were selected for
downstream processing and interpretation. Each variant was
annotated using VEP from Ensembl as described by
Matalonga et al. [8]. For re-analysis of WES data submitted
by ERN-GENTURIS, variants present in a gene list

composed of 229 genes associated with genetic tumor risk
syndromes (Supplementary Table 1) were assessed for their
pathogenicity as annotated by ClinVar. Variants predicted
to be pathogenic or likely pathogenic were followed up for
interpretation and validation.

Raw whole-exome data of this patient is available via the
European Genome-Phenome Archive (EGA; accession
number EGAZ00001545545). The variant described in this
manuscript is submitted to the Leiden Open Variant Data-
base (LOVD; https://databases.lovd.nl/shared, Individual ID
number 00327392).

Validation by smMIP sequencing

Genomic DNA extracted from peripheral blood was
screened in triplicate for hotspot regions (codons 345, 420,
539-554, 1043-1050) of PIK3CA (NM_006218.4) using
small molecule molecular inversion probes (smMIP)
sequencing as described by Steeghs et al. [9].

Results

Clinical phenotype

A 25-year-old female presented with abdominal discomfort
for two months when endoscopic investigation of the sto-
mach revealed a gastric mass. After total gastrectomy a
diffuse type gastric adenocarcinoma (T2N1M0) was iden-
tified in the antrum of the stomach. The patient tested
negative for H. pylori infection and no other coexisting
disorders or congenital abnormalities were reported.
Immunohistochemical P53 expression in the tumor showed
a wild-type pattern. The patient was treated with adjuvant 5-
fluorouracil, etoposide and cisplatin, but she deceased

Fig. 1 Mosaic PIK3CA c.3140A>G variant found in leukocyte
DNA of the proband. A Screenshot of the Integrative Genomics
Viewer. Alternative alleles at PIK3CA c.3140 position are marked.
Variant details are shown in the panel on the right. B Screenshot of one

outcome of the in triplicate smMIP screened leukocyte-derived DNA
from the proband. The PIK3CA (c.3140A>G; p.(His1047Arg)) variant
is marked in red. C Screenshot of individual reads in smMIP analysis.
Alternative alleles at PIK3CA c.3140 position are marked in red.
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12 months after diagnosis due to peritoneal metastasis, ileus
of the small bowel, ascites and cachexia.

Germline analysis

The patient did not have a family history of gastric cancer,
but due to her very early-onset of DGC she met the clinical
criteria for testing for HDGC [10]. In absence of a germline
CDH1 variant that is predicted to impair protein function,
the patient was selected for WES analysis, but putative
disruptive variants in cancer predisposition genes were not
identified [11]. Re-analysis of the generated WES data
within the SOLVE-RD consortium revealed one ClinVar-
reported missense variant in PIK3CA (NM_006218.4;
c.3140A>G; p.(His1047Arg)), a gene associated with
somatic overgrowth syndromes, but not previously asso-
ciated with gastric cancer [12, 13]. This variant was present
in blood leukocytes at a variant allele frequency (VAF) of
18% (14/76 sequencing reads), suggesting presence in
mosaic state (Fig. 1A). Triplicate smMIP sequencing con-
firmed mosaicism of PIK3CA c.3140A>G, with a VAF
ranging from 13% to 16% (Fig. 1B,C). Germline genetic
testing was performed on genomic DNA extracted from
leukocytes that were taken from the patient prior to che-
motherapy. No tumor tissue was available for further his-
topathological assessment or somatic sequencing.

Variant characteristics

PIK3CA c.3140 is a known somatic hotspot location in
many cancer types, including gastric tumors [14]. Variants
in PIK3CA are found in 15% of the stomach adenocarci-
nomas (5 studies; 739 samples) and 18% of these cancers
harbor the p.(His1047Arg) missense variant [15, 16]. We
investigated the frequency of PIK3CA c.3140A>G p.
(His1047Arg) in population datasets not enriched for tumor
associated phenotypes. The variant was not found in
>13,000 individuals with WES data (inhouse database) or in
>2,000 individuals from other (non-cancer) SOLVE-RD
cohorts. PIK3CA c.3140A>G was only detected in 1 out of
>120,000 gnomAD individuals. While little details are
available, the variant was identified in a female non-Finnish
European aged 35–40 years, at a VAF of 25–30%, also
suggestive of somatic mosaicism [17]. Interestingly, the
germline WES data from this female originated from The
Cancer Genome Atlas, indicating that this individual too
developed cancer at a young age (≤40 years).

Discussion

In this study, we present the case of a woman with early-
onset DGC in whom neither targeted CDH1 and CTNNA1

variant screening, nor a previous WES analysis provided a
genetic diagnosis. Re-analysis of the WES data revealed a
mosaic PIK3CA c.3140A>G p.(His1047Arg) variant, sug-
gestive of a potential role in the patient’s phenotype and
early-onset of diffuse type gastric cancer.

Mosaic PIK3CA variants have been described in
PIK3CA-related overgrowth syndromes (PROS), syn-
dromes marked by congenital or early-onset of sporadic
segmental tissue overgrowth, vascular malformations and
mosaic skin lesions [18]. A constitutional heterozygous
Pik3caH1047R murine model is embryonically lethal [19], an
observation that is consistent with the mosaic status of
PIK3CA in PROS and in gnomAD. For PIK3CA somatic
mosaicism, the timing and location when a PIK3CA is
variant introduced during postzygotic development likely
determines the phenotypic presentation of malignancies
[13]. For PROS it is reported that mosaic PIK3CA variants
arise in ectodermal and mesodermal tissues, whereas the
digestive tract, including the stomach, arises from endo-
derm. Since no clear signs of overgrowth or dysmorphol-
ogies were observed, but the variant is detected in
leukocyte-derived DNA, the variant may be present in the
endoderm and mesoderm layer only. The mosaic state of the
variant could be the result of a postzygotic introduction of
the variant in the mesendoderm layer [20]. Blood used in
the genetic analyses in this study was obtained before
chemotherapy, which rules out a scenario of clonal expan-
sion of the variant due to the selective pressure of che-
motherapeutic agents.

The initial WES analysis, described by Vogelaar et al.,
was directed towards the identification of rare high-
confidence nonsynonymous germline variants (≥20% var-
iant reads) in known hereditary cancer genes or genes
involved in GC development. This approach reduces the
chance of identification of mosaicism, as these variants
often do not meet the quality threshold of ≥20% variant
reads [11]. By decreasing the VAF cut-off, in combination
with ClinVar assessment, mosaic disease-causing variants
associated with impaired protein function can be identified,
a strategy that is not widely applied to WES and WGS
studies. However, WES/WGS data alone is not sufficient to
confirm etiology, and further evidence for pathogenicity,
using a multifactorial approach and other tissue sources is
critical for this. Unfortunately, due to the historical age of
the case, no additional (tumor) tissue samples could be
obtained from the patient to demonstrate the presence of the
variant in tissues derived from different embryonic layers
and the neoplastic cells of the gastric tumor.

To our knowledge, there is no literature describing mosaic
PIK3CA variants in association with DGC. Within the field of
unresolved rare disorders, the identification of causative var-
iants and molecular diagnosis is challenging, as an obvious
the genotype-phenotype often cannot be found. However, a
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similar case of early-onset cancer in combination with a
mosaic PIK3CA variant is reported in the gnomAD-TCGA
database, supporting the increased cancer risk associated with
mosaicism for this variant. Our finding suggests that mosaic
predisposing variants are potentially understudied in indivi-
duals suspected of having a genetic tumor risk syndrome. As
such, it will be of interest to investigate the prevalence of
mosaic PIK3CA variants in DGC and other cancers diagnosed
in young adults. Detection of mosaicism has implications for
relatives as well. As heterozygosity for PIK3CA c.3140A>G
is considered lethal, relatives do most probably not have an
increased risk for cancer.

To conclude, further studies are needed to confirm the
potential role of PIK3CA mosaicism in cancer suscept-
ibility. However, this report demonstrates the success of an
improved approach for (mosaic) variant discovery. The
reported diagnostic value of exome re-analysis should sti-
mulate the field to re-analyze exome data of genetically
undiagnosed genetic tumor risk syndrome patients by
similar approaches. Furthermore, this report underlines the
complexity that rare disease patients may face awaiting their
genetic diagnosis. For many disease genes we may not yet
know the full phenotypic presentation, which is especially
challenging in genes like PIK3CA, where the presentation
of the clinical phenotype is dependent on the timing of the
postzygotic event.
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