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Abstract
PANX1, one of the members of the pannexin family, is a highly glycosylated channel-forming protein. Recently, we
identified heterozygous variants in PANX1 that follow an autosomal dominant inheritance pattern and cause female infertility
characterized by oocyte death. In this study, we screened for novel PANX1 variants in patients with the phenotype of oocyte
death and discovered a new type of inheritance pattern accompanying PANX1 variants. We identified two novel homozygous
missense variants in PANX1 [NM_015368.4 c.712T>C (p.(Ser238Pro) and c.899G>A (p.(Arg300Gln))] associated with the
oocyte death phenotype in two families. Both of the homozygous variants altered the PANX1 glycosylation pattern in
cultured cells, led to aberrant PANX1 channel activation, and resulted in mouse oocyte death after fertilization in vitro. It is
worth noting that the destructive effect of the two homozygous variants on PANX1 function was weaker than that caused by
the recently reported heterozygous variants. Our findings enrich the variational spectrum of PANX1 and expand the
inheritance pattern of PANX1 variants to an autosomal recessive mode. This highlights the critical role of PANX1 in human
oocyte development and helps us to better understand the genetic basis of female infertility due to oocyte death.

Introduction

Infertility affects ~10–15% of couples worldwide [1], and
the application of assisted reproductive technology,
including in vitro fertilization (IVF) and intracytoplasmic
sperm injection (ICSI), has helped a large number of
infertile couples to successfully give birth [2]. However,
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there are still many couples who undergo recurrent failure
of IVF/ICSI attempts. Normal oocyte maturation, fertili-
zation, and embryonic development are necessary for
successful IVF/ICSI, and abnormalities in any of these
processes will lead to female infertility [3–5]. Genetic
variants account for many patients with abnormalities in
these processes, and several variant genes have been
found to be responsible for oocyte maturation abnormal-
ities (TUBB8 [6], PATL2 [7]), fertilization failure
(TLE6 [8], WEE2 [9]) and early embryonic developmental
arrest (PADI6 [10], NLRP2, and NLRP5 [11]), potently
demonstrating the contributions of genetic factors to
female infertility.

In a recent study, we identified four families with a new
kind of phenotype termed oocyte death that manifested as
oocyte cytoplasmic shrinkage, blackening, and death
before or after fertilization. These phenotypes caused
recurrent IVF/ICSI failure and female infertility, and we
identified different heterozygous variants in PANX1 that
were responsible for the phenotype [12]. PANX1, which
encodes a highly glycosylated channel protein, is widely
expressed in multiple human tissues and organs, espe-
cially in the brain and oocytes [12, 13]. The main function
of PANX1 is to form large-pore channels that release ATP
and other small metabolites, and thus it plays a critical
role in information exchange between cells [14, 15].
Although PANX1 is involved in multiple physiological
and pathological functions [16–20], Panx1 knockout mice
are viable, fertile, and have no obvious phenotype, which
weakens the importance of its physiological role in vivo
[21–24]. However, we previously found that heterozygous
variants in PANX1 altered the protein’s glycosylation
pattern, influenced its subcellular localization, and led to
aberrant PANX1 channel activity and ATP release in
oocytes, and mice that overexpressed a patient-derived
variant were infertile due to oocyte death [12]. Our find-
ings thus demonstrated the critical role of PANX1 in
human oocyte development. With the publication of our
study, Six articles on the structure of PANX1 were pub-
lished, showing that it is a heptameric channel protein
[25–30], which further suggests that PANX1 might play a
significant role in cell communication.

In this study, we identified two homozygous variants
in two families with the phenotype of oocyte death after
fertilization, indicating that in addition to the dominant
inheritance pattern reported before, PANX1 variants can
also be inherited in a recessive pattern. We investigated the
effects of the variants in cultured cells, in Xenopus laevis
oocytes, and in mouse oocytes. The results showed that
the effect of homozygous missense variants on PANX1
function was weaker than that of previously reported het-
erozygous variants.

Materials and methods

Human subjects and study design

Infertility patients with the oocyte death phenotype were
recruited from the Second Affiliated Hospital of Zhengzhou
University and Affiliated Hospital of Chifeng University.
DNA was extracted from the peripheral blood based on a
previously reported protocol [6]. Then, sanger sequencing
was performed to identify variants in PANX1. Functional
impairment of identified variants was evaluated by glyco-
sylation assay, electrophysiological assay, and mouse
oocyte cRNA microinjection (Fig. S1).

Screening of PANX1 variants

Peripheral blood was collected from the patients, their
family members, and controls after obtaining informed
consent. Genomic DNA samples were extracted from
peripheral blood using the QIAamp DNA Blood Mini
Kit (Qiagen, Hilden, Germany). All exons and splicing
sites of PANX1 were amplified, and the corresponding
primers are shown in Table S1. Amplified fragments were
directly sequenced using an ABI 3100 DNA analyzer
(Applied Biosystems, Foster City, CA, USA). The PANX1
variants were submitted to LOVD at https://www.LOVD.
nl/PANX1.

Expression vector construction and mutagenesis

The full-length sequence encoding human PANX1
(NM_015368.4) was amplified and cloned into the pCMV6-
Entry vector containing an engineered stop codon to express
untagged proteins. Site-directed mutagenesis was performed
to introduce the identified variants c.712T>C (p.(Ser238-
Pro)) and c.899G>A (p.(Arg300Gln)) into the wild-type
(WT) vector using the site-directed KOD-Plus-Mutagenesis
Kit (Toyobo, TKY, Japan) according to the manufacturer’s
instructions. WT and mutant clones were confirmed by
Sanger sequencing.

Cell culture and transfection

HeLa cells obtained from the Cell Bank of Shanghai
Institute for Biological Sciences were cultured in high-
glucose Dulbecco’s minimum essential medium (Gibco,
Waltham, MA, USA) supplemented with 1% penicillin/
streptomycin and 10% (v/v) fetal bovine serum (FBS;
Gibco, Waltham, MA, USA), and maintained at 37 °C in a
humidified 5% CO2 incubator. PANX1 WT and mutant
constructs were transfected into HeLa cells using the
PolyJet In Vitro DNA Transfection Reagent (Signagen,
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Frederick, MD, USA) according to the manufacturer’s
instructions.

Western blotting

HeLa cells were harvested 36 h after transfection and
washed three times with cold phosphate-buffered saline
(PBS). Cells were lysed in RIPA lysis buffer (Shanghai
Wei AO Biological, SH, China) with 1% protease inhi-
bitor cocktail (Bimake, Houston, TX, USA) and cen-
trifuged at 12,000 × g for 30 min at 4 °C. Supernatants
were collected, mixed with 5× sodium dodecyl sulfate
(SDS) loading buffer, and heated at 100 °C for 10 min.
Equal amounts of protein were separated using SDS-
polyacrylamide gel electrophoresis and transferred to
nitrocellulose filter membranes (Pall Corporation, NYC,
USA). The membranes were blocked with 5% nonfat milk
diluted in PBS with 0.1% Tween 20 (PBST) for 1 h and
then incubated at 4 °C overnight with rabbit anti-PANX1
(1:1000 dilution, Cell Signaling Technology, Danvers,
MA, USA) and rabbit anti-vinculin (1:1000 dilution, Cell
Signaling Technology, Danvers, MA, USA). The mem-
branes were washed with PBST three times and incubated
with goat anti-rabbit IgG secondary antibodies (1:5000
dilution, Abmart, SH, China) for 1 h at room temperature
followed by washing again with PBST three times.
Finally, the membranes were incubated with ECL Western
Blotting Substrate (Tanon, SH, China) and imaged on a
chemiluminescent imaging system (5200, Tanon, SH,
China). Quantitation of western blotting results was per-
formed with the ImageJ software.

cRNA transcription

WT and mutant constructs were linearized by digestion
with the AgeI restriction enzyme (New England BioLabs,
240 County Road Ipswich, MA, USA) at 37 °C for 3 h.
Purified linearized DNA was used as a template to tran-
scribe PANX1 cRNA, followed by DNase I treatment and
poly(A) polymerase tailing using the HiScribe T7 ARCA
mRNA Kit (New England BioLabs, 240 County Road
Ipswich, MA, USA). Finally, the cRNAs were purified
and dissolved in nuclease-free water using the RNeasy
MinElute Cleanup Kit (Qiagen, 240 County Road Ips-
wich, MA, USA).

Mouse oocyte collection, microinjection, and
fertilization in vitro

Ovaries were isolated from 6 to 8-week-old female ICR
(Institute of Cancer Research) mice (Beijing Vital River
Laboratory Animal Technology Co, Changping County, BJ,
China). The ovaries were chopped up with a razor blade,

and GV oocytes with diameters of about 80 µm were col-
lected by mouth pipetting on the stage of a dissecting
microscope. The GV oocytes were cultured in M2 medium
(Sigma-Aldrich, NSW, Australia) with 10% FBS under
mineral oil (Sigma-Aldrich, NSW, Australia) at 37 °C in an
atmosphere of 5% CO2.

The mouse GV oocytes were microinjected with WT or
mutant cRNAs using a Leica Hoffman microscope (DMi8;
leica, Wetzlar, Germany) equipped with a TransferMan 4r
micromanipulator, InjectMan 4, and FemtoJet 4i (Eppen-
dorf, Saxony, Germany). About 5–10 pl of cRNA solution
(200–1000 ng/µl) was microinjected into the cytoplasm of
each mouse GV oocyte. Injected GV oocytes were matured
in vitro in M2 medium (Sigma-Aldrich, NSW, Australia)
containing 10% FBS and penicillin-streptomycin (Gibco)
for 12 h. Mature oocytes were then collected and mixed
with sperm in human tubal fluid medium (Millipore, USA)
for fertilization. All oocytes were cultured at 37 °C in an
atmosphere of 5% CO2. All experimental mouse protocols
were reviewed and approved by the Shanghai Medical
College of Fudan University.

Two-electrode voltage-clamp electrophysiology

X. laevis oocytes were injected with 150 ng/μl WT or
mutant PANX1 cRNAs. At 12–18 h after injection, a two-
electrode voltage-clamp experiment was performed in the
standard external solution containing 2 mM CaCl2, 2 mM
KCl, 1 mM MgCl2, 90 mM NaCl, and 5 mM HEPES with
or without 10 mM carbenoxolone (CBX) (Sigma-Aldrich,
NSW, Australia). The pH was adjusted to 7.4 using KOH.
Initially, the membrane potential was held at −60 mV for
100 ms, then changed from −100 to +60 mV in 2 s ramps
with a 20 mV increase per step. Data were captured and
analyzed using the pClamp10 software (Molecular Devices,
San Jose, CA, USA).

Statistical analyses

All data are representative of at least three independent
experiments. GraphPad Prism was used to perform the
statistical analysis. Values were analyzed by Student’s t
tests when comparing experimental groups, and P values
<0.05 were considered significant.

Results

Clinical characteristics of the probands

The two probands from the two independent families had
been diagnosed with primary infertility for several years
(Fig. 1). The proband (II-1) in family 1 was 29 years old at
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examination and had regular menstrual cycles and normal
sex hormone concentrations. She had undergone a failed
IVF and a failed ICSI attempt. In the IVF attempt, as noted
in her medical records, a total of 52 oocytes were retrieved
(Table 1), and 43 of them were successfully fertilized.
However, all fertilized oocytes gradually degenerated and
died within 48 h, accompanied by cytoplasmic shrinkage

and darkening as previously described [12]. In the ICSI
attempt, 17 first polar body (pb1) oocytes were successfully
fertilized. However, all fertilized oocytes died within 24 h.
Individual II-1 had one older sister (II-2) who had given
birth normally.

The proband in family 2 was 34 years old at examination
and had undergone two failed IVF attempts. In the first
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Fig. 1 Identification of
pathogenic variants in PANX1.
A Two pedigrees carrying
PANX1 variants that lead to
infertility with the oocyte death
phenotype. Sanger sequencing
confirmation is shown below the
pedigrees. Squares denote male
family members, circles denote
female members, the diamond
denotes unknown gender, black
solid circles denote the
probands, and the equal sign
denotes infertility. B Locations
of the newly identified
homozygous variants in PANX1
exons and the protein structure
of PANX1. Red arrows indicate
the newly identified variants and
the blue arrow indicates the
variants reported previously. TM
transmembrane region, EC
extracellular region, IC
intracellular region. C The
affected amino acids were
compared among seven
mammalian species in a
conservation analysis.
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attempt, a total of 12 oocytes were retrieved (Table 1), of
which 11 morphologically normal pb1 oocytes were suc-
cessfully fertilized with two pronuclei, but all of them
gradually died within 48 h in the same manner as seen in
patient II-1 in family 1. In her second IVF attempt, six
morphologically normal pb1 oocytes were retrieved, and
five of them were successfully fertilized. Likewise, four
fertilized oocytes died within 48 h and only one zygote was
viable and developed to a grade II 8-cell embryo, but it
failed to establish pregnancy (Table 1).

Identification of homozygous variants in PANX1

Pathogenic variants in PANX1 were recently shown to cause
the oocyte death phenotype [12]. Because of the oocyte
death phenotype observed in the probands of the two
families, screening of PANX1 variants was performed. All
members in families 1 and 2 underwent Sanger sequencing
of the PANX1 exons. As expected, both probands had likely
pathogenic variants in PANX1. However, instead of the
dominant inheritance pattern that was seen in the previous
study, the two probands here possessed homozygous var-
iants in PANX1 that showed a recessive inheritance pattern.
The proband in family 1 had a homozygous missense
variant c.712T>C (p.(Ser238Pro)), while the proband in
family 2 had a homozygous missense variant c.899G>A
(p.(Arg300Gln)). The parents of the two probands were
heterozygous carriers, and the sister of the proband
in family 1, who was fertile, had WT alleles (Fig. 1A).

Specific information on the genomic position of variants,
their frequency and their in silico analysis is provided in
Table 2. The variant c.712T>C (p.(Ser238Pro)) is located at
the end of the third transmembrane region, while the variant
c.899G>A (p.(Arg300Gln)) is located in the intracellular
region at the C-terminus of PANX1 (Fig. 1B). The residue
Ser238 and Arg300 are highly conserved across species
(Fig. 1C).

Effects of homozygous variants on PANX1
glycosylation in vitro

PANX1 is a highly glycosylated membrane protein that
exists as three species, including GLY0 (the non-
glycosylated protein), GLY1 (the high mannose-type gly-
coprotein), and GLY2 (the fully processed glycoprotein)
[31, 32]. To evaluate the effects of the homozygous variants
on PANX1 glycosylation in vitro, WT and mutant PANX1
constructs were transfected into HeLa cells. The variant
p.(Cys347Ser), which resulted in oocyte death after fertili-
zation in our previous study, was used as the positive
control [12]. Compared with WT PANX1, the variant
p.(Ser238Pro) resulted in the complete absence of the
GLY2 band, which was consistent with the effect of
the variant p.(Cys347Ser) (Fig. 2A). As for the variant
p.(Arg300Gln), although the GLY2 band was retained, the
GLY2/GLY1 intensity ratio was significantly reduced
compared with WT (Fig. 2A, B). Taken together, these
results indicated that the two homozygous variants in

Table 1 Clinical characteristics of the patients with PANX1 variants.

Individual Age
(years)

Duration of
infertility (years)

IVF/ICSI
attempts

Total
oocytes

Fertilized
oocytes

Oocytes that died or
degenerated after
fertilization

Outcomes

II-1 in
family 1

28 6 First IVF 52 43 43 –

Second ICSI 31 17 17 –

II-1 in
family 2

36 7 First IVF 12 11 11 –

Second IVF 6 5 4 One viable embryo (grade II, 8-cell) that
failed to establish pregnancy

IVF in vitro fertilization, ICSI intracytoplasmic sperm injection.

Table 2 Overview of the PANX1 variants observed in two families.

Probands in families Genomic position on Chr11 (bp) cDNA change Protein change Variant type Inheritance gnomADa SIFTb PPH2b

Family 1 93912934 c.712T>C p.(Ser238Pro) Missense AR Absent T B

Family 2 93913121 c.899G>A p.(Arg300Gln) Missense AR Absent D P

The genomic reference sequence is NM_015368.4 (hg19).

AR autosomal recessive, T tolerated, D damaging, B benign, P probably damaging.
aFrequency of corresponding variants in the gnomAD browser.
bVariant assessment by SIFT and PolyPhen-2 (PPH2).
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PANX1 resulted in an altered glycosylation pattern in HeLa
cells in vitro.

The homozygous variants influenced PANX1 channel
properties but had less of an effect compared to the
heterozygous variant p.(Cys347Ser)

To determine whether homozygous variants altered the
activity of the PANX1 channel, we used X. laevis oocytes to
analyze the effect of variant PANX1 on the biophysical
properties of channel activity in a two-electrode voltage-
clamp electrophysiology experiment. As shown in Fig. 2C,
the homozygous variant groups [c.712T>C (p.(Ser238Pro)
and c.899G>A (p.(Arg300Gln))] had a significant increase
in channel activity compared with the non-injected and
WT groups. The homozygous variant groups also had
reduced resting membrane potentials and much higher
maximum current compared with the non-injected and

WT groups (Fig. 2D, E). In addition, we used the channel
inhibitor CBX in a rescue experiment. The application of
CBX decreased the current amplitudes in the injected group
(Fig. S2a–e), indicating the impairment of channel activity
as a result of the homozygous variants p.(Ser238Pro) and
p.(Arg300Gln). It should be noted that the effect of the two
homozygous variants on channel activity was much
lower than that of the heterozygous variant p.(Cys347Ser)
(Fig. 2C, E).

The homozygous variants caused mouse oocyte
death but required a higher dosage of cRNA than
the heterozygous variant p.(Cys347Ser)

Finally, to mimic the phenotype of oocyte death, we directly
injected WT or mutant PANX1 cRNAs into mouse GV
oocytes at different concentrations. GV oocytes were
allowed to mature in vitro for 12 h and then used for IVF.
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Fig. 2 Effects of PANX1 pathogenic variants on glycosylation and
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after transfection with WT or mutant PANX1 constructs. The positions
of full-length bands are shown on the right. Vinculin was used as the
loading control (bottom). B The ratio of GLY2 to GLY1 of PANX1.
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After cultivation, oocytes injected with mutant cRNAs
matured normally by extruding the first polar body
(Fig. 3A). However, these oocytes gradually died within
10 h after IVF in a dose-dependent manner. For oocytes
injected with p.(Cys347Ser) cRNA, about 70% died within
10 h after IVF at a concentration of 200 ng/μl, and more
than 90% died when the concentration was increased
to 400 ng/μl (Fig. 3A, B). Injection of homozygous
p.(Ser238Pro) and p.(Arg300Gln) cRNAs also resulted in
mouse oocyte death, but required a much higher con-
centration than p.(Cys347Ser) cRNA. Even when injecting
p.(Ser238Pro) and p.(Arg300Gln) cRNAs at 1000 ng/μl, the
rate of oocyte death was only about 50%, which was sig-
nificantly lower than the 90% death rate seen for the het-
erozygous variant p.(Cys347Ser) at a concentration of
400 ng/μl (Fig. 3A, C). These results together with the
changes in channel activity (Fig. 2D, E) lead us conclude
that the newly identified homozygous variants are disease
causing but have milder effects on PANX1 function com-
pared with previously identified heterozygous variants.
This might explain why the probands’ mothers, who had
heterozygous variants c.712T>C (p.(Ser238Pro)) or
c.899G>A (p.(Arg300Gln)), were fertile.

Discussion

In the present study, we identified two homozygous variants
[c.712T>C (p.(Ser238Pro)) and c.899G>A (p.(Arg300Gln))]
in PANX1 from two independent families with the phenotype
of oocyte death after fertilization. Unlike the previously
reported dominant inheritance pattern [12], the newly identi-
fied variants showed a recessive inheritance pattern. The
homozygous variants altered the PANX1 glycosylation pat-
tern, affected membrane electrophysiological properties, and
resulted in mouse oocyte death in vitro.

Recently we reported that four heterozygous variants
[c.1174C>T (p.(Gln392*)), c.1036A>G (p.(Lys346Glu)),
c.1040G>C (p.(Cys347Ser)), and c.61_69delACGGAGCCC
(p.(21_23delTEP))] in PANX1 are responsible for oocyte
death [12]. In this study, homozygous variants c.712T>C
(p.(Ser238Pro)) and c.899G>A (p.(Arg300Gln)) in PANX1
were also shown to cause oocyte death. It is not uncommon
that different inheritance patterns of pathogenic variants in the
same gene result in similar diseases or phenotypes. For
example, we showed that both dominant and recessive var-
iants in TUBB8 are responsible for oocyte maturation arrest
and its range of phenotypes [6, 33, 34]. This can be explained
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by the fact that variants in different locations in a gene might
have different effects on the protein, and different inheritance
patterns might thereby arise due the different effects of the
variants. In addition, our previous study showed that patients
with heterozygous variants c.1174C>T (p.(Gln392*))
and c.1036A>G (p.(Lys346Glu)) had a more severe pheno-
type with oocyte death occurring before fertilization, while
oocytes from patients carrying the heterozygous variants
c.1040G>C (p.(Cys347Ser)) and c.61_69delACGGAGCCC
(p.(21_23delTEP)) did not die until after fertilization. In this
study, the two patients also had the phenotype of oocyte death
after fertilization. Oocytes expressing p.(Ser238Pro) and
p.(Arg300Gln) cRNAs had a lower degree of channel acti-
vation than oocytes expressing p.(Cys347Ser) cRNA
(Fig. 2C), and the rate of oocyte death after injection with the
homozygous mutant cRNAs was significantly lower than for
oocytes injected with p.(Cys347Ser) cRNA (Fig. 3B, C).
These results suggest that compared to the effects of hetero-
zygous variants, the impairment of PANX1 function due to
the homozygous variants was mild. This might explain
why the variants c.712T>C (p.(Ser238Pro)) and c.899G>A
(p.(Arg300Gln)) resulted in oocyte death only in a homo-
zygous state, while heterozygous c.712T>C (p.(Ser238Pro))
or c.899G>A (p.(Arg300Gln)) did not affect oocyte devel-
opment and thus the mothers of the probands, as hetero-
zygous carriers, were still able to give birth normally.

There was also a phenotypic difference between patients
with homozygous variants. The patient with the variant
c.899G>A (p.(Arg300Gln)) could produce a viable embryo
(grade II, 8-cell) using IVF, while in the patient with the
variant c.712T>C (p.(Ser238Pro)) all of the oocytes died
after fertilization (Table 1). PANX1 is a glycoprotein that
exists in different glycosylated forms in the endoplasmic
reticulum and Golgi apparatus, and the level of glycosyla-
tion is critical for the cellular localization and the function
of the channel [35]. We found that the PANX1
GLY2 species was completely absent in the patient with the
variant c.712T>C (p.(Ser238Pro)), while the patient with
the variant c.899G>A (p.(Arg300Gln)) still had the PANX1
GLY2 species, but at a significantly lower level compared
to WT (Fig. 2A). It is likely that the degree of phenotype
severity is dependent on the impairment of PANX1 glyco-
sylation resulting from the different variants.

Previous studies have found that Panx1 knockout mice
are viable, fertile, and have no obvious reproductive phe-
notype [21]. In addition, the engineered OE-PANX1Q392*

female mice were completely infertile with the oocyte death
phenotype [12], suggesting that the oocyte death phenotype
was caused by gain-of-function effect. Therefore, the oocyte
death phenotype can be mimicked by injecting mutant
cRNAs in mouse oocyte, even in the presence of WT allele.

The two newly identified homozygous variants
c.712T>C (p.(Ser238Pro)) c.899G>A (p.(Arg300Gln)) as

well as two previously reported heterozygous variants
c.1040G>C (p.(Cys347Ser)) and c.61_69delACGGAGCCC
(p.(21_23delTEP)) resulted in oocyte death only after fer-
tilization, but the molecular mechanism for this phenotype
remains unknown. Upon fertilization, oocyte activation
consists of a coordinated series of events, including repe-
ated increases in cytoplasmic Ca2+ concentration (Ca2+

oscillations) [36], cortical granule exocytosis [37], the
resumption of the second phase of meiosis, and extrusion of
the second polar body [38]. We speculate that oocyte death
after fertilization might be related to these physiological
changes and relevant pathways, and this requires further
exploration in transgenic mice.

In conclusion, we have identified the homozygous var-
iants c.712T>C (p.(Ser238Pro)) and c.899G>A (p.
(Arg300Gln)) in PANX1 as responsible for oocyte death.
Our findings confirm the vital role of PANX1 in oocyte
development and female fertility and provide additional
genetic markers for infertility patients.
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