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Abstract

Aging is associated with widespread alterations in cerebral white matter (WM). Most prior studies of age differences in WM
have used diffusion tensor imaging (DTI), but typical DTI metrics (e.g., fractional anisotropy; FA) can reflect multiple
neurobiological features, making interpretation challenging. Here, we used fixel-based analysis (FBA) to investigate
age-related WM differences observed using DTI in a sample of 45 older and 25 younger healthy adults. Age-related FA
differences were widespread but were strongly associated with differences in multi-fiber complexity (CX), suggesting that
they reflected differences in crossing fibers in addition to structural differences in individual fiber segments. FBA also
revealed a frontolimbic locus of age-related effects and provided insights into distinct microstructural changes underlying
them. Specifically, age differences in fiber density were prominent in fornix, bilateral anterior internal capsule, forceps
minor, body of the corpus callosum, and corticospinal tract, while age differences in fiber cross section were largest in
cingulum bundle and forceps minor. These results provide novel insights into specific structural differences underlying
major WM differences associated with aging.
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Introduction
A number of age-related cognitive declines have been associated
with changes in cerebral white matter (WM, e.g., Ylikoski et al.
1993; DeCarli et al. 1995; Gunning-Dixon and Raz 2000; Turken
et al. 2008), but exactly how WM changes with age is still unclear.
One of the most common approaches to studying age-related
changes in WM is diffusion magnetic resonance imaging (dMRI).
By quantifying the diffusion of water molecules in WM tracts,
dMRI can be used to infer the geometry and structural proper-
ties of WM fiber bundles. Because WM fascicles preferentially
restrict diffusion perpendicular to their orientation, the orienta-
tion and strength of diffusion in individual voxels can be used
to estimate the orientations and microstructural properties (e.g.,
fiber density [FD]) of WM pathways that traverse them. Using

this technique, many previous studies have reported significant
differences in the WM of older versus younger adults.

One of the most widely used models for characterizing diffu-
sion within individual voxels is the diffusion tensor (DT) model.
This approach models diffusion as a three-dimensional zero-
mean Gaussian distribution, whose parameters can be used
to estimate the average magnitude (mean diffusivity), primary
orientation (principal diffusion direction), and anisotropy (frac-
tional anisotropy; FA) of local diffusion. Of particular interest
in WM neuroimaging is the FA parameter, which estimates the
directional coherence of diffusion within a voxel. FA is sensitive
to many influences, including differences in fiber cohesion,
diameter and packing density, as well as extent of myelina-
tion (Le Bihan 1995; Pierpaoli and Basser 1996; Beaulieu 2002).
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However, FA’s sensitivity to multiple biological properties makes
it challenging to identify which factor or combination of factors
is responsible for any observed effects. Furthermore, because
the DT model does not distinguish between distinct fiber path-
ways that can traverse a voxel in different directions, FA can
conflate microstructural differences in individual fiber bundles
with differences in local multi-fiber geometry in the presence of
crossing fibers (Alexander et al. 2002; Tuch et al. 2002; Wedeen
et al. 2005). And crossing fibers appear to be the rule rather
than the exception: It is estimated that approximately 60–90%
of WM voxels contain multiple directionally distinct fiber pop-
ulations (Jeurissen et al. 2012). Moreover, the vast majority of
findings on age-related WM differences in the past 20 years rely
on DT metrics. Therefore, it is possible that such effects may
reflect, at least in part, differences in local multi-fiber geometry,
rather than microstructural differences more directly related to
transmission capacity along particular pathways.

Table 1 provides a summary of a number of influential stud-
ies that used DTI to investigate age effects on WM (a number
of other studies have investigated how best to model FA as a
function of age but did not focus on the key differences between
younger and older adults (Westlye et al. 2009; Hasan et al. 2010;
Kochunov et al. 2011; Lebel et al. 2012). As shown in the main
findings column, there is considerable variability in the tracts
that have been found to exhibit lower FA in older adults. The
genu of the corpus callosum was found to have lower FA in older
adults in most studies, while the cingulum, superior longitudi-
nal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inter-
nal and external capsule, fornix, corona radiata, forceps minor,
and sagittal striatum were found to have lower FA in older adults
in at least two of seven studies. As the FA metric may reflect
multiple WM properties, a key objective of the present study
was to investigate select influences underlying age differences
in FA using a combination of alternative diffusion measures
of microstructural, macrostructural, and multi-fiber geometric
properties of human WM.

Specifically, we used fixel-based analysis (FBA) to assess
age-related differences at the level of individual fiber segments
(“fixels”) and individual voxels (typically containing multiple
fixels). FBA employs a spherical harmonic representation of
diffusion that can more readily represent complex multi-fiber
geometry than tensor-based models, allowing for anatomically
informative metrics to be separately estimated for distinct fiber
populations within a voxel (Tournier et al. 2007; Wilkins et al.
2015). FBA utilizes constrained spherical deconvolution (CSD) to
estimate fiber orientation distribution functions (fODFs) within
each voxel and then segments fODFs into orientationally dis-
tinct lobes corresponding to distinct fiber populations (“fixels”)
within a voxel. Figure 1 displays what a tensor model and a fOD
model might look like for a single voxel that contains crossing
fibers. The fOD model is able to represent multiple orientation-
ally distinct fiber populations, exemplifying its advantage in
regions with crossing fibers. This approach allows the diffusion
associated with individual fiber segments to be estimated inde-
pendently by measuring the size of their respective fODF lobes,
effectively deconfounding local multi-fiber geometry and tissue
microstructure metrics.

FBA can be used to estimate both the cross section of individ-
ual fixels (the fiber cross section [FC]) and the density of fibers
with a fixel (i.e., FD; Raffelt et al. 2017). Furthermore, the product
of these two measures (the fiber density and cross section or
FDC) provides an estimate of the total number of fibers in a
fiber bundle. FBA can also be used to estimate the so-called

complexity (CX) of the multi-fiber organization within a voxel
(Riffert et al. 2014), with complexity being low if a single fiber
bundle is present and high in the presence of multiple crossing
fibers with similar FD.

Figure 2 illustrates the different metrics. The far left of the
figure illustrates fODFs of increasing complexity from three
different voxels. Complexity measures the relative density of
nonprimary fixels versus the primary (largest) fixel present in
each voxel, ranging from zero (single fixel present) to one (all
fixels in the voxel have the same FD). The fODF on the top of the
figure would be consistent with a single fiber bundle passing
through it and therefore has low complexity. Conversely, the
fODF on the bottom would be consistent with a voxel containing
multiple crossing fibers of similar density and therefore has high
complexity.

Immediately to the right of the fODFs in the figure are illus-
trations of tensor models for the same three voxels. The tensor
model at the top is very elongated in the primary direction of
water diffusion and very thin in directions perpendicular to that
primary direction, leading to a high estimate of FA. Conversely,
the tensor model at the bottom is more spherical leading to
a low estimate of FA. The fODF for that voxel (on the bottom
left of the figure) suggests that there are multiple crossing
fibers in that voxel each of which has a distinct direction, but
note that because DTI models the data as a single ellipsoid
it cannot distinguish the different fiber bundles or estimate
their individual properties (e.g., their cross section or FD). The
ability to distinguish individual fiber bundles and estimate their
properties is one of the main advantages of the fixel-based
approach.

On the right of Figure 2 is an illustration (adapted from Raffelt
et al. 2017) of the specific metrics computed by the FBA: FC,
FD, and the product of cross section and density. On the top
is a cutaway view through a fiber bundle with individual fibers
represented by dots. The FBA measure of FC is an estimate of the
size of the entire fiber bundle (i.e., the area of the circular area
containing individual fibers/dots). The FBA measure of FD is an
estimate of the number of individual fibers per unit area (i.e.,
how densely packed the individual fibers/dots are in the fiber
bundle). Finally, the FBA measure of FDC is simply the product
of the FD and the FC measures. Fiber bundles that are both thick
and densely packed will therefore have the highest FDC.

The fiber bundle immediately below and to the left has a
lower FD (but the same FC) as the fiber bundle above it. The fiber
bundle directly below and in the middle has a smaller FC (but the
same FD) as the fiber bundle above it. Finally, the fiber bundle
below and to the right has a lower FD and lower FC than the
fiber bundle above it.

By examining the number and relative size of fixels within
each voxel, the fixel-based approach can be used to identify
voxels where age effects on FA could potentially be explained
by differences in local multi-fiber organization within a voxel,
rather than structural differences in individual fiber popula-
tions. Because FA is differentially influenced by the strength of
diffusion along the principal axis of diffusion versus the two
orthogonal axes, decreases in FA can reflect both decreased
diffusivity in fiber populations relatively parallel to the principal
axis and increased diffusivity in relatively “off-axis” populations
(Grazioplene et al. 2018). For example, the decreases in FA on the
left of Figure 2 appear to be primarily due to this kind of off-
axis increase in diffusivity. And to the extent that FA reflects
the relative density of on- versus off-axis fiber bundles, age-
related changes in FA cannot be unambiguously attributed to
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Table 1 Summary of previous DTI studies of age effects on WM adapted by permission from Springer Nature: Journal of Neural Transmission.
Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies, Yap et al. (2013)

References Subjects Age range
(mean ± SD)

Image acquisition Image analysis Main findings (old relative to
young)

Bennett et al. (2010) 14 younger adults
14 older adults

18–20 (18.9 ± 0.7)
63–72 (67.6 ± 3.1)

3T
35 diffusion directions
2.5 mm slice

TBSS Lower FA: Frontal, posterior
pericallosal, SLF, sagittal
striatum, genu of the corpus
callosum, external capsule,
fornix, anterior pericallosal,
anterior/superior corona
radiata, cerebellum, cerebral
peduncle
Greater FA: None

Burzynska et al. (2010) 80 younger adults
63 older adults

20–32 (25.7 ± 3.2)
60–71 (64.8 ± 2.9)

1.5T
12 diffusion directions
2.5 mm slice

TBSS Lower FA: Anterior, superior,
and posterior corona radiata;
WM of the superior, inferior,
middle, frontal, and straight
gyri; WM of the precuneus and
superior parietal lobule;
cingulum (mainly dorsal);
fornix; forceps minor and
major; external capsule;
internal capsule; sagittal
striatum; parahippocampal WM
Greater FA: None

Davis et al. (2009) 20 younger adults
20 older adults

n/a (20.04 ± 2.5)
n/a (68.89 ± 5.3)

3T
15 diffusion directions
2.0 mm slice

TG
TBSS

Lower FA: Genu and splenium
of the corpus callosum, the
cingulum bundle, ILF, uncinate
fasciculus
Greater FA: None

Giorgio et al. (2010) 37 younger adults
19 mid-adults
10 older adults

23.0–40.2 (n/a)
41.0–59.6 (n/a)
60.0–81.6 (n/a)

1.5T
60 diffusion directions
2.5 mm slice

TBSS
VBM

Lower FA: Anterior thalamic
radiations, external capsule,
anterior limb of internal
capsule, cerebral peduncle and
cerebellum corona radiata, SLF,
forceps minor, IFOF
Greater FA: None

Hugenschmidt et al.
(2008)

20 younger adults
21 mid-adults
23 older adults

18–38 (28.30 ± 6.3)
39–64 (47.57 ± 7.6)
65–90 (71.17 ± 4.3)

1.5T
15 diffusion
directions
3.0 mm slice

ROI
VBM

Lower FA: Genu and body of the
corpus callosum, forceps minor,
superior and inferior frontal
gyrus, centrum semiovale, optic
radiations and external capsule,
corticospinal tract
Greater FA: n/a

Kennedy and Raz
(2010)

77 adults 19–84 (56.49 ± 16.80) 1.5T
6 diffusion directions

ROI Lower FA with age: Genu and
splenium of corpus callosum,
internal capsule posterior limb,
frontal, parietal, temporal
occipital
Greater FA with age: None

Michielse et al. (2010) 69 adults 22–84 (46.9 ± 17.8) 1.5T
6 diffusion directions
2 mm slice

ROI
TG

Lower FA with age: Genu and
ventromedial prefrontal WM,
crus of the fornix, uncinate
fasciculus.
Stable FA with age: Body of the
corpus callosum, rostral, dorsal,
and parahippocampal cingulum
Greater FA with age: Splenium
of corpus callosum (starting
from mid-50s onward)

Pfefferbaum et al.
(2005)

10 younger adults
10 older adults

22–37 (28.6 ± n/a)
65–79 (72.2 ± n/a)

3T
6 diffusion
directions
2.5 mm slice

VBM Lower FA: SLF, ILF, anterior
cingulate bundle, middle frontal
gyrus, frontal forceps, and genu
Greater FA: n/a

Salat et al. (2005) 15 younger adults
9 mid-adults
14 older adults

21–37 (26.3 ± n/a)
42–59 (51.8 ± n/a)
65–76 (70.9 ± n/a)

1.5T
6 diffusion directions
2 mm slice

ROI Lower FA: Genu of the corpus
callosum, bilateral deep frontal
WM, posterior limb of internal
capsule, medial orbitofrontal
WM, and posterior
periventricular
Greater FA: n/a

ROI, regions of interest, TBSS, tract-based spatial statistic; TG, tractography; VBM, voxel-based morphometry.
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Figure 1. Tensor and fOD model for a single voxel with corresponding fixels, with location displayed on T1 image of corresponding subject.

Figure 2. Graphical illustration of complexity (CX), FA, FD, FC, and FDC. (A) fOD model and tensor model in the same voxels, in which complexity increases from top
to bottom while FA decreases. (B) An illustration of the FBA metrics FD, FC, and FDC adapted from Elsevier: Neuroimage. Investigating white matter fibre density and

morphology using fixel-based analysis. Raffelt et al. (2017) under a Creative Commons CC_BY license.

changes in a single fiber bundle versus changes in the number
of differentially oriented fiber bundles (e.g., crossing fibers).

To assess the extent to which observed age differences in
FA could be attributed to changes in such multi-fiber organiza-
tion, we examined the relationship between FA and the multi-
fixel “complexity” (CX) metric. As Figure 2 suggests, increases
in complexity might be expected to be associated with declines
in FA, and consistent with that intuition, previous studies have
reported strong negative correlations between FA and CX in a
single subject (Riffert et al. 2014) and in a study of schizophrenia
(Grazioplene et al. 2018). These results demonstrate that FA
(and group differences in FA) can indeed be influenced by the
multi-fiber composition of WM populations within a voxel. We
therefore wondered if some of the age-related differences in
FA that have been reported in previous studies could be due to

age-related differences in crossing fibers and complexity. To our
knowledge, that question has not yet been examined.

Here, we used FA, CX, and fixel-level metrics to characterize
age-related WM changes throughout the whole brain and in
16 canonical WM pathways. After first testing for age-related
differences in FA, we examined correlations between FA and
CX in regions exhibiting significant age effects and then tested
for age-related effects on FA again after statistically controlling
for CX. This allowed us to assess whether observed age effects
on FA could plausibly be attributed to changes in local multi-
fiber organization. Then, to more directly investigate structural
differences between older and younger adults at the level of
individual fiber segments, we used FBA to identify age-related
differences in estimated FD, FC, and their product (FDC) in
individual fixels throughout the brain (Raffelt et al. 2012).
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Table 2 Age, gender, and education of the study participants

Younger adults
n = 25

Older adults
n = 45

Statistic

Mean age (SD) 23.32 (3.06) 70.69 (4.95) t = 43.35
P < 0.001

Gender (%)
Male 10 (40) 17 (37.78) χ2 = 0.034
Female 15 (60) 28 (62.22) P = 0.855
Mean years of education (SD) 15.72 (1.34) 16.91 (2.10) t = 2.56

P = 0.013

Materials and Methods
Participants

Participants for this study were recruited as part of the Michigan
Neural Distinctiveness study (Gagnon et al. 2019). All partici-
pants were healthy (no debilitating physical conditions, mental
illness, or head trauma), were right-handed, and were free of
significant cognitive impairment (specifically, they all had a
composite overall cognition score >85 on the NIH Toolbox Cogni-
tion Battery; Weintraub et al. 2013). Participants were separated
into 25 younger adults (19–29 years old) and 45 older adults
(65–87 years old). Participants were excluded if they had motor
control or hearing problems, had current depression or anxiety,
had a history of drug or alcohol abuse, or drank more than 4–
6 alcoholic beverages per week (4 for women and 6 for men).
Complete information regarding exclusion criteria is reported
in Gagnon et al. (2019). All study procedures were approved by
the University of Michigan Medical School Institutional Review
Board. Participant demographics are displayed in Table 2.

Imaging Acquisition and Processing

Magnetic resonance imaging (MRI) data were collected using
a 3T General Electric Discovery Magnetic Resonance Sys-
tem with an eight-channel head coil at the University of
Michigan’s Functional MRI Laboratory. The diffusion MRI
(dMRI) data were collected with a diffusion-weighted 2D dual
spin echo pulse sequence with the following parameters:
repetition time (TR) = 7250 ms; echo time (TE) = 2.5 ms; field
of view (FOV) = 240 × 240 mm; 32 diffusion directions; 60
axial slices with thickness = 2.5 mm (0.9375 mm in-plane
resolution) and 0.1 mm spacing. Five volumes without dif-
fusion weighting (b = 0 s/mm2) and 32 diffusion-weighted
volumes (b = 1000 s/mm2) were collected. Acquisition time
was approximately 10 min. Two scans were collected with the
previously described properties with opposite phase encod-
ing. T1-weighted structural images were collected with the
following parameters: TR = 3173.1 ms; TE = 24.0 ms; inversion
time = 896 ms; flip angle = 111◦; FOV = 220 × 220 mm; 43 axial
slices with thickness = 3 mm and no spacing; acquisition
time = 100 s.

Diffusion magnetic resonance imaging (dMRI) processing fol-
lowed the published steps outlined in the MRtrix3 user manual
(https://mrtrix.readthedocs.io/en/3.0_rc2/fixel_based_analysis/
ss_fibre_density_cross-section.html). Details of our pipeline
can be found on GitHub (https://github.com/umich-tpolk-la
b/fba_paper). This included preprocessing the data to correct
for susceptibility distortion and motion and to apply an eddy
current correction, all using FSL’s eddy_correct/TOPUP tools

(Jenkinson et al. 2012). Each scan was individually examined
for major artifacts. Bias field correction was performed using
ANTS N4 (http://picsl.upenn.edu/software/ants/). dMRI data
were intensity normalized across subjects based on the median
b = 0 s/mm2 intensity within a WM mask and resampled to an
isotropic voxel size of 1.3 mm using b-spline interpolation. A
bias field correction was also applied (Tournier et al. 2019).

CSD (“Tournier” algorithm) was used to compute fiber orien-
tation distributions (fODs) (Tournier et al. 2007). A group aver-
age response was used to estimate fODs in all subjects, as
described in Raffelt et al. (2012). A WM template fixel mask
was generated with a peak amplitude threshold of 0.15. Whole-
brain probabilistic tractography was then performed on the
fOD template generating 20 million streamlines and spheri-
cal deconvolution-informed filtering of tractogram (SIFT) was
applied with an output of 2 million streamlines (Smith et al.
2013). SIFT removes individual streamlines so that the density
of reconstructed connections is proportional to the FD as esti-
mated by the diffusion model, providing a biologically relevant
estimation of the density of WM axons connecting two regions.
The remaining streamlines were used to estimate the fixel–fixel
connectivity matrix, which was used to inform threshold-free
cluster enhancement in the FBA (below).

A five-tissue-type (5TT) image was generated from the T1-
weighted structural image using FSL. Volumes from the 5TT
image were used to estimate regions containing CSF and were
included as masks in all analyses to minimize partial voluming
effects.

Whole-Brain Voxel-Based Analysis and FBA

The general workflow for processing and analyzing the data
is shown in Figure 3. Both the whole-brain DTI analysis and
the FBA analysis were performed using MRtrix3. DT images
were generated from group-registered diffusion-weighted
images using an iteratively reweighted linear least squares
estimator. FA maps were then created for each subject and
smoothed using a Gaussian kernel with a standard deviation of
1.3 mm using the mrfilter command. Whole-brain voxel-based
analysis was then performed to identify voxels in which FA was
significantly different in the young versus the older participants
(with threshold-free cluster enhancement, default parameters:
dh = 0.1, E = 0.5, H = 2) using the mrclusterstats command. To
control family-wise error (FWE) rate, 5000 permutations were
used to derive a null distribution of maximum cluster-enhanced
test statistics across voxels and then the true test statistic
for each voxel was compared against that null distribution
to determine if it was beyond the 95th percentile of the
distribution. Each voxel was then assigned a FWE-corrected

https://mrtrix.readthedocs.io/en/3.0_rc2/fixel_based_analysis/ss_fibre_density_cross-section.html
https://mrtrix.readthedocs.io/en/3.0_rc2/fixel_based_analysis/ss_fibre_density_cross-section.html
https://github.com/umich-tpolk-lab/fba_paper
https://github.com/umich-tpolk-lab/fba_paper
http://picsl.upenn.edu/software/ants/
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P-value (Holmes et al. 1996; Smith and Nichols 2009). We
localized the effects based on the Catani and MTde (2012) and
Wakana et al. (2007) WM atlases.

We also performed a similar whole-brain analysis with
MRtrix3 but using fixel-based methods. FD, fiber cross section
(FC), and FDC were calculated for every fixel for each subject.
T-tests statistically compared younger with older adults at
each WM fixel. Connectivity-based fixel enhancement (CFE)
was used to perform smoothing and cluster-based statistical
inference. CFE identifies structurally connected fixels that likely
share underlying anatomy using probabilistic tractography.
Prior to statistical analysis, tract-specific smoothing was
performed, followed by enhancement of the statistical map
using threshold-free cluster enhancement based on estimated
fixel–fixel connectivity within the population template (Raffelt
et al. 2015). CFE was performed using 2 million streamlines
and default parameters (smoothing = 10 mm full-width at half-
maximum, C = 0.5, E = 2, H = 3; taken from Raffelt et al. 2015). Five
thousand permutations were used to derive a null distribution
of maximum cluster-enhanced test statistics across fixels and
then the true test statistic for each fixel was compared against
that null distribution to determine if it was beyond the 95th
percentile of the distribution. Each fixel was then assigned a
FWE-corrected P-value. We localized the effects based on the
Catani and MTde (2012) and Wakana et al. (2007) WM atlases.

We used MRtrix’s fixel2voxel command to estimate complex-
ity (CX) at every voxel for each participant. To determine the cor-
relation between FA and CX in voxels with significantly different
FA between age groups, we first used the mrdump command to
compute FA and CX values for each subject in every voxel that
exhibited a significant age difference in FA. We then used an in-
house script implemented in MATLAB (R2017b) to determine the
correlation between FA and CX values in those voxels. We first
computed the average FA across the whole mask in each subject
and the average CX across the whole mask in each subject.
We then computed the correlation between these measures of
average FA and average CX across subjects. Additionally, we
calculated the correlation between FA and CX across all voxels
in the significance mask within each subject. We then examined
the distribution of these correlation coefficients across subjects.

Finally, to estimate age-related effects on FA while controlling
for CX, we controlled for complexity differences both across
individuals and across voxels within each individual. First, to
control for CX across individuals, we regressed mean FA onto
mean CX and subtracted each subject’s predicted mean from all
their voxels. Next, to control for CX across voxels, we regressed
CX onto FA across voxels within each subject’s analysis mask.
We then subtracted the slope term of these regressions (CX
times the change in FA per unit change in CX) from each subject’s
mean-corrected FA image, resulting in FA images with means
corrected according to across-subject correlations, and voxel-
wise deviations from the mean corrected according to within-
subject correlations. This approach ensured that corrections at
the within-subject level did not affect subjects’ mean FA, so
that that mean differences remaining after between-subjects
correction were retained (see Supplemental Fig. 1).

Tract-Specific Analyses

We also performed tract-specific analyses using both DTI-
based and FBA-based methods. We selected 16 major tracts for
analysis, including canonical pathways included in most WM
parcellations and previous studies of age group differences in

the DTI literature. WM atlases from Wakana et al. (2007) and
Catani and MTde (2012) were used as anatomical guidelines to
manually select regions for inclusion and exclusion. The WM
template computed by MRtrix was used for ROI placement so
that all subjects’ data were co-registered beforehand. We used
the tckedit command in MRtrix3 to extract tracts of interest
from the whole-brain tractogram and mapped them to fixels
using the tck2fixel command (45◦ angular threshold). Tracts
were thresholded to only include fixels that had at least 1% of
each tract’s streamlines associated with them. The thresholded
fixel maps were used for calculating mean FD, FC, and FDC
for each tract for each subject. Using the fixel2voxel command
in MRtrix, we then converted the thresholded fixel maps to
voxel maps. The voxel maps were used to calculate mean FA for
each tract for each subject. The following tracts were included:
cingulum (separated into retrosplenial, subgenual cingulum,
and parahippocampal cingulum as described in Jones et al.
(2013); the parahippocampal cingulum was further separated
into parietal and temporal components), corticospinal tract
(separated into superior and inferior), forceps major, forceps
minor, fornix, inferior fronto-occipital fasciculus (IFOF), ILF,
internal capsule, SLF (separated into SLF I, II, and III as described
in Schotten et al. 2011), and uncinate fasciculus. SLF I projects
to the parietal precuneus and supplementary motor area; SLF II
projects to the posterior region of the inferior parietal lobule and
the lateral aspect of the superior and middle frontal gyrus; and
SLF III projects to the inferior parietal lobule and the posterior
region of the inferior frontal gyrus (Catani and MTde 2012).
The parahippocampal cingulum and corticospinal tract were
each divided into two components to facilitate comparison with
our whole-brain analyses, which indicated distinct local effects
along these pathways. Mean FA, FD, FC, and FDC were calculated
for each tract bilaterally. A total of 10 000 permutations were
used to derive a null distribution of maximum t-statistics across
tests and then the true t-statistic for each test was compared
against that null distribution to determine if it was beyond the
95th percentile of the distribution.

Visualizing Results

Visualizations of the results were generated using the mrview
tool from MRtrix3. The 2 million streamlines generated from
SIFT were cropped to only include fixels or voxels in which the
effect of age group was significant as defined by a FWE-corrected
P-value below 0.05. The significant streamline segments are
displayed on the WM population template.

The results for tract-specific analysis are also displayed on
the WM population template. For tracts that were found to be
significantly different between older and younger adults follow-
ing a two-sample t-test, Cohen’s d was calculated. The tracts
were generated in template space and are color coded by the
calculated Cohen’s d.

Results
Whole-Brain DTI Analysis

Figure 4 displays WM voxels that exhibited a significantly lower
FA value in older adults compared with younger adults. The
voxels are colored according to effect size. Older adults exhibited
widespread patterns of lower FA values, relative to younger
participants, in a variety of WM tracts including forceps minor,
fornix, bilateral IFOF, bilateral SLF I and III, as well as bilateral

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab056#supplementary-data
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Figure 3. Diagram displaying the workflow for four of the different analyses conducted in the current study.

anterior internal and external capsule. The strongest age effects
(i.e., FA in younger > older) were apparent in the fornix and in
the genu of the corpus callosum (Fig. 4).

We also evaluated the opposite contrast by evaluating voxels
in which older adults had greater FA than younger participants
(Fig. 5). The voxels in Figure 5 are also colored by the effect
size. The regions in which FA was greater for older adults were

primarily limited to the superior cerebellar peduncles, external
capsule, and cingulum bundle.

Tract-Specific DTI Analysis

In addition to whole-brain analyses, we also performed tract-
specific analyses on 16 tracts (Fig. 6). We chose these specific
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Figure 4. Lower WM FA in older compared with younger adults, displayed on the WM population template. Colors represent voxels in which FA was significantly lower
in the older compared with the younger group, with brighter colors representing larger effect sizes (Cohen’s d).

Figure 5. Greater WMFA in older compared with younger adults, displayed on the WM population template. Colors represent voxels in which FA was significantly
greater in the older compared with the younger group, with brighter colors representing larger effect size (Cohen’s d).

WM tracts to reflect canonical pathways included in most WM
parcellations and previous studies in the DTI literature com-
paring age groups. In addition, the parahippocampal cingulum
and corticospinal tracts were further divided based on prior
work (Jones et al. 2013) and on the results from our whole-brain
analysis, which suggested the presence of differences along
these pathways.

The age group comparisons of mean FA across tracts showed
widespread differences in which older adults mean tract FA
was significantly lower than younger adults (Fig. 7 and Table 3).
Similar to the whole-brain analysis, FA was significantly lower
in older versus younger adults in forceps minor, fornix, bilateral
IFOF, bilateral internal capsule, and bilateral SLF I and SLF III
(for all, P < 0.001). FA was also lower in SLF II (P < 0.001 for left
and P = 0.002 for right), bilateral ILF (P = 0.008 for left and P = 0.002
for right), bilateral parietal parahippocampal cingulum (P = 0.003
for left and P = 0.006 for right), and right uncinate fasciculus
(P = 0.022). Mean FA was greater in older adults compared with
younger adults in right subgenual (P = 0.002) and right retrosple-
nial cingulum (P = 0.019) (not shown).

Correlation between FA and CX

We evaluated the correlation between mean FA and CX within
the FA significance mask across subjects (Fig. 8). We observed a
very strong negative correlation between FA and CX (r = −0.81,
P < 0.001) as well as in the older subjects (r = −0.38, P = 0.01) and
younger subjects (r = −0.65, P < 0.01) alone. Each participant also
exhibited a significant (P < 0.001) negative correlation (mean
r = −0.72) between FA and CX across voxels in the mask (Fig. 8,
inset).

To further investigate the correlation between FA and CX
within voxels, we computed the correlation coefficient at every
voxel of the WM mask across participants (Fig. 9). We observed
a very strong widespread negative correlation between FA and
CX, with minimal areas of no significance or positive correlation.
Similar results were obtained in both the young and the older
group when they were analyzed separately (Supplementary Figs
S2 and S3).

Whole-Brain DTI Analysis Controlling for CX

To further assess the relationship between CX, FA, and age, we
examined CX–FA correlations both across subjects (i.e., correla-
tions between mean CX and FA) and within subjects (i.e., corre-
lations across voxels). Then, we statistically controlled for these
correlations to assess how they each contributed to apparent age
effects on FA.

Figure 10A shows the mean CX and FA for each individual
(points) and the estimated slopes of corresponding within-
subject regressions across voxels (lines). Individual points/lines
are colored according to age group (blue = young; orange = old).
As can be appreciated from the figure, CX and FA were strongly
correlated both across subjects (r = −0.54, P < 0.001) and within
subjects (all r < −0.48, all P < 0.001). Moreover, mean FA and
mean CX differed in opposite directions with age (Fig. 10A,
colored histograms; FA: t[68] = −4.57, P < 0.001; CX: t[68] = 3.26,
P = 0.002), suggesting that CX–FA correlations likely influenced
apparent age effects on FA.

To more directly examine the influence of CX–FA correlations
on observed age differences, we re-examined age effects on
FA after statistically controlling for CX–FA correlations, both

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab056#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab056#supplementary-data


Age-Related Differences in White Matter Kelley et al. 3889

Figure 6. The 16 tracts that were included in the tract-specific analyses, displayed on the WM population template.

Figure 7. Whole-brain projections onto 2D slices showing WM tracts in which average FA was significantly lower in the older versus younger participants,
displayed on the WM population template. Streamlines within each tract are colored by the tract’s effect size (Cohen’s d), with brighter colors representing greater

effect size.

across subjects and across voxels within subjects. Controlling
for mean CX across subjects substantially reduced but did not
fully abolish observed age differences in mean FA. Specifically,
age differences in mean FA were still significant after control-
ling for CX (t[68] = 2.98, P = 0.004), but the size of the effect was
significantly reduced (t[68] = 3.26, P = 0.002). As expected, this
resulted in a significant reduction in the apparent age effect on
FA throughout the entire analysis mask (Fig. 11, right, top row),
which reduced the spatial extent of significant voxels (Fig. 11,
left, center row). Whereas the original DTI analysis produced
100 991 significant voxels (25.8% of the analysis mask), control-
ling for CX–FA correlations across subjects reduced this number
to 63 205 voxels (16.1%).

Controlling for within-subject FA-CX correlations across
voxels had very little additional effect beyond the effect of con-
trolling for mean CX across subjects (76 additional voxels; 0.02%;
Fig. 11, right, bottom row), with no discernable spatial pattern
across voxels. This correction produced only modest, spatially
indiscriminate reductions in apparent age effects (Fig. 11, left,
bottom row), reducing the number of significant voxels to
45 618 (11.6% of the analysis mask). This result further suggests
that age-associated FA-CX correlations manifest at a relatively
global level, with little specificity to particular structures or
regions.

Tract-Specific DTI Analysis Controlling for CX

We also evaluated the effects of controlling for CX in com-
paring tract-wise FA values between age groups (Fig. 12 and
Table 3). After controlling for CX across subjects, mean FA was
significantly lower in older versus younger adults in bilateral
parietal parahippocampal cingulum (P = 0.01 for left and P = 0.020
for right), forceps minor (P < 0.001), fornix (P < 0.001), bilateral
IFOF (P < 0.001 for both left and right), bilateral internal capsule
(P = 0.003 for left and P < 0.001 for right), bilateral SLF I (P < 0.001
for both left and right), bilateral SLF II (P < 0.001 for left and
P = 0.022 for right), and SLF III (P = 0.004 for left and P = < 0.001
for right). In contrast, mean FA was significantly greater in older
than younger adults in right subgenual (P < 0.001) and right
retrosplenial cingulum (P = 0.002) (not shown).

After further controlling for FA–CX correlations across
voxels, FA was significantly lower in older versus younger
adults in forceps minor (P < 0.001), fornix (P < 0.001), bilateral
ILF (P = 0.040 for left and P = 0.009 for right), right internal
capsule (P < 0.001), left SLF II (P = 0.018), and bilateral SLF
III (P ≤ 0.001 for both left and right). In contrast, mean FA
controlling for CX was significantly greater in older than
younger adults in right subgenual (P = 0.006) and bilateral
retrosplenial cingulum (P = 0.002 for left and P = 0.003 for right)
(not shown).
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Table 3 Results from tract-specific analyses showing significant age differences in FA, CX-corrected FA, FD, FC, and FDC with corresponding
significant P-values

Tract FA FA (CX-corrected
across subjects)

FA (CX-corrected
across subjects
and voxels)

FD FC FDC

Left cingulum retrosplenial — — 0.002 (O>Y) — <0.001 <0.001
Right cingulum retrosplenial 0.019 (O>Y) 0.002 (O>Y) 0.003 (O>Y) — <0.001 <0.001
Left cingulum subgenual — — — — <0.001 <0.001
Right cingulum subgenual 0.002 (O>Y) <0.001 (O>Y) 0.006 (O>Y) — <0.001 <0.001
Left cingulum parahippocampal
parietal

0.003 0.01 — — — —

Right cingulum parahippocampal
parietal

0.006 0.020 — 0.023 — —

Left cingulum parahippocampal
temporal

— — — <0.001 — <0.001

Right cingulum parahippocampal
temporal

— — — <0.001 — <0.001

Left corticospinal inferior — — — <0.001 0.003 <0.001
Right corticospinal inferior — — — <0.001 0.002 <0.001
Left corticospinal superior — — — — — —
Right corticospinal superior — — — — — —
Forceps major — — — — — —
Forceps minor <0.001 <0.001 <0.001 <0.001 — <0.001
Fornix <0.001 <0.001 <0.001 <0.001 <0.001 (O>Y) <0.001
Left IFOF <0.001 <0.001 — <0.001 — —
Right IFOF <0.001 <0.001 — <0.001 — 0.009
Left ILF 0.008 — 0.040 — — —
Right ILF 0.002 — 0.009 — — 0.030
Left anterior internal capsule <0.001 0.003 — <0.001 — <0.001
Right anterior internal capsule <0.001 <0.001 <0.001 <0.001 — <0.001
Left SLF I <0.001 <0.001 — 0.013 (O>Y) 0.005 —
Right SLF I <0.001 <0.001 — — 0.001 —
Left SLF II <0.001 <0.001 0.018 — — —
Right SLF II 0.002 0.022 — — — —
Left SLF III <0.001 0.004 <0.001 — — —
Right SLF III <0.001 <0.001 <0.001 — — —
Left uncinate fasciculus — — — <0.001 — <0.001
Right uncinate fasciculus 0.022 — — — — 0.030

Note: Most of the P-values correspond to tests in which younger participants exhibited significantly higher values than older participants. P-values in which older
participants exhibited significantly higher values than young are indicated by “(O>Y)”. All analyses used 10 000 permutations to correct for multiple comparisons.
Dashes represent no significant difference.

The effects of CX-correction on tract-level FA effects can be
appreciated by comparing the first three columns of Table 3. In
general, apparent age effects on FA decreased with each stage of
correction for FA–CX correlations.

Whole-Brain FBA

Following the DTI analyses, we evaluated age group differences
in the FBA metrics: FD, FC, and combined FDC (Fig. 13). FD
in older adults was significantly lower in the fornix, bilateral
anterior internal capsule, forceps minor, body of the corpus
callosum, and corticospinal tract, relative to younger partici-
pants. In addition, older adults exhibited significantly lower FC
than younger adults in the cingulum bundle and forceps minor.
Last, FDC in older adults was significantly lower in the anterior
subcortical WM regions, including forceps minor, anterior limb
of the internal capsule, subgenual cingulum, fornix, and IFOF. In
general, the FBA-based metrics exhibited a gradient along the
anterior–posterior axis with greater age effects in more anterior
regions. Furthermore, most of the age effects in anterior brain

regions were due to differences in cross section, rather than
density (Fig. 13).

Importantly, the opposite contrast also revealed a set of WM
regions in which these measures were greater in older partici-
pants than in their younger counterparts (Fig. 14). Whereas FD
in older adults was only greater in bilateral SLF I, FC was greater
in forceps major and the body of the corpus callosum. FDC was
only greater in forceps major.

Tract-Specific FBA

Last, we compared mean tract-specific fixel-based parameter
values between age groups. As shown in Figure 15 and Table 3,
FD was significantly lower in older than younger across
multiple tracts: in bilateral temporal (P < 0.001) and right parietal
parahippocampal cingulum (P = 0.023), bilateral inferior corti-
cospinal (P < 0.001), forceps minor (P < 0.001), fornix (P < 0.001),
bilateral IFOF (P < 0.001), bilateral internal capsule (P < 0.001),
and left uncinate fasciculus (P < 0.001). FC was significantly
lower in older adults in bilateral retrosplenial (P < 0.001) and
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Figure 8. Correlation between average FA and average CX within the significance mask across subjects (P < 0.001 and r = −0.81). The bottom left corner contains a
histogram displaying the frequency of correlation coefficients between FA and CX across voxels within each subject. The mean correlation coefficient was r = −0.72.

Figure 9. Correlation between FA and CX across subjects at each voxel, displayed on the WM population template. Colors represent the strength of the negative or
positive correlation coefficient for each voxel, with brighter colors representing stronger correlation coefficients.

subgenual cingulum (P < 0.001), bilateral inferior corticospinal
tract (P = 0.003 for left and P = 0.002 for right), and bilateral SLF
I (P = 0.005 for left and P = 0.001 for right). FDC was significantly
lower in older adults in bilateral retrosplenial (P < 0.001),
bilateral subgenual (P < 0.001), bilateral temporal parahip-
pocampal cingulum (P < 0.001), bilateral inferior corticospinal

(P < 0.001), forceps minor (P < 0.001), fornix (P < 0.001), right
IFOF (P = 0.009), right ILF (P = 0.030), bilateral internal capsule
(P < 0.001), and bilateral uncinate fasciculus (P < 0.001 for left
and P = 0.030 for right). FD was greater in older adults in left SLF
I (P = 0.013) and FC was greater in older adults in fornix (P < 0.001)
(not shown).
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Figure 10. Relationship between CX, FA, and age. (A) Correlations between CX and FA across subject means (colored points) and across voxels within each subject

(slopes: colored lines; the inset displays a histogram of the distribution of these within-participant correlation coefficients). Colors indicate age group (blue = young;
orange = old). Colored curves show interpolated histograms (kernel density plots) of subject means for each group. (B) Observed age differences in mean FA before (left)
and after (right) statistically controlling for CX–FA correlations across subjects.

Figure 11. Effects of controlling for complexity. (Left) Apparent age differences in FA in the original data (top), after controlling for CX–FA correlations across subjects
(middle) and then across voxels (bottom). (Right) Voxels exhibiting significantly reduced age differences in FA after each stage of correction.

Summary of Age Effects

Table 3 presents a summary of the effects of age on all the
measures analyzed here: FA, FA after controlling for complexity,
FD, FC, and FDC. The table presents significant results from
analyses in which age was treated as a dichotomous variable.
We repeated these analyses while treating age as a continuous
variable and all 84 significant results replicated.

Discussion
The present study establishes multiple notable effects regarding
age-related differences in WM structure and organization. First,
by combining traditional DTI modeling of dMRI data with
newer fixel-based approaches, we show that some, but not
all age differences in FA, are influenced by local multi-fiber
geometry (crossing fibers) within individual voxels. Indeed,
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Figure 12. Whole-brain projections onto 2D slices showing WM tracts in which average FA was significantly lower in the older versus younger participants after

controlling for complexity (FA–CX), displayed on the WM population template. Streamlines within each tract are colored by the tract’s effect size (Cohen’s d), with
brighter colors representing greater effect size.

Figure 13. Lower WM FD (top row), FC (middle row), and the product of FDC (bottom row) in older compared with younger adults, displayed on the WM population
template. Colors represent fixels in which the corresponding measure was significantly lower in the older compared with the younger group, with brighter colors
representing larger effect size (Cohen’s d).

age-based effects of fiber complexity on FA manifest rather
globally, leading to overestimates of age effects on FA throughout
the brain’s WM. Second, by separately accounting for differences
in FDC, the results from fixel-based analyses afford new insight
into the micro- and macrostructural nature of age differences
in WM pathways beyond what has been reported in prior DTI

aging studies. Specifically, age differences in FD were prominent
in fornix, bilateral anterior internal capsule, forceps minor,
body of the corpus callosum, and corticospinal tract, while
age differences in fiber cross section were largest in cingulum
bundle and forceps minor. Third, we report DTI and fixel-
level findings that reveal a more heterogeneous pattern of
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Figure 14. Greater WM FD (top row), FC (middle row), and the product of FDC (bottom row) in older compared with younger adults, displayed on the WM population

template. Colors represent fixels in which the corresponding measure was significantly greater in the older compared with the younger group, with brighter colors
representing larger effect size (Cohen’s d).

age differences than are commonly reported, independent of
crossing fibers.

Modeling Crossing Fibers Changes Age Differences in
FA

This is one of the few extant reports combining common
tensor approaches with newer FBA and the only such report
examining aging. Crucially, FA and CX, an index of intravoxel
multi-fiber complexity, exhibited a significant inverse relation-
ship (r = −0.81) in voxels exhibiting a significant age effect on
FA. Following initial results showing widespread age differences
in FA, we subsequently re-evaluated these effects on FA while
statistically controlling for CX (Riffert et al. 2014). The original
more expansive pattern of voxels with significantly lower FA in
older adults was considerably attenuated after controlling for
CX. FA in forceps minor, fornix, and anterior limb of the internal
capsule remained significantly lower in older adults, but the
age differences in multiple association fiber tracts (i.e., parts
of the IFOF, ILF, SLF, cingulum, and uncinate) were rendered
nonsignificant after controlling for CX. All or major portions of
each of these association tracts also did not exhibit significant
effects for fixel-based metrics, supporting the notion that some
of the observed age differences in FA are due to differences in
multi-fiber organization (i.e., the relative density of crossing
fibers). The centrum semiovale, which includes the intersection
of the SLF, CST, and corpus callosum, is one region in which
tensor model parameters are already known to be strongly
confounded by crossing fibers (Pierpaoli and Basser 1996; Rokem
et al. 2015), but our results suggest that numerous other areas
are affected as well.

Interestingly, we found that FA–CX correlations manifested
both across subjects (i.e., correlations between mean CX and
FA) and within subjects (i.e., correlations across voxels). These
results suggest that apparent age effects on FA are confounded

with age-related differences in CX, resulting in an overestima-
tion of apparent FA differences throughout the brain. Impor-
tantly, CX–FA correlations primarily influenced apparent age
effects at the level of individual differences in mean FA, suggest-
ing that apparent age differences in FA partially reflect relatively
global differences in CX. While sensitive to age differences,
the observed lack of specificity in FA underscores long-held
concerns about interpreting this parameter as a biologically
meaningful measure of WM “integrity.” One possibility is that
both observed age-associated differences in CX and FA likely
reflect more variable, higher dimensional changes in FDC across
multiple underlying fiber populations within a voxel (Douaud
et al. 2011; Yang et al. 2013). However, in WM voxels with crossing
fibers, one cannot know whether decreases in FA reflect reduced
signal from the largest fiber population, increased signal from
orthogonal populations, or other combinations of intra-voxel
influences (Riffert et al. 2014). Further work is needed to better
understand how older age may differentially affect FDC in sec-
ondary and tertiary crossing fibers, relative to primary fibers in
a voxel.

Integrating Tensor and Fixel Results

The FA analyses revealed age differences across numerous WM
regions, even after correcting for crossing fibers. The fixel-based
analyses afford new insight into the orientationally specific,
micro- and macrostructural WM characteristics reflected by
these FA differences. For example, we found that younger
adults exhibited significantly higher FA than older participants
in forceps minor and fornix, independent of crossing fibers.
However, the FBA showed that these effects may reflect different
underlying age differences in WM organization. Whereas
younger adults had significantly higher FD in both these regions,
the measure of fiber cross section in the fornix (but not forceps
minor) was greater for older adults. One interpretation is that
the fornix shows signs of atrophy and loss of packing density
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Figure 15. Whole-brain projections onto 2D slices showing WM tracts in which average FD (top row), average FC (middle row), and the product of average FDC

(bottom row) were significantly lower in the older versus younger participants, displayed on the WM population template. Brighter colors represent greater effect size
(Cohen’s d).

even in normal aging (Peters et al. 2010). Younger adults also
had significantly higher FD than older adults in other regions,
including right parietal parahippocampal cingulum, bilateral
anterior IFOF, and bilateral internal capsule. These findings
suggest that the original FA results were likely due to age
differences in both multi-fiber organization and FD. FC in SLF
I was higher in younger adults, suggesting that the original FA
results may have been due to age differences in both multi-fiber
organization and macroscopic measures of FC.

The FBA also uncovered age differences that were not
observed in the DTI analysis. In particular, FC and the product
of FDC were both significantly lower in the older group in
retrosplenial and subgenual aspects of the cingulum bundle, but
FA and FD were not. We also observed greater FC, but lower FD,
in the body of the corpus callosum, forceps major, and fornix in
older participants compared with younger adults. These results
are consistent with histological findings showing a preferential
loss of smaller diameter axonal fibers in older age (Aboitiz et al.
1992; Marner et al. 2003; Bowley et al. 2010; Peters et al. 2010).

We also found that the FBA-based metrics exhibited a gradi-
ent along the anterior–posterior axis with greater age effects in
more anterior regions. Furthermore, most of the age effects in
anterior brain regions were due to differences in cross section,
rather than density (Fig. 13). One potential interpretation of this
result is that as we age, the number of fibers in WM tracts in the

frontal lobe and anterior limbic regions declines, but that the
density of the fibers in those bundles does not.

Heterogeneous Age Differences

The present results revealed several regions in which older
adults had higher FA, FC, and FDC than younger participants,
highlighting the multidimensional nature of WM aging. Like
some other prior reports, we observed greater FA in the superior
cerebellar peduncles, as well as in the external capsule and in
the cingulum bundle of older adults (Kanaan et al. 2016). Our
results are also consistent with reports of longitudinal increases
in FA in early-developing WM regions in middle-aged and older
adults (Bender et al. 2015; Bender et al. 2016). We also found
greater FC and FDC in the splenium of the corpus callosum/-
forceps major in older adults compared with younger adults,
but no age differences in FD. Greater FC and FDC may reflect
fiber populations with greater diameters, either in the size of
the axon bundle or degree of myelination. The visual system, of
which the forceps major is a part, develops early in life and has
high levels of use and automaticity. Our findings of higher FC
and FDC in the forceps major are consistent with the hypothesis
that earlier-developing WM pathways supporting consistently
utilized and automated behavior (like forceps major of the visual
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pathway) may be less vulnerable to age-related declines (Bender
et al. 2016; Karolis et al. 2019).

Limitations and Future Directions

One obvious limitation of the current study is that the data are
cross-sectional rather than longitudinal. Some of the observed
differences could therefore be due to cohort effects rather than
within-person change as a result of age. Assessing complexity,
FD, and FC in a longitudinal cohort would make it possible
to examine whether and how these metrics change with age
within individual participants (rather than simply exploring
cross-sectional differences between groups). Also, our sample
of older adults was better educated than most and may not be
representative of a less educated population. Similarly, we did
not collect information on health and physiological function in
these participants; future studies could evaluate how vascular
and metabolic factors influence these newer WM parameters in
older adults.

We also performed our analysis on single-shell b = 1000 s/mm2

dMRI data, rather than data with multiple or higher b-
values, which would have improved angular resolution and
biological interpretation of underlying observed effects. When
diffusion sensitivity is high (b > 2000 s/mm2), the integral
over an fODF lobe (“apparent fiber density”) is proportional
to FD within an associated fiber population (Raffelt et al.
2012). With less diffusion sensitization, as used in this study
(b = 1000 s/mm2), this metric is also sensitive to extra-axonal
diffusion and therefore may also reflect axonal hindrance
of extracellular diffusion and other microstructural factors.
Nevertheless, our results, as well as those of Toselli et al. (2017),
demonstrate that fixel-based approaches have advantages
over DTI methods when analyzing single-shell data like those
collected here. Furthermore, our ability to observe the results
reported here using data collected in 32 gradient directions
demonstrates that the results are quite robust and suggest
the promise of applying this method to existing single-shell
lower b-value data. Of course, it would be preferable to collect
higher resolution multi-shell data in the future (as we are
now doing).

We also note that the “complexity” (CX) metric used in this
study does not fully capture all geometric factors (e.g., fiber
angle) that contribute to FA or the apparent “complexity” of an
fODF. Nevertheless, the strong correlations between FA and CX
observed in this study demonstrate the need to control for cross-
ing fiber influences whenever investigating group differences in
tensor-based parameters.

Finally, it is important to note that our findings build on
prior studies using nontensor dMRI approaches. For example,
Tuch et al. (2004) developed a method (termed q-ball imaging)
that was able to distinguish multiple differentially oriented fiber
bundles in individual voxels. Assaf and Basser (2005) (also see
De Santis et al. 2014) developed a composite hindered and
restricted model of diffusion (CHARMED) data that produced
estimates of fiber orientation that had less angular uncertainty
than the traditional DT model, and De Santis et al. (2012) used
this model to investigate the biophysical correlates of diffusional
kurtosis imaging. More recently, Toschi et al. (2020) used the
CHARMED model to examine age-related changes in WM and
found that these changes begin earlier in men than in women
and they affect more frontal regions. Billiet et al. (2015) collected
multi-shell diffusion MRI data as well as multiexponential T2
relaxation (MET2) data in a sample of 59 adults ranging in age

from 17 to 70 and reported evidence that age-related frontal
decrease in FA may reflect increased axonal dispersion and not
demyelination.

In conclusion, DTI has been a useful tool for investigating WM
differences in age groups. However, its main metric FA can be
difficult to interpret as it is sensitive to multiple factors. Here,
we used complexity to account for multi-fiber organizational
differences and FBA to investigate the intricacies underlying
age differences in FA. Like other studies that have used mul-
tiple methods to investigate age-related changes in WM, the
current study demonstrates the power of employing different
approaches to WM analysis alongside DTI in order to gain insight
into WM differences associated with aging.
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