Skip to main content
. 2021 Aug 26;23(8):e29328. doi: 10.2196/29328

Table 2.

Variation of the support vector machine classification performance with different features.

Number of features Added feature Accuracy (%) Sensitivity (%) Specificity (%)
1 Total SLa 79.49 68.42 90.00
2 ~b +Mouth_Session 1 84.62 78.95 90.00
3 ~ +Wholebody_Session 3 92.31 84.21 100.00
4 ~ +Face_Session 3 92.31 84.21 100.00
5 ~ +Face_Session 2 92.31 89.47 95.00
6 ~ +Eyes_Session 4 92.31 89.47 95.00
7 ~ +Face_Session 1 92.31 89.47 95.00
8 ~ +SL_Session 2 92.31 89.47 95.00
9 ~ +Wholebody_Session 1 89.74 89.47 90.00
10 ~ +Face_Session 4 92.31 89.47 95.00
11 ~ +Mouth_Session 2 92.31 89.47 95.00
12 ~ +Eyes_Session 1 89.74 84.21 95.00
13 ~ +Eyes_Session 2 89.74 84.21 95.00
14 ~ +Mouth_Session 3 87.18 84.21 90.00
15 ~ +SL_Session 3 89.74 84.21 95.00
16 ~ +Wholebody_Session 4 89.74 84.21 95.00
17 ~ +Mouth_Session 4 87.18 84.21 90.00
18 ~ +Eyes_Session 3 84.62 78.95 90.00
19 ~ +SL_Session 1 82.05 78.95 85.00
20 ~ +SL_Session 4 79.49 78.95 80.00
21 ~ +Wholebody_Session 2 76.92 73.68 80.00

aSL: session length.

bIn forward feature selection, ~ represents all features in the previous iteration; for example, ~ represents all 6 previously selected features in the 7th iteration.