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Abstract
Cancer greatly affects the quality of life of humans worldwide and the number
of patients suffering from it is continuously increasing. Over the last century,
numerous treatments have been developed to improve the survival of cancer
patients but substantial progress still needs to bemade before cancer can be truly
cured. In recent years, antitumor immunity has become the most debated topic
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in cancer research and the booming development of immunotherapy has led
to a new epoch in cancer therapy. In this review, we describe the relationships
between tumors and the immune system, and the rise of immunotherapy.
Then, we summarize the characteristics of tumor-associated immunity and
immunotherapeutic strategies with various molecular mechanisms by show-
ing the typical immune molecules whose antibodies are broadly used in the
clinic and those that are still under investigation. We also discuss important
elements from individual cells to the whole human body, including cellular
mutations and modulation, metabolic reprogramming, the microbiome, and
the immune contexture. In addition, we also present new observations and
technical advancements of both diagnostic and therapeutic methods aimed at
cancer immunotherapy. Lastly, we discuss the controversies and challenges that
negatively impact patient outcomes.
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1 BACKGROUND

Cancer is one of the biggest medical problems limiting the
life span of humans and is also one of the leading chal-
lenges to overcome for patients and doctors worldwide.
During the last century, scientists have developed diver-
sified treatments for cancer, including surgery, radiother-
apy, and chemotherapy. Although great progresses have
been achieved via these conventional strategies, many can-
cer patients are still facing the following two major issues:
i) late diagnosis leading to advanced-stage disease due
to nonspecific clinical symptoms or inadequate screening
facilities, and ii) low efficacy of conventional treatments
due to the rapid spread of cancer and/or drug resistance.
In recent years, immunotherapy has become a major

focus among tumor treatments, as it provides insights for
further prolonging the overall survival (OS) of patients
while improving the patients’ quality of life [1, 2]. The his-
tory of immunotherapy can be traced back to 1893 when
the American surgeon William Coley found that live or
inactivated bacteria could cause remission in sarcomas [3].
However, it was not until the 1980s and 1990s that sci-
entists discovered the interaction between immune cells
and melanoma, and conceptualized the idea of cancer
immunotherapy[4, 5]. Based on the notable benefits result-
ing from the clinical utilization of new treatments such as
cancer vaccines and immune checkpoint inhibitors (ICIs)
[6–8], Science chose ‘cancer immunotherapy’ as the ‘break-
through of the year’ in 2013 [9]. Furthermore, the discovery
of programmed death 1 (PD-1) and the targeting of cyto-
toxic T lymphocyte-associated antigen 4 (CTLA-4) in can-

cer led to the Nobel Prize for Physiology or Medicine honor-
ing the scientists Tasuku Honjo and James Allison in 2018
[10].
Tumors possess immunogenicity characteristics simi-

lar to those of other pathogenic agents while also reserv-
ing many specific biological reactions. The process of
antitumor immunity requires the participation of vari-
ous immune cells. In most cases, the first step in antitu-
mor immunity is the exposure of tumor-associated anti-
gens (TAAs) to antigen-presenting cells (APCs), particu-
larly dendritic cells (DCs) and macrophages [11]. In com-
plex with human leukocyte antigen (HLA) class I and II
molecules, TAAs are presented by DCs to CD8+ T cells
(cytotoxic T lymphocytes, CTLs) and CD4+ helper T (Th)
cells, respectively [12–14]. After activation, Th1- and Th2-
subtype cells are also able to further activate CTLs by
secreting cytokines such as interferons (IFNs) and inter-
leukin (IL)-2 [15]. Then, CTLs and innate immune cells,
such as natural killer (NK) cells, natural killer T (NKT)
cells and γδ T cells, are recruited to tumor sites to exert
antitumor effects [16]. Recently, the significant roles of B
cells and follicular helper T (Tfh) cells in this process were
reported [17, 18]. One report on CD4+ T cells described
antitumor cytotoxicity mediated via cytokines in human
bladder cancer [19]. However, the majority of tumor cells
exploit immune tolerance instead of being eliminated by
immune surveillance [15]. Usually, the condition of the
tumor microenvironment (TME) and the infiltration of
immune cells determine the survival of malignant cells in
tissues and organs [20–24]. Surprisingly, a large number
of immune cells do not play a positive role in the TME,
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but instead, actively participate in cancer immune eva-
sion, resulting in an extremely complicated relationship
between cancer and immune cells [25–29]. In addition,
the heterogeneity of individual bodies or cells, such as the
tumor mutational burden (TMB), metabolic status, micro-
biome and other specific characteristics, also exert crucial
influences on the TME and outcomes of immunotherapy.
Based on current literature, in this review, we discuss

the various intracellular and extracellular factors, and reg-
ulators associated with cancer and immunity. The latest
available technologies and treatment methods for resolv-
ing clinical problems in cancer immunotherapy are also
discussed, including the controversies and limitations in
this field.

2 TYPICALMOLECULES INVOLVED
IN ANTITUMOR IMMUNITY AND THEIR
CLINICAL APPLICATION

2.1 Immune checkpoints

2.1.1 Known immune checkpoints

CTLA-4 was the first negative regulator identified to be
expressed on T cells. After T cell receptor (TCR) engage-
ment, the expression of CTLA-4 on the T cell surface
is upregulated, CTLA-4 is trafficked to the immunologic
synapse, and expression finally peaks 2 to 3 days after T cell
activation [30, 31].With a better affinity than the T cell cos-
timulatorymolecule CD28, CTLA-4 suppresses T cell func-
tion by competitively binding to its ligandsCD80 (B7.1) and
CD86 (B7.2), which are also the main ligands for CD28 [32,
33]. Therefore, the primary mechanism of CTLA-4 block-
ade is the release of CD28-mediated positive costimula-
tory signals such as the phosphoinositide 3-kinase (PI3K)
and AKT signaling pathways [34]. In 2011, the Food and
Drug Administration (FDA) first approved ipilimumab, a
monoclonal antibody (mAb) drug targeting the immune
checkpoint molecule CTLA-4, which signaled the begin-
ning of immune checkpoint blockade (ICB) immunother-
apy. However, scientists observed that patients with het-
erozygous germline mutations in CTLA-4 (in human) and
Ctla-4 (in animals) knockout mice always exhibited severe
immune dysregulation [35, 36], and many oncologists also
observed that anti-CTLA-4monoclonal antibodies (mAbs)
frequently induced autoimmune reactions in patients [37].
Further study revealed that this could be attributed to the
high expression of CTLA-4 on regulatory T cells (Tregs)
[38]. Therefore, there is still a need to investigate how
the utility of anti-CTLA-4 therapy could be optimized to
maximize its efficacy and minimize associated adverse
reactions. Many clinical trials evaluating the therapeutic

effect of CTLA-4 blockade alone or in combination with
other therapies inmany types of cancers, such as advanced
renal cell carcinoma, non-small cell lung cancer (NSCLC),
and metastatic melanoma, have shown promising results
[39–43].
PD-1 is mainly expressed on the surface of activated

T cells, and its primary biological function is to form a
negative feedback loop to suppress local T cell responses
and minimize excessive damage to self-tissues [44, 45].
The main ligands binding to PD-1, programmed death-
ligand 1 (PD-L1; CD274) and PD-L2 (CD273), are widely
expressed on the surface of nonlymphoid cells such as
tumor cells and DCs [46]. When engaged by PD-L1 or
PD-L2, PD-1 transduces a negative costimulatory signal
to attenuate T cell activation through the tyrosine phos-
phatase src homology 2 (SH2) domain-containing protein
tyrosine phosphatase 2 (SHP-2), which then dephosphory-
lates CD28 [47]. One study showed that PD-1 engagement
could suppress glycolysis and promote fatty acid oxidation
and lipid catabolism, which are crucial for T cell func-
tions [48]. Hence, when a T cell is activated, the expres-
sion of some inhibitory receptors, such as PD-1, is upreg-
ulated to suppress the proliferative capacity and cytotoxic
potential, which is defined as T cell exhaustion. Therefore,
the primary mechanism of PD-1 signaling axis blockade is
to reverse the exhausting function of CTLs [49]. Numer-
ous clinical trials have shown that anti-PD-1 and anti-
PD-L1 mAbs are associated with better OS and tolerance
than conventional therapies in several types of cancers
[50–55]. In 2020, the Nivolumab, Ipilimumab and COX2-
inhibition in Early Stage Colon Cancer: an Unbiased
Approach for Signals of Sensitivity (NICHE) study showed
that 20/20 (100%) patients with microsatellite-instability
(MSI) tumors and 4/15 (27%) patients with microsatellite-
stable (MSS) tumors had impressive pathological response
after receiving ipilimumab combined with nivolumab as
neoadjuvant immunotherapy [56]. This was consistent
with the results of neoadjuvant ICI treatments in many
other cancers [57–59]. Based on findings of these results,
ICIs not only yielded promising clinical outcomes in can-
cer patients with refractory tumors when used as adjuvant
therapy but also showed the potential to be used as a new
standard therapy in early-stage cancers.
Compared with PD-L2, PD-L1 is expressed more widely

in normal and tumor cells, so there are many studies
exploring how to disrupt the PD-L1-PD-1 interaction for
cancer therapy [60]. The FDA has already approved some
mAbs against PD-L1, such as atezolizumab, durvalumab
and avelumab, for the treatment of many types of cancer.
Furthermore, apart from neutralizing PD-L1 mainly
expressed on the tumor cell membrane, many researchers
are exploring approaches to reduce the wide expres-
sion of PD-L1. Therefore, it is of great necessity to fully
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understand the upstream regulation of PD-L1, which may
aid in the development of new strategies to manipulate
the expression of PD-L1 to enhance the response rates of
ICI immunotherapy. There are studies that described the
PD-L1 regulation, including genomic alterations, epige-
netic regulation, posttranscriptional and posttranslational
modifications (PTMs), noncoding RNA-based regulation
and exosomal transport, and offered novel insights on
how to reverse ICI resistance [46, 61, 62]. Moreover,
other checkpoints may also be regulated by some unique
pathways and molecules, which may be future targets to
enhance the antitumor response.

2.1.2 Promising immune checkpoints

It is well known that due to metabolic or hypoxic stress,
tumor cells release a large amount of adenosine triphos-
phate (ATP) into the extracellular space (eATP), and
the metabolic product adenosine is able to drive tumor
progression by suppressing antitumor immune responses
while enhancing the proliferation of immunosuppressive
cells [63, 64]. Extracellular adenosine activates G protein-
coupled receptors, particularly A2a and A2b receptors,
which are mainly expressed on immune cells such as
phagocytes, NK cells, and T cells [65], and ultimately
suppresses immune responses through the cAMP-protein
kinase A (PKA)-mediated inhibition of nuclear factor-κB
(NF-kB) and Janus kinase-signal transducer and activa-
tor of transcription (JAK-STAT) signaling pathways [66].
Therefore, in recent years, researchers have focused on
metabolic pathways of adenosine that can be targeted to
suppress tumor development. Once ATP is released into
the extracellular space, CD39 hydrolyzes ATP into adeno-
sine monophosphate (AMP), which is further converted
into adenosine by CD73 [67]. There are many types of can-
cers expressing CD73 and CD39, which are both corre-
lated with poor prognosis [68–71]. In 2013, Allard et al.
[72] discovered that CD73 blockade had a synergistic effect
with anti-PD-1 and anti-CTLA-4 mAbs in mouse mod-
els. Additionally, in 2019, Li et al. [64] found that CD39
blockade resulted in accumulation of eATP and increased
intratumoral T cell numbers through the eATP-P2×7-ASC-
NALP3-inflammasome-IL-18 pathway which could over-
come anti-PD1 therapy resistance. The impressive results
seen in preclinical experiments have given rise to many
clinical trials.
Furthermore, it is also widely known that tumor cells

express many “don’t eat me” signals to evade clearance by
the innate immune system. One typical molecule mediat-
ing this phenomenon is CD47, whose expression is upreg-
ulated in many types of cancers [73–76]. Signal regula-
tory protein α (SIRPα) is a specific ligand that binds to

CD47 and is mainly expressed on myeloid cells [77, 78].
Upon engagement with CD47, SIRPα recruits inhibitory
molecules such as src homology 2 domain-containing pro-
tein tyrosine phosphatase 1 (SHP-1) and SHP-2 through
its intracellular immunoreceptor tyrosine-based inhibitory
motif (ITIM) domain and subsequently suppresses phago-
cytosis by macrophages and prevents macrophages from
clearing tumor cells [79, 80]. Furthermore, CD47 blockade
seems to produce a synergistic effect with different antitu-
mor treatments in animal models [80–82]. Additionally, in
2019, Weissman et al. [83] found a completely new “don’t
eat me” signal, CD24, which could promote immune eva-
sion by interacting with sialic acid-binding Ig-like lectin
10 (SIGLEC-10) and ultimately suppress phagocytosis by
macrophages. In 2018, a phase 1b clinical trial showed
that the CD47 inhibitor 5F9 combined with rituximab had
promising activity in patients with relapsed or refractory
lymphoma [84]. In addition, the favorable tolerance of the
therapeutic strategy targeting this “don’t eat me” signal is
being investigated in ongoing clinical trials.
In 2019, Chen et al. [85] found a completely new immune

checkpoint, SIGLEC-15, through a genome-scale T cell
activity array (TCAA). SIGLEC-15 is mainly expressed on
myeloid cells and tumor cells and directly binds to T
cells. SIGLEC-15 inhibits antigen-specific T cell responses
mainly by regulating cell growth and promoting immune
evasion but the specific mechanism underlying these
effects is still unclear. More recently, in 2020, Yan et al.
[86] discovered that selective inhibition of c-mer proto-
oncogene tyrosine kinase (MerTK) on macrophages could
also suppress efferocytosis by macrophages to increase
the release of ATP and tumor DNA, which activated the
cyclic guanosine monophosphate-adenosine monophos-
phate synthase (cGAS) signaling pathway and enhanced
type I IFN-dependent antitumor immune responses. Lu
et al. [87] discovered that the depletion of interleukin-1
receptor-like 1 (also known as suppression of tumorigenic-
ity 2, ST2), a receptor of IL-33 that is particularly expressed
on tumor-associated macrophages (TAMs), had a syner-
gistic effect with anti-PD-1 treatment in colorectal can-
cer. Moreover, tumor-secreted granulocyte-macrophage
colony-stimulating factor (GM-CSF) further activated c-
Rel through the NF-κB signaling pathway in myeloid pre-
cursor cells which initiated myeloid-derived suppressor
cell (MDSC) differentiation by enhancing the expression of
MDSC signature genes such as CCAAT enhancer-binding
protein beta (Cebpb) and arginase-1 (Arg1), and eventually
inhibited T cell-mediated antitumor responses and pro-
moted tumor progression [88].
Although clinical success has been demonstrated with

anti-CTLA-4, anti-PD-1, and anti-PD-L1 mAbs, a large
number of patients still do not derive benefit from them.
One reason could be that there are many other immune
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F IGURE 1 Variable interactions among immune checkpoints in the TME. There are many immune checkpoints in the TME. Some of
them are expressed mainly on T cells including PD-1, CTLA-4, and LAG-3, which could suppress the function of CTLs. The others are mainly
expressed on myeloid cells, such as c-Rel and MerTK, which could enhance the inhibitory function of MDSCs to tumor cells. Abbreviations:
TME: tumor microenvironment; CTLs: cytotoxic T lymphocytes; IL: interleukin; CD: cluster of differentiation; MHC: major
histocompatibility complex; PD-1: programmed cell death-1; PD-L1: programmed cell death-Ligand 1; PD-L2: programmed cell death-Ligand
2; CTLA-4: cytotoxic T lymphocyte-associated antigen 4; VISTA: V-domain immunoglobulin suppressor of T cell activation; TIGIT: T cell
immunoglobulin and ITIM domain; TIM-3: T cell immunoglobulin and mucin domain-containing protein 3; LAG-3: lymphocyte activation
gene-3; ATP: adenosine triphosphate; AMP: adenosine monophosphate; GPI: glycosylphosphatidylinositol; SIRPα: signal regulatory protein
α; SIGLEC-15: sialic acid binding Ig-like lectin 15; GM-CSF: granulocyte-macrophage colony stimulating factor; IL-RAcP: interleukin-1
receptor accessory protein; ST2: suppression of tumorigenicity 2; MERTK: c-mer proto-oncogene tyrosine kinase; GAS6: growth arrest specific
6; PtdSer: phosphatidylserine; TCR: T cell receptor; SIGLEC-10: sialic acid binding Ig-like lectin 10; VSIG-3: V-set and immunoglobulin
domain-containing protein 3; LGALS9: galectin-9; DAP12: DNAX-activation protein 12; sTn: sialyl-Tn; PI3K: phosphoinositide 3-kinase;
ARG1: arginase-1; NOS2: nitric oxide synthase 2

checkpoints, such as lymphocyte activation gene-3 (LAG-
3), expressed on the T cell surface, T cell immunoglob-
ulin and mucin domain-containing protein-3 (TIM-3), T
cell immunoglobulin and ITIM domain (TIGIT) and V-
domain immunoglobulin suppressor of T cell activation
(VISTA) [89–92]. The variable interactions among these
checkpoints are shown in Figure 1. Although there are

many preclinical experiments confirming the antitumor
responses induced by targeting these novel immune check-
point molecules and an increasing number of immune
checkpoints are being discovered [93–95], there is still
much work that needs to be done to identify addi-
tional novel immune checkpoints and develop new ther-
apeutic strategies to target these molecules alone or
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in combination with other agents to maximize clinical
benefits.

2.2 Soluble cytokines

More than 30 years ago, scientists purified the protein IL-
2, and found that it plays an important role in activating
T cell growth [96]. It is mainly produced by activated T
cells. IL-2 was approved for the treatment of metastatic
renal cell carcinoma by the FDA and has shown promis-
ing results as a single agent [97]. However, in addition to
stimulating T cell proliferation andmemoryT cell differen-
tiation, IL-2 also promotes the generation and function of
Tregs [98–100] which has been associated with many side
effects and has limited its further use [97]. Therefore, the
most sensible next step was to establishing clinical trials to
evaluate the effect of IL-2 in combinationwith other drugs,
including IFN-α, cisplatin, dacarbazine, and adoptive cell
therapies (ACTs) [101–104]. However, a phase I/II study
showed that the objective response rate of IL-2 in combina-
tion with CTLA-4 blockade was not better than that of IL-2
alone [105]. Therefore, whether IL-2 can enhance the effi-
cacy of immunotherapies may require more experimental
and clinical investigations.
In addition to IL-2, IFN-γ plays a pivotal role in the

development of tumors. The biological functions of IFN-
γ are mediated mainly through the JAK-STAT signal-
ing pathway which regulates the transcription of many
genes [106]. However, the functions of IFN-γ are contra-
dictory because this cytokine can also suppress tumors in
multiple ways. For example, IFN-γ suppresses tumor cell
proliferation through cyclin-dependent kinase inhibitor 1
(p21) [107] and promotes tumor cell apoptosis through
the upregulation of caspase, Fas and Fas ligand expres-
sion [108, 109]. IFN-γ also promotes the recruitment of
CTLs through a variety of chemokines such as CXCL9,
CXCL10, and CXCL11 [110]. IFN-γ was approved for the
treatment of severe malignant osteopetrosis in 2000 [111].
An IFN-related gene signature can be used to predict the
efficacy of different therapies, including immunotherapy,
in many types of malignancies [112–114]. There are many
studies showing that ICI treatment can improve the effects
of targeted therapy and radiation in an IFN-γ-dependent
manner [115, 116]. In addition, tumors produce high lev-
els of IFN-γ after ICI treatment [117, 118]. On the other
hand, IFN-γ is capable of supporting tumorigenesis. IFN-
γ can induce tumor cells and TAMs to express many
inhibitory receptors such as PD-L1 and PD-L2 [119]. IFN-γ
can also upregulate the expression of indoleamine-pyrrole
2,3-dioxygenase (IDO) in melanoma cells, which recruits
Tregs to avoid immune attack [120]. Therefore, IFN-γ has
not shown significant clinical benefit inmany types of can-
cers such as metastatic renal cell carcinoma, breast can-

cer, and colon cancer [121–123]. There are some reasons
that partially account for this result; for instance, IFN-γ is
rapidly cleared after intravenous administration [124], so it
cannot be delivered locally at a sufficient concentration to
achieve a therapeutic effect [111]. As such, the functions of
IFN-γ are quite complex, and the efficacy and tolerance of
IFN-γ-based therapies require further investigation.
There have been studies confirming that some other T

cell growth factors, such as IL-15, IL-7, IL-12, and IL-21,
also have antitumor potential through modulation of T
cell expansion, survival and functions [125–128], and may
have synergistic effects with ICIs or other immunother-
apies [129]. However, many soluble cytokines are nega-
tively correlated with the clinical benefit derived from ICI
immunotherapy. For example, many researchers observed
that elevated serum IL-8 levels were associated with
increased intratumoral neutrophil levels and a relatively
poor prognosis for ICI immunotherapy [130, 131]. TGF-β
also suppresses antitumor immune responses in the pro-
cess of cancer progression [132]. Thus, the application of
these soluble cytokines seems promising, and more in-
depth research must be conducted.
Taken together, among the molecules mentioned above,

the applications of PD-1, PD-L1, PD-L2, and CTLA-4 are
the most widespread. Drugs targeting other molecules
are still under development. Whether they could be
applied in the clinic remains unclear. Therefore, fur-
ther research should be performed to utilize these tar-
gets for immunotherapy. We expect to obtain more
effective drugs for patients through different clinical
trials.

3 FUNDAMENTALMODULATORS OF
ANTITUMOR IMMUNITY

3.1 Genome, epigenetic regulators, and
posttranscriptional modulation

There are a variety of intracellular and extracellular fac-
tors that influence the efficiency of cancer immunother-
apy. The genome andmutations in the chromatin of tumor
cells should be mentioned first because genes determine
the phenotype of a single cell and the basic immune
response. For example, Asian patients with NSCLC may
obtain greater benefit from atezolizumab in terms of OS
than Caucasian patients [133], and male patients with
melanoma show higher TMB and PD-L1 expression than
female patients, while female patientswith lung squamous
cell carcinoma (LUSC) have a higher T cell-inflamed gene
expression profile (GEP) and cytolytic activity (CYT) than
males [134].
Similar to normal cells, tumor cells contain HLA genes

that encode MHC protein expression on the cell surface.
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Then, antigens specific to tumor cells can be recog-
nized by immune cells mediating an immune response.
Thorsson et al. [135] summarized 6 immune subtypes of
cancer-based on over 10,000 samples from 33 different
tumor types in The Cancer Genome Atlas (TCGA): TGF-β
Dominant, Wound Healing, Lymphocyte Depleted, IFN-γ
Dominant, Immunologically Quiet, and Inflammatory. In
addition, they listed some specific driver mutations asso-
ciated with leukocyte levels, including mutations in TP53,
BRAF, CASP8, NRAS, CTNNB1, and IDH1. The TMB has
already been recognized as a favorable prognostic marker
for immunotherapy in different kinds of tumors [136–138].
Nonsynonymous single-nucleotide variants (nsSNVs) are
the main sources of the TMB and serve as immunogenic
peptides for immune responses [139]. In 2020, the FDA
identified high TMB (TMB-H) as an indication for PD-1
inhibitor Keytruda use, regardless of the tumor type.
Furthermore, deficiency in mismatch repair (MRR) genes
with high microsatellite instability (MSI-H) is a reason for
an increased TMB, especially in colorectal cancer (CRC).
In 2017, two ICIs (pembrolizumab and nivolumab) were
first approved by the FDA for the treatment of patients
with MMR-deficient (dMMR) CRC [140]. Unfortunately,
almost 85% of CRC cases are classified as MMR proficient
(pMMR), representing a status of MSS or low microsatel-
lite instability (MSI-L) [141]. For patients with pMMR
CRC, many immunotherapy clinical trials have failed to
demonstrate a benefit, probably due to low infiltration
of immune cells [142–144]. Emerging neoantigens and
mutations that promote oncogenic outgrowth could be
targets of the immune system and limit the spread of
malignancies [145]. In contrast, tumor cell death following
immune attack or other intrinsic stresses may also result
in the release of damage-associated molecular patterns
(DAMPs), such as extracellular ATP, high mobility group
box 1 (HMGB1) and adenosine, causing escape from
immune surveillance [146, 147].
During the transcription and translation of antigenic

proteins, epigenetic and posttranscriptional modulators
also exert a significant influence on antigenic protein
expression. DNA or histone methylation is the most com-
mon mechanism of epigenetic regulation in cells. For
instance, excessive methylation of the MMR gene MLH1
represses its expression and leads to the accumulation
of cellular mutations in CRC [148, 149]. In addition to
cancer cells, immune cells also exhibit a reprogrammed
epigenome which is a common factor associated with
prognostic value [150]. Chronic viral infections have been
reported to induce T cell exhaustion via de novo methy-
lation [151]. For posttranscriptional modulation, ubiquiti-
nation is a representative and useful process to manipu-
late immune responses. Diverse E3 ubiquitin ligases medi-
ate the degradation of some key proteins in various cancer

cells and immune cells, affecting their interaction, such as
destabilizing Foxp3 to attenuate Treg functions [152, 153].
In addition, other regulatory networks, such as histone
acetylation, noncoding RNAs and autophagic degradation,
have shown unique roles with therapeutic potential in
antitumor immunity [154–157]. Currently,many epigenetic
therapeutics targeting DNA, including methyltransferase
inhibitors and histone deacetylase inhibitors, have been
widely used in clinical trials, and some of them are being
tested in combination with ICIs [158]. Notably, the appli-
cation of such inhibitors, such as hypomethylating agents
(HMAs), may also induce immunosuppression [159] and
which warrants caution.

3.2 Metabolism and diet

Metabolism comprises a very large system that maintains
the stability of cells and promotes their adaptation to
changes of the external environment. Tumor and immune
cells have many metabolic similarities and differences.
Most cells tend to generate ATP through oxidative phos-
phorylation (OXPHOS) instead of aerobic glycolysis when
oxygen resources are abundant. In contrast, activated
glycolysis is the preferred glucose metabolism pathway
in malignant cells [160, 161]. For T cells, there is a shift in
dominance between glycolysis and OXPHOS during cel-
lular differentiation [162, 163]. Naïve T cells and memory
T cells depend more on OXPHOS than glycolysis, while
effector T cellsmetabolizemore glucose through glycolysis
[164, 165]. Lipid accumulation is another crucial profile in
the metabolic reprogramming of the TME [166, 167]. Long-
chain fatty acids accumulate in T cells, restricting their
mitochondrial function [168]. As an important process for
tumor survival, fatty acid oxidation (FAO) is usually sup-
pressed in effector T cells but is increased in naïve T cells
and memory T cells [165, 169]. On the other hand, both
OXPHOS and FAO are critical for the function of Tregs
[170]. In addition, T cells take up plentiful glutamine, one
of the most abundant amino acids in the body, which is
similar to the ‘glutamine traps’ in tumors [163]. Therefore,
the metabolic process overlaps between cancer cells and
immune cells causing a ‘nutrition battle’ between them
based on the basic metabolic status of the patient (Fig-
ure 2). For example, accelerated glycolysis in tumor cells
may cause glucose deprivation in T cells, attenuating their
activity [171, 172]. Moreover, there are also competitions
for nutrients, such as arginine, and alternative energy
sources, such as inosine, among immune cells, making
the interplay in the TME much more complicated [173,
174]. These metabolic overlaps and competitions challenge
the traditional view that we can kill cancer cells in vivo
by editing their metabolic processes, as this approach
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F IGURE 2 Metabolic interactions in the TME are based on the basic status of the patient. Food is digested and decomposed into
metabolites and nutrients based on the basic metabolic status of the human body. The intestinal microbiome participates in the metabolism of
these small molecules and influences their levels in the blood. Then, the metabolites and nutrients are sent to the tumor site, forming a
competition for nutrients between tumor cells and immune cells in the TME, which is also affected by the local microbiome. Abbreviations:
TME: tumor microenvironment

may also impair the effects of antitumor immunity. Thus,
appropriate metabolic regulation of the TME is needed
to enhance immunotherapy. Selective inhibition of some
metabolically redundant pathways may be a good option
for treatment [175].
Among different metabolic diseases and disorders, obe-

sity is the most striking global health problem and is
correlated with many types of cancers [176]. In addition,
obesity not only affects the anabolism or catabolism of
fat but also disturbs the transition processes associated
with other energy elements. For example, obesity-related
insulin resistance increases blood glucose levels, disturb-
ing macrophage phagocytosis [165, 177, 178]. Obesity also
causes reduced glycolysis and increased FAO in effector
CD8+ T cells, which negatively impacts their functions
[179]. However, there are also some contradictory find-
ings associated with obesity [180]. For instance, obesity
leads to elevated levels of pro-inflammatory adipokine lep-
tin, which enhances the activity of both CD8+ T cells
and CD4+ T cells [181–183]. However, leptin also causes
increased PD-1 expression and CD8+ T cell functional
exhaustion, attenuating antitumor immunity [180, 184].
Currently, important questions regarding the association
between obesity and immunity remain unanswered, and
what is already discovered may only be the beginning.

Dietary adjustment may be a good solution for people
with obesity or metabolic syndrome. Previous studies have
confirmed that dieting improves the effects of chemother-
apy [185–187]. Moreover, fasting is also linked to elevated
adiponectin levels and reduced glucose, insulin, and lep-
tin levels following the downregulation of cAMP- PKA
and insulin-like growth factor 1 receptor (IGF1R)-AKT-
mechanistic target of rapamycin kinase (mTOR)-S6K sig-
naling [188]. Fasting-mimicking diets can reduce HO1 lev-
els, leading to an increase in CD8+ tumor-infiltrating lym-
phocytes (TILs) and a reduction in Tregs [189]. The inter-
action between the diet and immune system is extremely
complicated as patients may need a larger energy sup-
ply during treatment. Therefore, much work is probably
needed before doctors can create a proper food manage-
ment system for patients with cancer.

3.3 Microbiome

Apart from creating direct metabolic alterations, changes
to our diet may also influence the microscopic organ-
isms that live within us [190] (Figure 2). The gut micro-
biome is composed of bacteria, viruses, fungi and some
special microbiomes, such as archaea [191]. The influences
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of these commensals on carcinogenesis,metastasis and the
effects of conventional therapeutics are broadly recognized
[192–195], and many studies have also emphasized their
impacts on immunotherapy [196–198]. In 2015, two teams
of researchers identified positive correlations between the
flora Bacteroides and Bifidobacterium species in the intesti-
nal tract of mice and the effects of ICIs [199, 200]. Sub-
sequently, several intestinal microbe families have been
discovered to have specific influences on immunother-
apy. The intestinal microbiota is not only indispensable
for maintaining the structure and functions of the mucous
layer but also interacts with some immune cells, such as
Th17 cells, Tregs and DCs. Recently, Zhang et al. [201]
found that MDSCs were selectively recruited by Fusobac-
terium nucleatum, impairing the immune response of the
host against CRC. In addition, some gut commensals
are deeply involved in the metabolism of certain nutri-
ents or act as facilitators of nutrients such as bile acids
(BAs) tomodulate inflammatory signaling in immune cells
and the proportions of some T cell subtypes [202, 203].
Therefore, dysbiosis is deeply associated with the affected
response and toxicity of antitumor immunotherapy [192].
As a consequence, there have been reports of antibiotics
negatively impacting the outcomes of patients undergo-
ing immunotherapy [198, 204]. In contrast, fecal micro-
biota transplantation (FMT) and administration of prebi-
otics or probiotics have been shown to have great thera-
peutic potential in animal experiments and clinical trials
[200, 205, 206].
Unlike the well-known intestinal commensals, the

microbiomewithin tumor tissues has not attracted enough
attention even though many studies have indicated that
some of the bacteria existing inside tumor cells have the
potential to affect therapeutic effects [207–210]. To obtain
a clear understanding of intracellular bacteria, Nejman
et al. [211] comprehensively analyzed 7 types of tumors
(melanoma, bone, brain, lung, breast, ovarian, and pancre-
atic tumors) compared with adjacent normal tissues. They
found that the content of bacteria in these tumors varied
from 14.3% for melanoma to 62.7% for breast tumors. Even
some solid tumors without direct contact with the exter-
nal environment, such as glioblastomamultiforme (GBM),
possess live microbes in both cancer and immune cells
(Figure 2). Additionally, different kinds of cancer exhib-
ited distinct colonies of bacteria associated with specific
metabolic signaling pathways. For example, some bacte-
ria with the capacity to degrade cigarette smoke metabo-
lites were more likely to be enriched in the NSCLC cells
of smokers than in those of never-smokers. Moreover,
melanoma with a relatively large proportion of Clostrid-
ium showed higher sensitivity to immunotherapy, while
Gardnerella vaginalis was associated with a poor response
to ICIs in patients with melanoma. Thus, the intracellular

microbiota plays critical roles in tumor development and
the immune response, and more investigations on its bio-
logical process are expected to be performed.

3.4 Immune contexture

The immune contexture is a concept similar to the TME
that emphasizes the density, distribution and functional
interactions among different cells, including but not
limited to tumor cells (especially in solid malignancies),
immune cells, stromal cells and vessel cells. This con-
cept can be traced back to 2007, when Jérôme Galon,
Wolf-Herman Fridman and Franck Pagès elucidated the
adaptive immune microenvironment in CRC [212]. Their
team summarized three major types of immune contex-
tures, ‘hot’, ‘altered’ and ‘cold’, based on immunoscores
evaluating the infiltration of CD3+ and CD8+ lympho-
cytes [213]. The ‘altered’ phenotype with an intermediate
immunoscore was further divided into two categories
(altered-excluded and altered-immunosuppressed) to
form a more comprehensive classification together with
hot and cold phenotypes [213, 214]. Hot or inflamed tumors
are infiltrated by abundant TILs, so they show consider-
able response to ICIs, while cold or noninflamed tumors
exhibit the opposite condition with a low TMB and the
absence of antigen presentation. Altered-excluded tumors
contain TILs mainly at the margin with a reprogrammed
TME while altered-immunosuppressed tumors allow
only a few TILs to infiltrate without further expansion
or recruitment but possess a relatively high proportion
of immunosuppressive cells and molecules. Moreover,
the formation of the immune contexture depends on
some important cytokines or chemokines, such as IFN-γ,
perforin and IL-15 [215, 216], key enzymes or factors, such
as vascular endothelial growth factor (VEGF) and IDO1
[217, 218], and diverse pathways, including the NF-κB,
STAT3 and WNT-β-catenin pathways [219–221]. In 2016,
Fridman et al. [222] proposed another classification system
based on the infiltration and tertiary lymphoid structures
(TLSs) of immune cells as well as vascularization, namely,
‘immunogenic’ (with good prognosis), ‘inflammatory’
(with poor prognosis) and ‘immune neglected’ (with
intermediate prognosis). Regardless of how the categories
were partitioned, the identification of these profiles was
meant to predict the baseline antitumor immunity from a
complex TME. Therefore, turning cold or altered tumors
into hot tumors with a better immune response could be
one of the most pivotal treatment strategies in the future.
Cancer and immune cells interact with each other in a

dynamic manner. Thus, we should consider the immune
contexture as an adaptive and adjustable system.One note-
worthy phenomenon is T cell exhaustion, which usually
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arises from chronic infection or continuous exposure of
T cells to antigens [223, 224]. Viral or bacterial infection
and local inflammation can lead to ongoing TCR activa-
tion along with sustained expression of inhibitory recep-
tors, such as PD-1, LAG-3 and TIM-3, limiting chronic
stimulation [225–228]. This process affects both CD4+
and CD8+ T cells by dramatically reducing their abilities
to proliferate and generate cytokines [229, 230]. In con-
trast, immunosuppressive cells such as Tregs and MDSCs
may be increased and aggravate the dysfunction of effec-
tor and memory CD8+ T cells by releasing immunosup-
pressive cytokines [224, 231, 232]. Furthermore, exhausted
T cells may express some exclusive molecules, including
T-bet and eomesodermin (EOMES) [233], so identifying
exhausted T cells with these markers can help facilitate a
more precise understanding of the immune contexture.
There are also other aspects of the immune contexture

that should be emphasized. For example, sufficient infil-
tration of some immune cells, such as TAMs and MDSCs,
is tightly linked with immune tolerance and cancer pro-
gression [234–236]. Another important factor is the effect
of tissue-specific immunity during immunotherapy treat-
ment, since different organs exhibit distinct immunologi-
cal characteristics, the TME of the primary lesion is differ-
ent from that in metastases and thus influences the effi-
ciency of immunotherapy in tumors in different organs
[237]. In summary, we must assess the immune contex-
ture from a dynamic perspective to guide and adjust the
immunotherapy regimen.
Take together, the immune response of tumors is a

dynamic process that is not only based on the genome, epi-
genetic regulators and posttranscriptional modulation but
also changes with the evolving metabolism and immune
contexture. Adjustment of diet and the microbiome in the
body could exert a great influence on the TME and the out-
comes of cancer immunotherapy.

4 ADVANCED CLINICAL
ASSESSMENT AND TREATMENT
TECHNOLOGY

4.1 Predicting the clinical outcome of
immunotherapy

As mentioned above, the emergence of ICIs has revolu-
tionized the treatment of many types of tumors. However,
although clinical benefit has been observed in numerous
patients, there are still many patients who do not respond
to currently available immunotherapies. Therefore, it is of
great importance to distinguish patients who will respond
to immunotherapy to maximize the cost-benefit ratio.

4.1.1 Surgical or tissue biopsy specimens

First, multiplex immunohistochemistry (mIHC) is com-
monly used to assess tissue pathology [238]. As described
above, the infiltration of immune cells into the TME
can directly influence antitumor effects. Therefore, TILs
have been regarded as a significant index correlated with
the outcomes of immunotherapy [239–241]. Moreover, the
most direct approach to distinguish whether a patient
can respond to ICI immunotherapy is to detect whether
the targeted immune checkpoint molecule is expressed in
tumor specimens. Compared with patients with lower PD-
L1 expression levels, those whose tumors were ≥50% PD-
L1+ have been shown to have a higher response rate to
anti-PD-1 mAbs and better survival [242]. Based on this
result, the assessment of PD-L1 expression in tissue speci-
mens by mIHC was approved by the FDA as a companion
diagnostic test for pembrolizumab treatment in advanced
NSCLC in October 2015 [243]. The immunohistochemical
detection of other immune checkpoint molecules, includ-
ing CD73, LAG-3 and TIM-3, in tissue sections has also
been widely investigated [69, 244].
In addition, as sequencing technology gradually

matures, there is an increasing number of next-generation
sequencing (NGS)-based assays to identify critical somatic
mutations that can predict response to immunotherapy.
For example, in 2017, one meta-analysis including 27
tumor types or subtypes revealed that the TMB had a sig-
nificantly positive correlation with the objective response
rate in patients treated with anti-PD-1 or anti-PD-L1 ther-
apy [245]. In 2019, a combined analysis including 47,721
patients found POLE/POLD1mutations to be independent
predictive biomarkers for a positive clinical benefit in
many types of cancer [246]. These results suggest that
genome sequencing data for tumor specimens can play a
critical role in guiding the selection of patients who will
respond to immunotherapy.
Finally, although great progress has been made in

other traditional sequencing technologies, including DNA
sequencing, RNA sequencing and protein sequencing,
regarding precision and throughput of diagnosis, these
technologies are based on bulk cell populations and pro-
vide information that is a steady-state average of thousands
of cells. However, the heterogeneity of a cell population,
which is mainly governed by genetic heterogeneity, epi-
genetic and developmental programs, and extrinsic and
spatial factors, may determinemany essential complicated
biological behaviors such as tumor growth, metastasis,
and treatment resistance [247], which traditional sequenc-
ing technology can overlook. Single-cell sequencing can
overcome these shortcomings as it examines the sequence
information of individual cells and provides a better
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understanding of the heterogeneity and evolutionary
relationships of various cells in a microenvironment.
Therefore, it is widely utilized in tumor research [248,
249]. In 2019, Suvà and Tirosh [247] reviewed the common
themes, opportunities and challenges, and emerging
single-cell genomic methods of single-cell sequencing,
especially single-cell RNA sequencing in cancer, and then
provided new methods and ideas for the investigation
of cancer biology. In 2020, Regev et al. [250] introduced
the concept of a dynamic three-dimensional (3D) atlas
of cancer transitions for a diverse set of precancerous
lesions and established tumors at single-cell resolution,
called the Human Tumor Atlas Network (HTAN), and is
planned to be finished within the next five years. Once
completed, this work could greatly improve the under-
standing, diagnosis, monitoring, drug development, and
biomarker discovery of tumors, which could eventually
boost developments in precision medicine.

4.1.2 Liquid biopsy

In clinical diagnosis, tumor tissue biopsy is regarded as
the standard of choice to investigate whether a patient will
respond to immunotherapy [251]. Liquid biopsy is a newly
developed technique that can detect the genomic profile of
patients with cancer utilizing bodily fluids such as blood,
urine, saliva, pleural effusion, and cerebrospinal fluid. Cir-
culating cell-free DNA (cfDNA), circulating tumor DNA
(ctDNA), circulating tumor cells (CTCs), proteins, exo-
somes and other circulating components can all be ana-
lyzed through liquid biopsy [252]. Compared with tra-
ditional tissue biopsy, liquid biopsy is less invasive and
more cost-effective, accessible, and replicable [251]. Subse-
quently, there are also several studies exploiting the appli-
cation of liquid biopsy in cancer management [253–256].
For immunotherapy, liquid biopsy also exhibits unique

potential to predict the prognosis of patients with can-
cer. In 2015, Mazel et al. [257] first detected PD-L1 expres-
sion on CTCs in patients with breast tumors and created a
new method to monitor PD-L1 expression in solid tumors.
Later, in 2018, Chen et al. [258] discovered that PD-L1
expression on circulating exosomes before or during anti-
PD-1 treatment reflected the different states of antitumor
immunity. In addition, a proof-of-principle study revealed
that the detection of ctDNA 8 weeks after anti-PD-1 treat-
ment was negatively correlated with survival in patients
with NSCLC, uveal melanoma, or MSI CRC [259]. Gan-
dara et al. [260] demonstrated that the TMB in the blood
(bTMB) could be a promising biomarker to predict clini-
cal benefit from ICI immunotherapy. The inconsistency in
results from previous studies may be partly due to sample
instability, immature quantification and isolation meth-

ods, low sensitivity, and high cost [252, 261]. liquid biopsy
has the potential to exhibit a correlation with the clinical
outcomes of immunotherapy and improve clinical diagno-
sis.

4.2 Advanced treatment technology

With the rapid development of oncoimmunology,
immunotherapy has been approved for the treatment
of multiple cancers and has achieved surprising clinical
outcomes in recent decades. Nevertheless, we still face
great challenges in translating experimental observations
into clinical practice. First, as mentioned above, not all
patients respond to ICIs. Second, the main approach to
delivering immunotherapy is through systematic admin-
istration, which may result in many immune-related
adverse events (irAEs) because of off-target effects and
the fact that many drugs cannot reach solid tumors at
sufficient levels, especially when facing many delivery
barriers [262, 263]. Therefore, developing other advanced
treatment technologies to improve the safety and efficacy
of immunotherapy is urgently needed. Some of these
novel technologies are described below.

4.2.1 Cell-based immunotherapies

T cells are the major type of cells that directly kill tumor
cells in the TME. Cell-based immunotherapy is mainly
referred to as chimeric antigen receptor (CAR)-T cell
immunotherapy, in which doctors collect T cells from the
patient (autologous) or a healthy person (allogenic), genet-
ically engineer the cells to express an artificial CAR specif-
ically targeting an antigen presented on tumor cells, and
then administer the cells in patient to eradicate tumor cells
[264]. The first experimental target was CD19, which is
mainly expressed on B cell leukemia and lymphomas. The
first patient treated with anti-CD19 CAR-T cells achieved
promising outcome, and this success encouraged a series
of studies [265]. The FDA approved anti-CD19 CAR-T cells
for the treatment of refractory pre-B cell acute lymphoblas-
tic leukemia and diffuse large B cell lymphoma in 2017,
which revolutionized cancer immunotherapy [266]. More-
over, the application of CAR-T cells is not limited to only
CD19 and it has been extended to CD22 and BCMA [267,
268].
However, there are stillmany challenges for this therapy.

First, cytokine release syndrome is frequently observed
during treatment [269]. Second, although CAR-T cell
therapy has achieved excellent results in hematological
tumors, it has not been as effective in solid tumors [270,
271]. To overcome this limitation, one study tried to use
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bioengineered polymer scaffolds, which when implanted
near or at the resection sites of tumors were able to stimu-
late and expand tumor-reactive T cells, producing a cura-
tive effect in mouse models of solid tumors [272]. In addi-
tion, scientists are also investigating several novel methods
such as synthetic APCs and nanoparticle-functionalized T
cells [273, 274]. Nevertheless, more evidence is required to
showwhether thesemethods can be further developed and
introduced into clinical trials.
Although CAR-T cell immunotherapy has exhibited

impressive results in hematological malignancies, it usu-
ally does not provide enough value in solid tumors [275].
In contrast, TCR-engineered T (TCR-T) cells may show
greater promise in solid tumors because engineered TCRs
consist of a glycoprotein alpha-beta chain heterodimer that
can bind to peptides presented by MHC molecules [276].
As a result, TCR-T cells can recognize both surface pro-
teins and intracellular proteins, targeting many more anti-
gens and penetrating tumors better than CAR-T cells [277].
Most of the clinical trials on TCR-T cells are still in phase
1 or phase 2, and the cost and time-consuming process of
TCR cloning limit the broad application of TCR-T cell ther-
apy [276]. Furthermore, several researchers believe that
a combination of CAR-T and TCR-T cell immunothera-
pies will have therapeutic effects on solid tumors in the
future because their mechanisms of action and resistance
are completely different from those of traditional CAR-T
cell immunotherapy.
Similarly, to overcome the challenge of solid tumors not

satisfactorily responding to CAR-T cell immunotherapy,
Gill et al. [278] focused on macrophages, which are very
abundant in the TME of many types of solid tumors. The
authors produced chimeric antigen receptor macrophages
(CAR-Ms) that secreted proinflammatory cytokines and
upregulated antigen presentation, ultimately enhancing
their antitumor ability. In humanized mouse models,
CAR-M therapy significantly diminished the TMB and
prolonged OS [278]. However, there are still many limita-
tions in CAR-M therapy. For example, CAR-Ms could not
proliferate in vitro or in vivo, and the biodistribution of
CAR-Ms after systemic administration also largely influ-
enced the response rate. Maybe we could combine CAR-
Ms with some other treatments such as cytokine therapy
or nanoparticle-based approach to overcome these short-
comings.
DCs are the most powerful APCs in the human body

and have garnered considerable attention in the develop-
ment of novel therapeutic cancer vaccines. The manufac-
ture of DC vaccines generally starts with the isolation of
autologousDCs, followed by exposing them to an appropri-
ate source of tumor-associated antigens (TAAs) ex vivo and
then, refusing them back into the patient. A series of clin-
ical trials have already been undertaken in patients rep-

resenting many types of cancers, which demonstrated the
safety and therapeutic profile of DC vaccines [279]. How-
ever, DC vaccinationmay have limitations asmonotherapy
because of the immunosuppressive microenvironment, so
the combination of DC vaccination with other therapies,
such as ICB, chemotherapy, and radiation therapy, may
enhance antigen-specific antitumor immunity [280].

4.2.2 Oncolytic virus immunotherapies

Scientists have invented various vaccines against viruses
to prevent oncogenesis [281], but they are also currently
using viruses as immunotherapy. As described above, ‘cold
tumors’ usually do not respond well to immunotherapy.
To overcome resistance to ICIs, there are many combina-
tion therapies under investigation, including approaches
turning ‘cold tumors’ into ‘hot tumors’ [282]. Due to their
abilities to infect tumor cells and propagate within these
cells, oncolytic viruses (OVs) can selectively kill cancer
cells, resulting in the release of TAAs, additional DAMPs,
viral pathogen-associated molecular patterns (PAMPs),
and other molecules, such as cytokines, to induce an anti-
tumor immune response [283]. The first approvedOV ther-
apywas talimogene laherparepvec (T-VEC),which is based
on a type 1 herpes simplex virus (HSV-1). With the dele-
tion of ICP34.5 and ICP47, T-VEC can specifically repli-
cate in and lyse tumor cells, ultimately inducing local and
global antitumor immunity [284]. A phase III clinical trial
investigating the efficacy and tolerance of T-VEC success-
fully treated advanced-stage melanoma [285]. However,
this current OV therapy works only in a few select types
of tumors. Although there aremany novelmethods of drug
delivery under investigation, the dose-effect relationship of
OVs cannot be predicted easily due to their self-replication
[284]. Moreover, the application of OV therapy in combi-
nation with other immunotherapies remains in the exper-
imental stage.

4.2.3 Neoantigen vaccines

In addition to OV administration, increasing the expres-
sion of neoantigens is another way to turn ‘cold tumors’
into ‘hot tumors’ which could induce specific antitumor
immune responses. In 2017, two successful cases of person-
alized neoantigen-based tumor vaccines for the treatment
of advanced melanoma were published in Nature at the
same time [129, 286]. One report was about an RNA-based
polypeptide vaccine that produced sustained progression-
free survival (PFS) in over 60% (8/13) of patients [286].
The other was about a vaccine that targets up to 20
predicted personal tumor neoantigens which led to no
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recurrence in nearly 70% (4/6) of patients for 25 months
[129]. Although the sample numbers were relatively lim-
ited, the results are extremely inspiring. Later, in 2020, one
team generated personalized neoantigen vaccines based
on NGS with their in-house pipeline iNeo-Suite. This was
the first pan-cancer clinical study concentrating on per-
sonalized neoantigen vaccine monotherapy that showed
promising feasibility, safety, and efficacy [287].

4.2.4 Nanoparticle-based approaches

To date, a diversity of immunotherapies, including ICIs,
ACTs, tumor vaccines, OVs and cytokine therapies, have
been established. The effects of these therapies rely largely
on their interactions with targeted molecules or cells, so
an efficient delivery technology could strikingly improve
the effect and safety of these therapies [262]. A typical
example of nanoparticle-based approaches is nanoparticle-
programmed CAR-T cells [288]. Nanoparticles that encap-
sulate tumor CAR-encoding DNA recognize circulating
T cells through CD3 molecules in the blood, releasing
the DNA into the T cells to achieve sufficient cellular
CAR expression to eradicate tumor cells. This method
has achieved great success in mouse models of B cell
lymphoblastic leukemia, which provided a novel idea for
making CAR-T cell therapy possible in hospitals without
the need to engineer T cells ex vivo in a special labora-
tory.Moreover, another study used nanoparticles to deliver
tumoral mRNA in vivo [289]. Researchers have used lipid-
based nanoparticles to package mRNA transcripts encod-
ing tumor neoantigens. Systemic administration into mul-
tiple mouse models of established tumors then led to
the expression of TAAs by local APCs and subsequently
induced durable type I IFN-dependent antigen-specific
immunity. In summary, nanotechnology can improve the
safety and efficacy of immunotherapy by better con-
trolling the dose, location, release, and penetration of
immunotherapeutic drugs or cells as well as by optimiz-
ing the treatment process. As a consequence, nanotechnol-
ogy could make tumor immunotherapy more comprehen-
sive and more effective. Despite these achievements, more
research and clinical trials on nanoparticles are needed to
further confirm their therapeutic effects.
Currently, the application of these new technologies

is not as universal as ICIs, and some of them are still
under preclinical study. Nevertheless, they could enhance
the immunological function of our body through different
mechanisms, and they are powerful complements for exist-
ing immunotherapies. We believe that if we could utilize
them more reasonably on basis of thorough exploration,
a new chapter on immunotherapy could be started in the
near future.

5 CONTROVERSIES AND
LIMITATIONS OF CANCER
IMMUNOTHERAPY

5.1 Adverse effects of cancer
immunotherapy

For over a century, until the development of anti-PD
therapy (anti-PD-1 and anti-PD-L1 antibodies), cancer
immunotherapy was not popular. Despite great efforts
being made in the investigation of cancer immunotherapy,
low efficacy and frequent irAEs have limited its clinical
application.
Before anti-PD therapy, only five types of cancer

immunotherapy were approved for clinical use, i.e., IFN
(for hairy cell leukemia, kidney cancer, and melanoma)
[290–292], IL-2 (for kidney cancer and melanoma) [293,
294], sipuleucel-T (a cancer vaccine for prostate cancer)
[295], CAR-T cells (for B cell lymphoma/leukemia) [296],
and anti-CTLA-4 mAbs (for melanoma) [297]. Most of the
above therapies resulted in frequent irAEs and low objec-
tive response rates, which dramatically limited their use
to only several cancer types. For example, although only
a small proportion of melanoma patients respond to anti-
CTLA-4 mAbs (14% on average), grade 3-4 AEs are com-
mon (27%) [38]. Similarly, IL-2 can induce a general cap-
illary leak syndrome that severely affects multiple organs
[298], resulting in frequent grade 3-4 AEs (>43%) [38].
In contrast, newly developed anti-PD therapies have a

higher objective response rate withmany fewer irAEs (Fig-
ure 3). For example, CheckMate 067, a phase III clin-
ical trial comparing nivolumab (an anti-PD-1 antibody)
and ipilimumab (an anti-CTLA-4 antibody) in previously
untreated patientswithmetastaticmelanoma, showed that
nivolumab produced more than two times the number
of antitumor responses than ipilimumab (43.7% versus
19.0%), while the number of grade 3-4 treatment-related
AEs was lower with nivolumab than with ipilimumab
(16.3% versus 27.3%) [299]. A systematic review involving
20,128 patients showed that the severe toxicity (grades 3-
5) rate of anti-PD therapy, including anti-PD-1 and anti-
PD-L1 antibodies, was only 14.0%. The most common all-
grade AEs were fatigue (18.26%), pruritus (10.61%), and
diarrhea (9.47%). The most common grade 3 or higher AEs
were fatigue (0.89%), anemia (0.78%), and an increased
aspartate aminotransferase level (0.75%). Hypothyroidism
(6.07%) and hyperthyroidism (2.82%) were the most
frequent all-grade endocrine irAEs [300]. The safety pro-
file of anti-PD therapy is also better than that of conven-
tional chemotherapy. A meta-analysis involving 22 ran-
domized immunotherapy trials, 21 of which were anti-PD
therapy trials, versus standard-of-care chemotherapy tri-
als showed that immunotherapy was associated with a
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F IGURE 3 The balance between
response and toxicity in anti-PD therapy
compared with other immunotherapy
methods. Toxicity outweighs the response in
immunotherapy methods such as IL-2, IFNs,
CAR-T cells, and anti-CTLA-4 antibodies,
resulting in quite limited indications. For
anti-PD therapy, the response outweighs
toxicity considerably, which leads to a rather
broad application. Abbreviations: CAR-T:
chimeric antigen receptor T cells; CTLA-4:
cytotoxic T lymphocyte-associated antigen 4;
IFN: interferon; IL-2: interleukin-2; PD:
programmed death

significant reduction in the likelihood of developing severe
AEs (16.56% versus 41.09%) and AEs of any grade (65.82%
versus 85.19%) [301].
Despite the improved safety profile, greater attention

should be given to the special irAEs of anti-PD therapy,
which can be fatal. IrAEs most commonly affect the gas-
trointestinal tract, endocrine glands, skin, and liver [302],
but severe pneumonitis, myocarditis, colitis, hepatitis and
neurological toxicities can also occur and lead to a dismal
prognosis [303–307]. For instance, fulminant ICI-related
myocarditis has been reported to increase in occurrence
with the increased use of ICIs [304]. A retrospective anal-
ysis of 101 severe myocarditis cases following the admin-
istration of ICIs, where the majority of the patients were
treated with anti-PD monotherapy or combination ther-
apy, showed that death occurred in 46% of these patients
[308]. Therefore, the precise administration of anti-PD
therapy and early recognition of severe irAEs are of great
clinical significance.
Hitherto, most irAEs can be observed and reported only

in clinical trials and real-world studies, and the study
of irAEs in preclinical and translational investigations is
still limited [309]. Early data suggest that ICIs can cause
malfunctions in the self-tolerance system: the diversifi-
cation and subcompartmental expansion of lymphocytes
activated by ICIs probably gives rise to autoreactive T
cells and B cells, causing autoimmune responses [310–312].
In addition, after the activation of immune cells, normal
cells distributed in or near the TME may also be dam-
aged, which can result in the release of self-antigens and
a subsequent autoimmune response [313]. Moreover, the
inflammatory factors secreted by activated immune cells
may lead to immune-mediated damage in organs predis-
posed to autoimmune diseases, as the levels of periph-
eral cytokines are often elevated posttreatment in patients
suffering from irAEs [314, 315]. On the other hand, off-
target effects may explain some types of irAEs. For exam-
ple, CTLA-4 is also expressed on hypothalamic and pitu-
itary tissues; thus, the administration of anti-CTLA-4 ther-

apy would probably elicit hypophysitis [316]. Therefore,
although corticosteroids remain the first-linemanagement
approach for irAEs, the underlying mechanisms may still
vary among organs and specific conditions; thus, precise
immunohistopathological results are necessary to guide
the prescription of appropriate immunomodulatory bio-
logical agents, especially when corticosteroids are ineffec-
tive [309].

5.2 Cancer immunotherapy strategies:
enhancement versus normalization

Among the different types of cancer immunotherapy
methods, anti-PD therapy has achieved the most extensive
success. Consequently, researchers have begun to recon-
sider the strategies underlying the development of cancer
immunotherapy.
Based on the understanding of the cancer-immunity

cycle [317], various types of immunotherapies were devel-
oped before anti-PD therapy. As mentioned above, those
therapies generally activate the immune system and
enhance the antitumor response. However, these general
approaches do not aim to correct any deficiencies in the
normal antitumor immune response. They simply activate
the total immune response and push the immune system to
supraphysiological levels to constrain tumors [38]. There-
fore, the objective tumor response rates of these strategies
are usually low, while the risk of accompanying irAEs is
rather high. These general approaches were later catego-
rized together as ‘‘enhancement cancer immunotherapy’’
by the team of Professor Lieping Chen [38].
In contrast, based on the understanding that tumors can

develop various ways to escape elimination by the immune
system [318], whereby tumor cells inhibit immune cell
activity in the TME, which results in a local but not sys-
temic immunosuppression status [319], new approaches,
such as anti-PD therapy, have been developed. These new
approaches were categorized and termed “normalization
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cancer immunotherapy” because they aimed to restore a
lost antitumor immune response [38]. These new strategies
target a tumor-induced immune escapemechanism, selec-
tively modulating and resetting immunity in the TME. A
clear example is anti-PD therapy, which blocks the PD-
1/PD-L1 pathway, a tumor-induced immune escape mech-
anism, to restore antitumor immunity in the TMEwithout
leading to general activation of the immune system. This
approach has been proved to be effective across multiple
cancer types and to be associated with a relatively low risk
of accompanying irAEs. Therefore, Sanmamed et al. [38]
proposed a strategic shift from enhancement to normaliza-
tion in cancer immunotherapy development and empha-
sized the importance of identifying the critical immune
escape mechanism in each patient.
Targeting SIGLEC-15, another TME-specific immune

checkpoint target mentioned above, was inspired by
this conceptual shift [85]. A monoclonal antibody that
blocks SIGLEC-15-mediated immune suppression showed
encouraging single-agent antitumor activity in a phase I
clinical trial [320]. Therefore, we believe that in addition to
PD-1/PD-L1, SIGLEC-15may be the first in a series of novel
targets for normalization cancer immunotherapy, which
would progress cancer treatment to another level.

5.3 Hyperprogressive disease: the dark
side of anti-PD therapy

Although anti-PD therapy can substantially improve the
survival of patients with advanced cancers, there is a
paradoxical phenomenon whereby some patients exhibit
accelerated disease progression when treated with anti-
PD-1/PD-L1 antibodies and have subsequent dramatically
reduced survival durations, namely, hyperprogressive dis-
ease (HPD) [321].
HPD after anti-PD therapy was first reported at the 2016

European Society for Medical Oncology (ESMO) meetings
by Lahmar et al. [322] who observed eight HPD cases (9%)
in a cohort of 89 NSCLC patients receiving anti-PD ther-
apy. Later, Champiat et al. [323] demonstrated that HPD
could also occur in other examined cancer types, including
melanoma, urothelial carcinoma, colorectal carcinoma,
lymphoma, ovarian carcinoma, cholangiocarcinoma, and
uveal melanoma. Additionally, in clinical trials compar-
ing anti-PD therapy with chemotherapy, a crossover of the
two survival curves was observed in the initial three to six
months, which was considered to be due to disease pro-
gression and death occurring at a higher proportion in the
anti-PD therapy arm within the early period of the trials
[41, 324–327].
Researchers have expended great efforts to explore the

biological mechanism of HPD, which is not just the man-

ifestation of primary resistance to anti-PD therapy. It is
accelerated tumor growth triggered by the administration
of anti-PD-1/PD-L1 antibodies through undefined mech-
anisms. Several hypotheses regarding the HPD mecha-
nism have been proposed, including: i) the expansion
of PD-1-expressing Tregs due to the loss of contrasup-
pression, thus, leading to enhanced immunosuppression
and tumor boosting; ii) the exhaustion of compensatory
T cells due to the compensatory upregulation of the
expression of other immune checkpoint molecules; iii)
the modulation of tumor-promoting cells and secretion
of immunosuppressive cytokines; iv) aberrant inflamma-
tion mediated by Th1 and Th17 cells; and v) the acti-
vation of an oncogenic signaling pathway [321]. How-
ever, evidence supporting these possible biological mecha-
nisms ismostly preliminary and requires further investiga-
tion, which would certainly provide a better understand-
ing of HPD and an approach for the management of this
condition.
On the other hand, predictive biomarkers that iden-

tify people at high risk of HPD are also urgently needed.
Patients with a local recurrence of head and neck squa-
mous cell carcinoma (HNSCC) in the field of irradiation
[328], NSCLC patients with two or more metastatic sites
[329], and older patients are reported to be at a higher risk
of HPD [323]. With regard to genomic biomarkers, MDM2
amplification was the first genomic biomarker reported to
be associated with an increased risk of HPD [330]; in addi-
tion, EGFR alteration and 11q13 amplification were also
reported to be associatedwithHPD [330, 331]. In summary,
additional predictive biomarkers are needed, and the com-
prehensive integration of these biomarkers may lead to the
identification of patients susceptible to HPD.
In addition to the passive clinical management of

HPD such as informing patients, paradigm changes in
tumor assessment and the choice of subsequent therapy
[321], splicing in a limited course of chemotherapy to
immunotherapy could potentially provide rapid disease
control, making it a practical method to tackle HPD (Fig-
ure 4). In CheckMate 9LA, a phase 3 clinical trial eval-
uating nivolumab plus ipilimumab plus a limited course
of chemotherapy versus chemotherapy for first-line treat-
ment of stage IV or recurrent NSCLC, the crossover of
the survival curves was eliminated by adding the lim-
ited course of chemotherapy compared with the results
of CheckMate 227 [41]. Although Reck et al. [332] did not
report HPD data for CheckMate 9LA at the 2020 American
Society of Clinical Oncology (ASCO)meetings, the propor-
tion of patients with disease progression during the first
evaluation in the experimental armwas shown to be lower
than that in the control arm (9% versus 13%). Therefore, the
use of a limited course of chemotherapy to address HPD is
worthy of further investigation.
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F IGURE 4 Adding a limited course of chemotherapy to immunotherapy to address HPD. Accelerated disease progression due to HPD
significantly compromised the total survival benefit of anti-PD therapy over chemotherapy, which could be rescued by adding a limited
course of chemotherapy to anti-PD therapy. Abbreviations: HPD: hyperprogressive disease; PD: programmed death

In summary, preferred cancer immunotherapy must
have prominent response but less toxicity, such as anti-
PD therapy. More efficient and novel targets will be devel-
oped in accordancewith the strategy of normalization can-
cer immunotherapy. Nevertheless, special features such as
fatal irAEs and HPD should be carefully managed for bet-
ter application of cancer immunotherapy.

6 CONCLUSION

The current oncotherapy has being quickly evolved with
the rise of antitumor immunotherapy. We are in an epoch
with many opportunities for lengthening the lifespan of
patients suffering from cancer. With the development of
precision medicine, more appropriate individual treat-
ments based on the comprehensive analysis of both tumors
and the TME can be offered to patients . However, oppor-
tunities are always accompanied by challenges. In 2020,
Hegde et al [333] listed the 10 largest challenges in can-
cer immunotherapy, covering issues ranging from preclin-
ical experiments to therapeutic endpoints, that indicated
the existence of insufficient recognition in cancer-related
immunity. Despite all the setbacks in this field, we still
hold full confidence in the potential of immunotherapy
which can be realized with the use of more advancedmed-
ical devices and newly developed experimental methods.
Immunity is considered either the weapon or the armor
with which humans are born, so the mobilization and
usage of this system should be an ideal option for dis-
ease control. When treating cancer with new therapeutic
methods, we should not only pay attention to the dynamic

alterations in the TME but also consider the relationship
between local lesions and the basic status of patients. As
scientists gradually expand the knowledge of immunother-
apy, medical research and cancer treatments will likely
advance significantly in the next decade.
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