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Abstract
Advanced age is the main common risk factor for cancer, cardiovascular disease and

Correspondence neurodegeneration. Yet, more is known about the molecular basis of any of these
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groups of diseases than the changes that accompany ageing itself. Progress in mo-
lecular ageing research was slow because the tools predicting whether someone aged
slowly or fast (biological age) were unreliable. To understand ageing as a risk factor
for disease and to develop interventions, the molecular ageing field needed a quan-
titative measure; a clock for biological age. Over the past decade, a number of age
predictors utilising DNA methylation have been developed, referred to as epigenetic
clocks. While they appear to estimate biological age, it remains unclear whether the
methylation changes used to train the clocks are a reflection of other underlying cellu-
lar or molecular processes, or whether methylation itself is involved in the ageing pro-
cess. The precise aspects of ageing that the epigenetic clocks capture remain hidden
and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has
opened the door towards studying biological ageing quantitatively, and new clocks
and applications, such as forensics, appear frequently. In this review, we will discuss
the range of epigenetic clocks available, their strengths and weaknesses, and their

applicability to various scientific queries.
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1 | INTRODUCTION 2004; Kapahi et al., 2004; Kennedy et al., 1995; Klass, 1977; Murphy
et al., 2003; Tatar et al., 2001; Tissenbaum & Ruvkun, 1998; Vellai
Ageing is universally accompanied by a decline in physical and cognitive et al., 2003). Nutrient-sensing pathways were identified as regula-

abilities and an increased disease risk. Advanced age is the strongest tors of ageing, such as mechanistic target of rapamycin (mTOR) and

risk factor common to cardiovascular, neurodegenerative and malig-
nant diseases (Benayoun et al., 2015). At a cellular level, the hallmarks
of ageing include genomic instability, telomere attrition, epigenetic al-
terations, loss of proteostasis, de-regulated nutrient sensing, mitochon-
drial dysfunction, cellular senescence, stem cell exhaustion, and altered
intercellular communication (reviewed in Lépez-Otin et al., 2013).
Initial evidence that ageing could be decelerated came from ge-

netic studies of short-lived non-vertebrate model organisms (Jia et al.,

insulin/insulin-like growth factor (IGF) signalling, which can be ma-
nipulated to extend lifespan in mammals such as mice (Blther et al.,
2003; Holzenberger et al., 2003; Johnson et al., 2013; Pearson et al.,
2008; Weindruch et al., 1986). Other results based on cellular re-
programming showed epigenetic rejuvenation in mice and humans
might be possible (Lu et al., 2020; Manukyan & Singh, 2012, 2014;
Ocampo et al., 2016; Olova et al., 2019; Sarkar et al., 2020; Singh &
Zacouto, 2010). However, to efficiently quantify the effect of these
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interventions, a biomarker that infers biological age is required, that

is a biological indicator that predicts the health and lifespan of an in-
dividual better than chronological age (chAge) (Baker & Sprott, 1988).

DNA methylation (DNAm), specifically 5-methyl-cytosine (5mC),
has emerged as one of the most efficient biomarkers to predict bio-
logical age (Benayoun et al., 2015; Jylhdva et al., 2017; Li et al., 2020).
In the past decade, a large number of age predictors utilising DNAm
have been developed. These DNAm age predictors (more commonly
known as epigenetic clocks) are created using CpGs that have trac-
table changes with age. The majority of these clocks are built using
penalised regression models (such as elastic net (Zou & Hastie, 2005)
or LASSO (Tibshirani, 1997)), which select a group of CpGs that have
a monotonically increasing relationship with age in a given training
data (Horvath & Raj, 2018). In other words, key CpGs whose age-
related hyper- and hypomethylation correlate with age, are selected
and weighted in a linear model. The result is an equation, whereby
chronological age can be estimated based on the percentage meth-
ylation at these key CpG sites in a given sample.

Epigenetic clocks have become increasingly diverse, with each
predictor capturing different aspects of ageing. The expanding rep-
ertoire of clocks enable the study of ageing and rejuvenating ap-
proaches quantitatively. This review aims to give an overview of the
growing toolbox of eAge clocks to inform which approach might best
be suited to a scientific question.

2 | EPIGENETIC CLOCKS PREDICT
BIOLOGICAL AGE

Epigenetic clocks have proven themselves to be accurate at pre-
dicting chronological age (chAge), which is commonly referred to as
DNAm age or epigenetic age (eAge). When epigenetic clocks first
emerged, a fundamental question arose; if eAge deviates signifi-
cantly from chAge, is this difference due to inaccuracies of the clock
itself, or caused by biological factors (e.g. genetics, disease status
and environment)? In other words, are the clocks able to predict
biological age? This difference between eAge and chAge is referred
to as age acceleration and can be calculated as the mean absolute
deviation (MAD) or median absolute deviation between eAge and
chAge (Horvath, 2013), or as the residual from the linear regression
between eAge and chAge (Horvath & Raj, 2018). The reported error
of epigenetic clocks can depend on how the test/validation data set
was curated. For example, if a pooled data set were split into 90%
samples for training and 10% for validation, then the clock would
perform better on the validation data set than when applied to a
completely independent/external data set. In the various tables sur-
mising epigenetic clocks throughout this review, we will clarify how
each clock is validated.

For many of the eAge predictors, age acceleration is associated
with a number of age-related diseases and conditions. For exam-
ple, patients with Down's syndrome (Horvath, Garagnani, et al.,
2015), HIV (Horvath & Levine, 2015), obesity (Horvath et al., 2014),
Huntington's disease (Horvath, Langfelder, et al., 2016), Werner

syndrome (Maierhofer et al., 2017) and Sotos syndrome (Martin-
Herranz et al., 2019) tend to exhibit increased age acceleration. eAge
acceleration has also been associated with physical and cognitive
fitness (Breitling et al., 2016; Marioni, Shah, McRae, Ritchie, et al.,
2015; Quach et al., 2017) and neuropathy (Levine et al., 2015; Lu
et al., 2017) (for comprehensive lists of age acceleration-associated
conditions, please refer to Horvath & Raj, 2018 and Declerck &
Berghe, 2018). Variation in epigenetic ageing rates between indi-
viduals has been shown to significantly depend on sex and race/
ethnicity (Horvath, Gurven, et al., 2016; McCartney et al., 2019).
Vitamin D-sufficient individuals have a lower eAge acceleration and
longer leukocyte telomere length (LTL) (Chen et al., 2019; Vetter
et al., 2020). Smoking has been associated with an increase in eAge
in airway cells and lung tissue (4.9 and 4.3 years, respectively) (Wu
et al., 2019), and smoking during pregnancy might have an effect
on eAge in offspring (Simpkin et al., 2016). The number of studies
associating eAge acceleration with diseases, phenotypes and envi-
ronmental interventions that appear to affect ageing, emphasises
eAge as a candidate metric for biological age (Wang et al., 2017).
However, some studies have shown no correlation between eAge
acceleration and certain diseases or environmental factors, such as
type Il diabetes (Grant et al., 2017; Horvath, Gurven, et al., 2016),
heroin use (Kozlenkov et al., 2017) or depression (Starnawska et al.,
2019). Why eAge acceleration tracks with certain age-related disor-
ders and not others are still not well understood. Most epigenetic
clocks described in the following section used Illumina DNAm array-

based technology and are summarised in Table 1.

3 | DNAM ARRAY-BASED EPIGENETIC
CLOCKS

3.1 | Early epigenetic age predictors

The first epigenetic clocks incorporated relatively few CpG sites and
samples in their training data sets, in comparison with later clocks.
Bocklandt et al., for example created a clock from 68 samples (34 twin
pairs) that predicts age in saliva with an average accuracy of 5.2 years
(Bocklandt et al., 2011). Koch and Wagner used five CpG sites and
predicted age in multiple cell types, but with lower accuracy than the
Bocklandt clock (MAD = 11 years) (Koch & Wagner, 2011). The same
laboratory produced a six CpG clock that could track passage number
in fibroblast cell cultures, regardless of original donor age (Koch et al.,
2012). After these initial studies, epigenetic clocks grew in complexity

in terms of number of samples, tissues and CpGs implemented.

3.2 | Multi-tissue age predictors

The first multi-tissue age predictor (referred to as the Horvath or Pan-
Tissue clock) utilised 353 CpGs and has a mean error of 3.6 years,
which at that time was unprecedented for any biomarker/age predic-
tor (Horvath, 2013). The training data set used to construct the clock
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(Continued)

TABLE 1

Generation of error
estimate (type of

Additional

Age

No. of

Cell types/Tissue used functional
for training

range of
training

Method used to find age-
associated CpGs

samples in

training

validation data set

used)

Reference

tissues/Cells

Error (Years)

No. CpGs

Clock

Boroni et al.

Dermis, epidermis, whole

Elastic net regression 18-95

249

Random segregation of

RMSE 4.98

2,266

Boroni Skin

(2020)

skin

validation data set
from training

McEwen et al.

Buccal epithelial cells

1,032 Elastic net regression 0-19.5

Independent validation

0.35

94

Pediatric-

(2019)

data set

Buccal-

Epigenetic
(PedBE)

Note: Age-associated CpGs are selected and weighted in a linear model, resulting in epigenetic age predictors (epigenetic clocks). Error (years) is based on mean absolute deviation (MAD) unless otherwise

stated.
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comprised of 8000 samples from 82 studies, including 51 healthy
tissues and cell types. The size of the training data was a step-
change in clock design. Hence, the Horvath clock gained popularity
in the scientific community since it can predict age in multiple tissues
using a relatively small number of CpGs (compared to the rest of
the epigenome) and revealed that tissues may age at different rates.
For example, brain tissue appears to age slower relative to other tis-
sues in the body, according to the Horvath clock (Horvath, 2013;
Horvath, Mah, et al., 2015).

The association between age acceleration and health/disease
status was first shown with the Horvath clock in obesity (Horvath
et al., 2014) and has since become an established tool to assess
biological age (Horvath et al., 2014; Horvath, Garagnani, et al.,
2015; Horvath, Langfelder, et al., 2016; Horvath & Levine, 2015;
Maierhofer et al., 2017; Martin-Herranz et al., 2019). The Horvath
clock has shown some limitations with particular tissues and age-
associated disease conditions. One of the most severe prema-
ture ageing syndromes, Hutchinson-Gilford Progeria Syndrome
(HGPS), did not exhibit age acceleration according to the Horvath
clock (Horvath, 2013). Children with multifocal developmental
dysfunctions (syndrome X), who appear to age slower, do not
decelerate in eAge (Walker et al., 2015). However, being rare
genetic disorders, both studies were limited in the number of in-
dividuals tested.

The Horvath clock does not work reliably on cultured cells, par-
ticularly fibroblasts (Horvath, 2013; Horvath et al., 2018, 2019).
Replicative senescence in primary fibroblasts is a widely used model
system in cellular ageing (Chandra & Kirschner, 2016; Hayflick, 1965;
Hayflick & Moorhead, 1961). More recently, Horvath et al. devel-
oped an epigenetic clock that predicts the age of human fibroblasts,
keratinocytes, buccal cells, endothelial cells, lymphoblastoid cells,
skin, blood and saliva samples, better than the original Horvath clock
(Horvath et al., 2018). This clock, known as the skin and blood (S&B)
clock, is able to predict both in vivo and in vitro tissues accurately
(Horvath et al., 2018, 2019). The S&B clock also detected a mod-
est, but significant age acceleration in HGPS samples (Horvath et al.,
2018).

The Zhang clock, while primarily trained to work on blood, is
able to predict the ages of breast, liver, adipose and muscle tissue as
accurately as the Horvath clock (Zhang, Vallerga, et al., 2019). This
clock also outperformed both the Horvath and Hannum clocks in
predicting blood age. It is set apart by the size of its training data
with over 13,000 samples.

3.3 | Tissue-specific age predictors

A number of CpG clocks have been developed for single tissues, aim-
ing at an increased accuracy for a given cell type or specialised ap-
plications. Multiple clocks have been developed for blood, the first
of which was the Hannum clock (Hannum et al., 2013; Horvath &
Raj, 2018; Weidner et al., 2014; Zhang et al., 2017; Zhang, Kamath,
et al., 2019; Zhang, Vallerga, et al., 2019). A later study found 102
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TABLE 3 Composite and mortality epigenetic clocks

Clock No. CpGs Method used to obtain CpGs No. of samples in training Reference

PhenoAge 513 Elastic net 9,926 Levine et al. (2018)
GrimAge 1,113 Elastic net 1,731 Lu, Quach, et al. (2019)
Zhang Mortality Clock 10 LASSO Cox regression 548 Zhang, Wilson, et al. (2017)
DunedinPoAm 46 Elastic net 810 Belsky et al. (2020)
Telomere Clock 140 Elastic net 2,256 Lu, Seeboth, et al. (2019)

Note: All clocks in this table are composite clocks, i.e. CpGs that correlate with physiological or cellular ageing are used to create a biological age
predictor (except the Zhang Mortality Clock, where mortality data were directly regressed on DNAm).

CpG sites that can predict age in blood, 99 of which were adapted
for a separate clock that works on the lllumina 450 K array (Weidner
et al., 2014). It was demonstrated that three of the 102 CpGs alone
(selected by recursive feature elimination) can predict age in arrays
and pyrosequenced samples (Lin et al., 2016; Weidner et al., 2014).
A minimal approach, such as this that uses as few CpGs as possible,
is a sought after technique for affordable use in clinical and forensic
fields (see “Minimised CpG Clocks”).

A study by Boroni et al. has produced an accurate skin age pre-
dictor, based on 2266 CpGs (one of the largest number of CpGs
used to create an eAge clock) selected by elastic net regression
(Boroni et al., 2020). It was trained on dermis, epidermis and whole
skin biopsies (40, 99 and 110 samples, respectively) and had a root
mean squared error (RMSE) of 4.98 when tested on an external val-
idation data set of whole skin biopsies (by comparison, the Horavth
and S&B clocks had RMSEs of 15.74 and 7.64, respectively) (Boroni
et al., 2020).

Inaccuracies in epigenetic clocks are apparent when predicting
the age of younger individuals (under 20 years old) (Simpkin et al.,
2016). This might be due to insufficient numbers of young individu-
als in training data sets, or due to the linear models used to construct
the epigenetic clocks (see “Inaccuracies and Tick-Rate of Epigenetic
Clocks”). The Pediatric-Buccal-Epigenetic (PedBE) clock was devel-
oped for use in 0- to 20-year-olds and trained on a large number of
buccal swab samples (1,032, aged 0-19.5 years old) (McEwen et al.,
2019). This clock performs well (MAD = 0.35 years) and is an exam-
ple of how the accuracy of epigenetic clocks can be improved not

only by targeting specific tissues, but also specific age groups.

3.4 | Minimised CpG clocks

Most of the epigenetic clocks mentioned above rely on Illumina
Infinium arrays. The price of these arrays limits the applicability of
eAge technology in drug discovery. Drug-discovery pipelines require
the multiplexing of thousands of samples, but not necessarily the
accuracy of the arrays. Here, we will discuss clocks relying on fewer
CpGs (minimised clocks), which have the potential to be upscaled or
run at a lower sample cost. The forensics field has developed mul-

tiple minimised clocks using strong age-associated CpGs (such as

ELOVL2 and FHL2 (Garagnani et al., 2012; Bacalini et al., 2017)) and
is designed for common tissues found at crime scenes, such as blood,
saliva, buccal swabs and semen (Table 2).

Minimised clocks use a variety of technologies such as the
Qiagen platform for pyrosequencing (referred to as pyrosequencing
from here), which is more cost-effective for profiling the methylation
of select CpGs. The Weidner 3 CpG clock (see “Tissue-Specific Age
Predictors”) for example, can predict age in blood samples using py-
rosequencing (Weidner et al., 2014), but over-predicts age in saliva
(a common source of DNA at crime scenes) by 14.6 years on average
(Eipel et al., 2016). When adapted for saliva by adding two additional
buccal-specific age-associated CpGs, eAge prediction was improved
(Eipel et al., 2016).

Pyrosequencing had its own limitations (e.g. multiplexing; allow-
ing alarge number of samples and CpGs to be pooled and sequenced
in a single run); however, new approaches increasing multiplex ca-
pabilities in pyrosequencing are emerging (Fleckhaus & Schneider,
2020). Another assay, termed SNaPshot, can multiplex 10 CpG sites
(Thermo Fisher, 2020) and is used for many minimised epigenetic
clocks.

The use of minimised clocks in forensics is just developing
and for most clocks, cross-validation is missing (Cho et al., 2017).
However, the clock by Zbiec’-Piekarska et al. has been validated
and adapted in other studies. It is based on 5 out of 8 CpGs pre-
viously identified by Hannum et al. as showing the strongest age
association (Hannum et al., 2013; Zbiec™-Piekarska et al., 2015) and
has a standard error of 4.5 years and an MAD of 3.9 years. The
genes associated with these CpGs are ELOVL2, Clorf132, TRIM59,
KLF14 and FHL2. A clock based on five CpGs (located near the same
previous genes) was created by Cho et al. and has been validated
in multiple tissues (Cho et al., 2017; Dias, Cordeiro, Pereira, et al.,
2020; Jung et al., 2019). These CpGs not only operate adequately
with SNaP-shot assays as tissue-specific age predictors, but also
as a multi-tissue age predictor for common forensic tissues (blood,
saliva and buccal swab) (Jung et al., 2019). Three of the CpG sites
(near ELOVL2, FHL2 and Clorf132) have also proven sufficient to
predict age efficiently (Dias, Cordeiro, Pereira, et al., 2020). These
studies have demonstrated the versatility and accuracy predictors
based on a few select CpGs can have and might be good candidates

to increase the scale of eAge prediction.
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4 | COMPOSITE EPIGENETIC CLOCKS
AS PREDICTORS OF MORBIDITY AND
MORTALITY

Epigenetic clocks have proven capable of estimating not only chAge,
but also time-to-death. Marioni et al. first showed that the higher
difference between eAge and chAge, the greater the risk of all-cause
mortality (mortality independent of health status, known genetic
factors, and lifestyle factors) (Marioni, Shah, McRae, Chen et al.,
2015). This finding was further validated in other studies (Chen et al.,
2016; Christiansen et al., 2016). Positive age acceleration was also
shown to predict cause-specific mortality in cancer and cardiovas-
cular disease (Perna et al., 2016). These mortality associations were
found using clocks that were not designed to directly predict mortal-
ity. Various composite approaches have been developed, whereby
CpGs that correlate with metrics of physiological or cellular ageing
(e.g. cholesterol or protein abundance) are used to construct a clock
to predict age (Table 3). These clocks were built with the potential of
capturing more of age-relevant biology than clocks trained on chAge
alone.

The first composite biomarker age predictor (created indepen-
dent of DNAm data) was based on 23 years of mortality data (Levine,
2013). This predictor incorporated ten biomarkers (e.g. C-reactive
protein, glycated haemoglobin, systolic blood pressure, total choles-
terol) that significantly correlated with age (Levine, 2013). Using a
similar process, Levine et al. combined chAge plus nine other bio-
markers. The resulting phenotypic clock was regressed on DNA
methylation data using elastic net regression, resulting in 513 CpGs
forming the DNAm PhenoAge clock (Levine et al., 2018). This clock
predicts all-cause mortality, cancer, healthspan, physical functioning
and Alzheimer's disease more accurately than previous age predic-
tors (Levine et al., 2018).

The GrimAge clock developed by Lu et al. uses the methylation
of CpGs associated with smoking (pack-years) and levels of 7 plasma
proteins previously associated with mortality (Ignjatovic et al., 2011,
Ridker et al., 2003), as surrogates for physiological risk factors (Lu,
Quach, et al., 2019). The age acceleration of GrimAge was not only
found to be associated with age-related conditions and lifestyle
factors, but outperformed previous attempts at predicting time-
to-death, time-to-coronary heart disease and time-to-cancer (Lu,
Quach, et al., 2019). A significant association has been shown be-
tween GrimAge acceleration and lifelong trauma, but not childhood
trauma (Katrinli et al., 2020), which is consistent with other studies
showing Hannum (Wolf et al., 2016) and Horvath (Yang et al., 2020)
clock age accelerations in post-traumatic stress disorder. GrimAge
acceleration is also significantly associated with cortical atrophy
(Katrinli et al., 2020), shorter pregnancy periods and lower birth-
weight (Ross et al., 2020).

Zhang et al. created a mortality-specific predictor, where they
performed an epigenome-wide association study (EWAS) on a co-
hort with up to 14 years follow-up data. 58 CpGs were found that
correlate with all-cause mortality, from which a predictor was con-
structed using only ten of the CpGs (Zhang, Wilson, et al., 2017). 48
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of the CpGs identified had been associated with smoking, alcohol
consumption, diabetes and cancer, some of which were also found
in previous EWAS studies (Al Muftah et al., 2016; Chambers et al.,
2015; Gao et al., 2015; Nilsson et al., 2014; Teschendorff et al., 2015;
Travers et al., 2013; Zhang, Wilson, et al., 2017).

A DNAm telomere length (DNAmMTL) estimator was created by
Lu, Seeboth, et al. (2019), where leukocyte telomere length (LTL)
was regressed against blood methylation data. This resulted in 140
LTL-associated CpGs forming the DNAmTL estimator (Lu, Seeboth,
et al., 2019). Not only does DNAmTL predict LTL accurately, but it
also demonstrates stronger predictive power of lifespan, time-to-
coronary heart disease, time-to-congestive heart failure and smok-
ing history compared to normal LTL.

Variability in early-life environmental exposures has been
proposed as one of the main confounders of mortality clocks
(Bell et al., 2019; Hillary et al., 2020). Belsky et al. addressed
this directly, by analysing rate of change of 18 blood-chemistry
and organ-system-function in a cohort with the same birth year
and birth place (Belsky et al., 2015; Hillary et al., 2020). Termed
“Pace-of-Ageing” (PoA), this measure formed the basis of the
DunedinPoAm clock, a proxy approach with PoA regressed on
DNAm (Belsky et al., 2020). In other words, DunedinPoAm aims
to provide the rate of biological ageing at a single-time-point of a
person (Belsky et al., 2020).

The Marioni laboratory compared the performance of six of
the epigenetic age/mortality predictors mentioned (Horvath,
Hannum, PhenoAge, GrimAge, DNAmMTL and Duned- inPoAm)
in terms of lifespan and disease prediction, on the Generation
Scotland cohort (Hillary et al., 2020). GrimAge overall had the best
performance; it predicted the prevalence of chronic obstructive
pulmonary disease (COPD) and the incidence of multiple diseases,
including COPD, type 2 diabetes and cardiovascular disease.
GrimAge also outperformed other clocks for predicted death in
terms of all-cause mortality, after adjustment for lifestyle risk
factors. Another recent study also showed GrimAge outperforms
Horvath, Hannum and PhenoAge clocks at predicting all-cause
mortality and age-related clinical phenotypes (McCrory et al.,
2021). However, DunedinPoAm did reveal faster rates of biologi-
cal ageing associated with lung cancer and COPD. PhenoAge and
DNAmTL also showed associations with disease incidence for type
2 diabetes and ischaemic heart disease, respectively. Hence, com-
posite clocks can use DNAm to predict non-DNAm traits, which
in turn can be used as additional variables to accurately predict

biological age, disease status and mortality.

5 | UNDERLYING MECHANISM OF THE
EPIGENETIC CLOCK

The Horvath clock is the most widely used clock for its accuracy,
versatility and the accumulated knowledge we have of its behav-
iour from previous studies. It also gained the attention of the sci-
entific community due to the fact that age can be predicted in
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multiple tissues using a relatively small number of CpGs (compared
to the rest of the epigenome; Horvath, 2013). The fact that such

a clock can be constructed provokes the question, is there a func-

tional significance that correlates these CpGs with age in multiple
tissues? If ageing is a phenomena that we are “programmed” to
undergo, then are these CpGs an integral part of that machinery?
To understand the nature of eAge/epigenetic clocks, we must
understand the aspects of physiological ageing they capture, the
CpGs that constitute these clocks, and any causative relationships

with ageing.

5.1 | Inaccuracies and tick-rate of epigenetic clocks
As with the Horvath clock, most clocks that followed after were
also built on penalised linear regression models. However, are there
intrinsic inaccuracies in the Horvath clock, and the approach used
to construct epigenetic clocks? El Khoury et al. analysed previously
published DNAm data sets and found that both the Horvath and
Hannum clocks systematically underestimate the age of older indi-
viduals (El Khoury et al., 2019). If age acceleration is dependent on
chAge itself, biological interpretation of age acceleration at very old
age becomes difficult. Centenarian peripheral blood mononuclear
cells are predicted 8.6 years younger than their chAge, according to
the Horvath clock (Horvath, Pirazzini, et al., 2015). Similar findings
were also found in analysis of cerebellum tissue from supercentenar-
ians (Horvath, Mah, et al., 2015). The interpretation has been that
the younger age predicted for centenarians reflects survival bias,
where the lower biological age enabled the centenarians to live long.
However, with the clock possibly underpredicting older age system-
atically, this assumption might need to be reexamined. Alternatively,
this discrepancy might be the result of a regression to the mean ef-
fect, where very high values (eAges) are underestimated by regres-
sion models.

While negative age acceleration (eAge predicted lower than
chAge) was highest in the cerebellum, this underestimation was also
observed in other tissues (including blood) from multiple data sets
(El Khoury et al., 2019; Marioni et al., 2019; Martin-Herranz et al.,
2019). It was also found that when accounting for age as a cofactor,
the correlation between age acceleration and amyloid plaque load
in brain tissue is attenuated (El Khoury et al., 2019), which is incon-
sistent with previous findings (Levine et al., 2015). It is possible that
5-hydroxymethyl cytosine (5hmC, an epigenetic modification more
prevalent in brain tissue and indistinguishable from 5mC after bisul-
phite conversion) could cause age prediction offset in brain tissue (El
Khoury etal., 2019; Lunnon et al., 2016). However, 5hmC is not prev-
alent in blood and therefore does not explain the negative age accel-
eration in blood detected by Marioni et al. (2019), El Khoury et al.
(2019). These alterations in predictive accuracy of the clock in older
individuals could be due to intrinsic changes in the rate of biological
ageing during certain time points. The rate of change, or “tick” rate,
was explored earlier in the Horvath clock study (Horvath, 2013). By
looking at the weighted averages of the 353 CpGs compared with

chAge, the tick rate was exponential between 0 and 20 years old,
after which it continued linearly. As such, the Horvath clock applies a
logarithmic transformation to ages <20 years, while the linear model
is unaltered for ages >20 years (Horvath, 2013; Snir et al., 2019).
The study suggested that a higher organismal growth and cell divi-
sion rate at early age might explain the initial acceleration in ageing
(Horvath, 2013). A later study found a faster eAge tick rate during
puberty in girls (Binder et al., 2018). However, no decrease in the tick
rate of older subjects was observed (Horvath, 2013), which could be
due to alack of older individuals in the training data set used to con-
struct the Horvath clock (El Khoury et al., 2019). Differences in tick
rate could also be sex-specific. The Horvath, Hannum, and Zbiec'-
Piekarska clocks show slightly faster ageing in men than women
(Bergsma & Rogaeva, 2020).

A recent study found that simple multiple linear regression out-
performs more involved machine learning techniques (Lau & Fung,
2020). However, if there is indeed a non-linear progression of age
acceleration, then other models might be worth exploring to predict
eAge. Deep learning and support vector regression are other alter-
natives to penalised linear regression that have been used (Aliferi
et al., 2018; Galkin et al., 2020, 2021; Levy et al., 2020; Xu et al.,
2015). The epigenetic pacemaker (EPM) is another algorithm where
predicted age follows a logarithmic trend (Snir et al., 2016, 2019).
Whether EPM or other non-linear models predict eAge in centenar-

ians more accurately has not been determined.

5.2 | What aspects of physiological ageing does
eAge capture?

eAge acceleration (eAge higher than chAge) or deceleration (eAge lower
than chAge) is reflected in many diseases (e.g. Down syndrome) and
environmental factors (e.g. smoking) that appear to increase or decrease
ageing at a physiological level (Chen et al., 2016; Higgins-Chen et al.,
2020; Horvath et al., 2014; Horvath, Langfelder, et al., 2016; Horvath
et al., 2018; Horvath & Levine, 2015; Horvath, 2015; Maierhofer et al.,
2017; Marioni, Shah, McRae, Chen, et al., 2015; Martin-Herranz et al.,
2019; Simpkin et al., 2016; Wu et al., 2019). What remains unclear is
whether eAge reflects or measures known physiological/cellular ageing
phenomena (e.g. telomere length, senescence).

Consistent eAge prediction between tissues of an individual
suggests that eAge is not a measure of cellular proliferation, since
different tissues have variable proliferation rates (Horvath, 2013;
Horvath et al., 2019; Horvath, Mah, et al., 2015). Indeed, multiple
studies have shown that while eAge changes with cell passage num-
ber, the Horvath age predictor does not rely on cell division since
it can track eAge in non-proliferative tissues (e.g. neuronal cells;
Horvath, 2013; Yang et al., 2016; Horvath et al., 2019). A mitotic
clock (EpiTOC) has been developed specifically to track cell divi-
sions, and acceleration of this clock correlates with cancer status
(Yang et al., 2016). It would be intuitive to assume that eAge re-
flects other known aspects of ageing such as senescence, since
an increase in senescence cells is considered a hallmark of ageing
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(Horvath et al., 2019; Lépez-Otin et al., 2013). However, this has not
been shown; instead, both replicative and damage-induced senes-
cence do not correlate with increased eAge in vitro (Horvath et al.,
2019; Lowe et al., 2016). It is possible that the accumulation of se-
nescent cells in tissues with age remains proportionally low and that
itis the effect on surrounding cells that is registered in eAge. Human
telomerase reverse transcriptase (nTERT) expressing cells continue
to epigenetically age despite never being able to enter replicative
senescence (Kabacik et al., 2018). Leukocyte telomere length (LTL)
erosion is one of the first biological phenomena that showed poten-
tial as biomarkers of ageing (Frenck et al., 1998; Harley et al., 1990;
Hastie et al., 1990; Lindsey et al., 1991) and could be a physiolog-
ical sign of ageing that correlates with eAge. However, like cellu-
lar proliferation and senescence, multiple studies have shown that
eAge has no association with telomere length (Cypris et al., 2020;
Horvath et al., 2019; Kabacik et al., 2018; Lowe et al., 2016; Marioni
etal., 2016).

A plausible alternative is that eAge is governed by cellular dif-
ferentiation. As stem cells divide during development, they differ-
entiate into different cell types as the embryo matures, which could
be reflected by changes in eAge. One study tested the influence of
tissue identity on eAge by growing keratinocytes in a media that en-
courages differentiation. No increase of eAge was observed in the
differentiating keratinocytes compared to the non-differentiating,
proliferating keratinocytes (Horvath et al., 2019). A separate study
transdifferentiated fibroblasts to neurons using miRNAs. The repro-
grammed neurons not only had a similar eAge as the donor fibro-
blasts but also similar telomere length, oxidative stress and DNA
damage (Huh et al., 2016), suggesting that direct reprogramming had
no effect on eAge.

It has been hypothesised that eAge-related changes are reflected
in intracellular alterations and changes in cell composition in a sub-
set of cells termed “clock cells” (Horvath & Raj, 2018). eAge might
therefore capture the loss of somatic cells in some tissues (Horvath
& Raj, 2018) or the loss of stem cells, which do decline during age-
ing (Hernando-Herraez et al., 2019). A caveat is that eAge can be
captured in neuronal cells, which are terminally differentiated cells
and lack a stem cell pool (Horvath, 2013; Horvath, Mah, et al., 2015;
Horvath & Raj, 2018).

It also possible that eAge measures aspects of age-related epi-
genetic drift or deregulation (Yu et al., 2020). Demethylation can
occur in either a passive manner (e.g. via inhibition of DNMT1 during
cell replication; Wolffe et al., 1999; Mayer et al., 2000), or actively via
methyl-CpG binding domain protein 4 (MBD4; Hendrich et al., 1999)
or TET enzymes (Ichiyama et al., 2015; Jin et al., 2014). However,
there is little evidence to suggest that active processes, such as TET,
directly demethylate with age and affect eAge prediction (Wallace,
2014; Yu et al., 2020; Zhang et al., 2016). In addition, eAge can be
measured in nonproliferating tissues (Horvath, 2013; Horvath et al.,
2019; Yang et al., 2016) meaning passive demethyation is an unlikely
mechanism. It is possible that actively dividing tissues accumulate

somatic mutations in DNA methylation machinery during ageing,
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resulting in epigenetic drift observed as aberrant eAge prediction
(Robertson et al., 2019).

The precise aspects of physiological ageing that eAge cap-
tures remain to be discovered, but further investigations into
genes associated with eAge/clock CpGs and associations with
other ageing biomarkers may disclose clues to the true nature
of eAge.

5.3 | Causality of clock CpGs in ageing

DNAm became apparent as a potential biomarker of ageing with the
discovery of strong age-associated CpGs, such as those in the CpG
islands of ELOVL2, FHL2 and PENK1 (Bacalini et al., 2017; Garagnani
et al., 2012). ELOVL2 is a strong biomarker for ageing in multiple
tissues in both human and mouse (Bacalini et al., 2017; Chen et al.,
2020; Garagnani et al., 2012; Hannum et al., 2013; Slieker et al.,
2018). The CpGs neighbouring ELOVL2 strongly hypermethylate
with age (Garagnani et al., 2012) and have been used in multiple fo-
rensic clocks (see “Minimised CpG Clocks”). ELOVL2 is an enzyme
involved in elongation of long-chain polyunsaturated fatty acids, and
also in the production of docosahexaenoic acid (DHA). DHA is the
main polyunsaturated fatty acid in the retina and brain, and is neces-
sary for healthy retinal function. Chen et al. showed that the ElovI2
promoter is more highly methylated in the retina of aged mice and
that demethylation of this site recovers age-related decline in visual
function via increased expression of Elovl2 (Chen et al., 2020). This is
one of few studies to test a causal link of age-associated CpGs with
phenotypic ageing.

5.4 | Transcriptional associations with eAge

One approach to functionally annotating CpGs is to analyse gene
expression changes that correlate with the methylation of age-
associated CpGs. In the Horvath clock, the 193 CpGs (out of 353)
that hypermethylate with age are more likely to be located in poised
(bivalent) promoters. The 160 (out of 353) CpGs that hypomethylate
with age are more likely to be in either weak promoters or strong
enhancer regions (Horvath, 2013). However, linking the activity of
age-related CpGs with specific gene expression has proven difficult
(Horvath & Raj, 2018; Jung & Pfeifer, 2015; Yin et al., 2017; Zheng
et al., 2016). The most likely reason is that many age-associated
CpGs might not be related to gene expression. Another reason might
be that the epigenetic state of cells in any given tissue is heterogene-
ous, making associations between methylation and gene expression
difficult to find. Dual transcriptomic and epigenetic sequencing at
a single cell level could help to establish a functional link between
the two (Horvath & Raj, 2018) (Angermueller et al., 2016). A recent
study by Hernando-Herraez et al. used scMT-seq to assess ageing
in mouse muscle stem cells (MuSCs). They isolated young and old

quiescent MuSCs and determined that epigenetic drift (specifically,
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stochastic methylation heterogeneity at promoters) is associated

with age-associated transcriptional heterogeneity (Hernando-
Herraez et al., 2019). They also predicted eAge by aggregating sin-
gle cells by individual (two young and two old mice, with 35 cells
per individual). Their age predictor performed accurately on the
young MuSCs; however, their old MuSCs had a similar eAge to the
young samples (~10 weeks, while the chAge of the old MuSCs were
~100 weeks). To compensate for this error, they estimated eAge
using different combinations of cells and permutations, by remov-
ing 5% of cells and calculating eAge of the subsequent sample. The
old MuSCs were still ~90 weeks lower than the chronological age
(Hernando-Herraez et al., 2019).

5.5 | Genetic variants associated with eAge

A genome-wide association study (GWAS) is a method that could
reveal genes that regulate eAge by finding genetic polymorphisms
that correlate with eAge. A GWAS of cerebellum tissue found vari-
ants near an mTOR complex 2 gene (MLST8) and in an RNA-helicase
gene (DHX57) that are associated with age acceleration. Many
genes associated with cerebellar age acceleration also had overlap
with neurodegenerative conditions such as Alzheimer's disease (Lu
et al., 2016). Another GWAS revealed that one of the loci associ-
ated with intrinsic eAge acceleration (IEAA, which adjusts for both
chAge and blood cell counts; Horvath, Gurven, et al., 2016; Quach
et al., 2017) co-locates with hTERT (Lu et al., 2018). Variants of
hTERT were found that associated with both IEAA and longer tel-
omeres. Moreover, it was showed in vitro that higher hTERT expres-
sion (which is normally associated with cellular longevity) appears to
cause a linear increases of eAge. By comparison, control cells pas-
saged with no hTERT experienced an initial increase in eAge after
33 days in culture that eventually plateaued. These findings further
enforce that eAge is not governed by cell division, replicative senes-
cence or telomere length per se (Cypris et al., 2020; Horvath et al.,
2019; Kabacik et al., 2018; Lowe et al., 2016; Marioni et al., 2016),
since short telomeres are indicative of high proliferation and triggers
replicative senescence. This paradoxical result could explain previ-
ous observations where during embryonic development and early
postnatal life, the rate of epigenetic ageing is more rapid (Hiyama &
Hiyama, 2007; Lu et al., 2018; Simpkin et al., 2016, 2017). These are
periods of fast organismal growth coupled with high hTERT expres-
sion and cell division, which in turn would result in a higher eAge
predicition.

Another approach to identify eAge-associated genetic vari-
ants involves screening for developmental disorders that cause
an acceleration or deceleration of eAge. This was conducted
by Martin-Herranz et al., who screened 367 genetic disorders,
and found that Sotos syndrome significantly accelerated eAge
(Martin-Herranz et al., 2019). Sotos syndrome is caused by a loss-
of-function mutation in NSD1, which encodes a histone H3 lysine
36 (H3K36) methyltransferase (Choufani et al.,, 2015; Kurotaki
et al., 2002). Methylated H3K36 recruits DNMT3A/B and promotes

methylation of surrounding regions. The authors hypothesised that
H3K36 methylation machinery might break down with age, leading
to an altered epigenome and increased eAge. The NSD1 mutation
Martin-Herranz et al. observed might simulate an ageing affect that
occurs naturally. An updated study with more samples (particularly
of Sotos syndrome) is required to corroborate their findings (Martin-
Herranz et al., 2019).

6 | NON-HUMAN EPIGENETIC AGE
PREDICTORS

Since the advent of DNAm age prediction for humans, age predictors
have been created for other species; mice (Table 4), rats (Horvath,
Singh, et al., 2020; Levine et al., 2020), dogs (Thompson et al., 2017
Wang et al., 2020), wolves (Thompson et al., 2017), humpback whales
(Polanowski et al., 2014), chimpanzees (Guevara et al., 2020; Ito
et al., 2018), marmosets (Horvath, Zoller, Haghani, Lu, et al., 2020),
naked mole rats (Lowe et al., 2020), sea bass (Anastasiadi & Piferrer,
2020) and zebrafish (Mayne et al., 2020) (see Table 5 for a list of
non-human/mouse epigenetic clocks). In 2017, three mouse epige-
netic clocks were developed primarily using reduced representation
bisulphite sequencing (RRBS) data. Wang et al. 2017 used 148 CpGs
from liver tissue (using both RRBS and whole genome bisulphite data,
WGBS) and found a moderate conservation of age-related CpGs be-
tween human and mouse. Their clock also showed an age reduction
for calorie restriction, rapamycin and Propldf/df dwarfism (which re-
sults in lifespan extension up to 1.5 fold) (Brown-Borg et al., 1996;
Cole et al., 2017; Wang et al., 2017). Petkovich et al. built a mouse
epigenetic clock using 90 CpGs from blood and detected that calorie
restriction reduces epigenetic age according to their clock (Petkovich
et al.,, 2017). The first mouse multi-tissue age predictor was con-
structed based on 329 unique CpGs with a median absolute error
of 3.33 weeks, mainly trained on young- and middle-aged mice (0.2-
9.5 months) (Stubbs et al., 2017). A recent multi-tissue age predictor
in mouse has been developed by Meer et al. that uses 435 CpGs,
and predicts age across a wide age range (1-35 months) (Meer et al.,
2018). It operates on multiple tissues including blood, liver, brain and
heart (Meer et al., 2018). Thompson et al. created four mouse RRBS
clocks to compare statistical methods and found the most accurate
clock resulting from elastic net regression (Thompson et al., 2018).

The Wang, Stubbs and Petkovich mouse clocks mentioned here
show little overlap in CpGs used (Field et al., 2018). This is proba-
bly due to the variability of RRBS data, where the regional genome
coverage differs between protocols and enzymes used, rather than
different statistical methods applied (Field et al., 2018; Thompson
etal., 2018). Transferability of these clocks to data sets outside of the
original studies has therefore been difficult. WGBS at a high enough
coverage for eAge prediction is expensive, and most mouse clocks
are trained on RRBS. Another alternative has been developed by
FOXO BioScience, who have collaborated with Van Andel Institute
and Illumina to create a cost-effective Infinium Mouse Methylation
Array (FOXO BioScience, 2020).
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TABLE 5 Studies that have developed epigenetic clocks for non-human and non-mouse species (with the exception of dual species clocks)

Study

Polanowski et al. (2014)
Thompson et al. (2017)

Wang et al. (2020)

Ito et al. (2018)

Guevara et al. (2020)

Lowe et al. (2020)

Anastasiadi and Piferrer (2020)
Mayne et al. (2020)

Levine et al. (2020)

Horvath, Singh, et al. (2020)
Horvath, Zoller, Haghani, Lu, et al. (2020)
Horvath, Zoller, Haghani, Janinska, et al. (2020)
Horvath, Haghani, et al. (2020)
Jasinska et al. (2020)
Wilkinson et al. (2021)

Raj et al. (2020)

Prado et al. (2020)

Bors et al. (2021)

Pinho et al. (2021)

Sailer et al. (2020)

Sugrue et al. (2021)
Kordowitzki et al. (2021)
Lemaitre et al. (2020)
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Species

Humpback whale
Dogs, wolves
Mouse, dogs
Chimpanzee
Chimpanzee, human
Naked mole rat
Seabass

Zebrafish

Rat

Rat, human
Marmoset
Macaque, human
Baboon, marmoset, vervet monkey, macaque, human
Vervet monkey, human
Bat

Cat, human
Elephant, human
Beluga whale
Marmot

Prairie vole, human
Sheep, human
Cattle, human

Deer

Platform

Bisulphite pyrosequencing
RRBS

Syntenic Bisulfite Sequencing
Bisulphite pyrosequencing
Human Illumina 850K array
Bisulphite PCR

Multiplex bisulphite sequencing
RRBS

RRBS
HorvathMammalMethyIChip40
HorvathMammalMethylChip40
HorvathMammalMethyIChip40
HorvathMammalMethylChip40
HorvathMammalMethyIChip40
HorvathMammalMethylChip40
HorvathMammalMethyIChip40
HorvathMammalMethylChip40
HorvathMammalMethyIChip40
HorvathMammalMethylChip40
HorvathMammalMethyIChip40
HorvathMammalMethylChip40
HorvathMammalMethyIChip40
HorvathMammalMethylChip40

Schachtschneider et al. (2020) Pig, human

Indeed, other studies have created a similar custom array to
accurately predict age in model organisms. Currently available as
a preprint, the Horvath laboratory has published an epigenetic
clock that works on both rats and humans (Horvath, Singh, et al.,
2020). This was created using a custom Illumina methylation array
called the HorvathMammalMethyIChip40, made up of 36,000
CpGs conserved among 50 mammalian species (Arneson et al.,
2021; Horvath, Singh, et al., 2020). The MAE for human and rat
data was 0.03, and a correlation of 0.95. Three single tissue clocks
were also created for rat liver, brain and blood, as well as a multi-
tissue clock combining all three tissues (Horvath, Singh, et al.,
2020). Another preprint has been released of a sheep epigenetic
clock, using the same array, with a median error of 5.1 months
(~3.5-4.2% of expected sheep lifespan). The study reported that
castrated sheep had a higher age acceleration than age-matched
controls, and a dual human and sheep clock was constructed with
an additional 1,848 human samples (Sugrue et al., 2020). A rat
clock has also been developed using 134 RRBS whole blood sam-
ples (Levine et al., 2020). Elastic net selected 68 CpGs, and had
a correlation of r = 0.9 in their test data set. It appears to work
in mice, where it predicted reduced age acceleration after calorie

restriction.

HorvathMammalMethyIChip40

Many age-associated CpGs are conserved between differ-
ent species (Horvath, 2013; Horvath, Singh, et al., 2020; Wang
et al., 2017, 2020), meaning the development of pan-species clocks
is plausible. For example, an epigenetic clock has been created using
394 CpGs from modules of developmental genes with conserved,
age-related methylation changes, between mouse, human and dogs
(Wang et al., 2020). Recent preprints have shown various universal
pan-tissue epigenetic clocks that predict age across 9 tissue types
from 128 different mammalian species (Lu et al., 2021), and models
that predict maximum lifespan, gestation time and sexual maturity
(Li et al., 2021). The CpGs used to construct the clocks were also
associated with genes that are enriched during mammalian devel-
opment (Lu et al., 2021). These clocks further enforce the idea that
ageing is a conserved evolutionary process intertwined with mam-

malian development.

7 | CONCLUSION

eAge prediction is a powerful approach that has revolutionised ex-
perimental gerontology. As the number and diversity of epigenetic

clocks increases, so too does our understanding of biological age.
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Depending on how these clocks are constructed, they appear to
capture different aspects of ageing. These differences depend on
the tissues, number of samples, age range and algorithms used in
their construction.

Whether the change of methylation is causal to ageing remains
to be shown and herein lies a caveat studying diseases or interven-
tions that directly affect DNAm. Studying a process that interacts
with DNAm might alter age prediction, without changing the actual
ageing trajectory. For example, it is possible that a global increase
or decrease in methylation caused either by technical errors (Olova
et al., 2018) or mutations in oncogenes (such as DNMT3A or TET2;
Robertson et al., 2019), could result in false-positive shifts of eAge. It
remains to be tested how stable epigenetic clocks are against global
sweeps of DNAm.

Linear models have proven effective predicting eAge of individuals
between the ages of 20 and ~70, but drop in accuracy outside of these
ages. Clocks trained on specific age groups, such as PedBE, are valid
approaches to this issue (McEwen et al., 2020). Alternative non-linear
models may be better aligned with the actual trajectories of methyla-
tion changes with age. However, it is also possible that training eAge on
chAge alone is not enough to explain biological age, as demonstrated
by composite approaches such as PhenoAge and GrimAge clocks.

Multiple studies have shown that it is possible to build accu-
rate minimised clocks using only a few highly age-associated CpGs
(Cho et al., 2017; Daunay et al., 2019; Dias, Cordeiro, Pereira, et al.,
2020; Jung et al., 2019; Weidner et al., 2014; Zbiec’-Piekarska
et al., 2015). Many of these clocks use CpGs nearby ELOVL2
and FHL2, and work in saliva and blood (Cho et al., 2017; Dias,
Cordeiro, Pereira, et al., 2020; Jung et al., 2019; Zbiec’-Piekarska
et al., 2015). They have yet to be tested in other scenarios, such
as clinical applications. On the other hand, clocks might be more
robust when utilising a large number of CpGs (Boroni et al., 2020;
Zhang, Kamath ,et al., 2019).

The approach used by Horvath to develop epigenetic clocks has
spawned not only an abundance of similar DNAm age predictors, but
also other novel approaches, such as transcriptional (Bryois et al.,
2017; Peters et al., 2015), proteomic (Lehallier et al., 2019; Tanaka
et al., 2018) and cellular biophysical/biomolecular (Phillip et al., 2017)
clocks. Indeed, DNAm can be regressed with health co-factors such
as smoking and alcohol consumption to produce predictors of com-
plex traits and mortality (McCartney et al., 2018). While DNAm is one
of the most accurate and versatile biomarkers for ageing and disease,
our understanding of it is still developing. Perhaps looking at DNAm
in combination with other non-DNAm based biomarkers will broaden
our understanding and predictive power of biological ageing and mor-
tality. Composite clocks such as PhenoAge and GrimAge are first steps
in that direction. Transcription clocks may reveal regulators of biolog-
ical ageing, for example, if key ageing genes are found to be linked
with eAge either by correlating with age acceleration or directly with
methylation changes of key clock CpGs.

To us, the key areas to emerge will be in a) understanding the
different aspects of ageing captured by distinct clocks and b) test-
ing causality of DNAm in age acceleration through interventional
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epigenetics and other approaches. As epigenetic clocks become

Aging

more sophisticated and commonplace, caution must be consid-
ered when inferring the biological significance of age acceleration.
Research must continue regarding the nature of eAge and the as-
pects of ageing captured.
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