Table 1.
Examples of products that have been successfully produced using microbial communities.
Natural community | |||||
---|---|---|---|---|---|
Undefined community | |||||
Composition | Source | Product | Substrate | Ref | |
1 | Mesophilic microbes | Rumen fluid, Swamp and compost material | Carboxylic acids | Municipal solid waste, Sewage sludge | [50] |
2 | Anaerobic microbes | Activated sludge | Biogas | Food waste, cattle manure | [51] |
3 | Yeasts and bacteria | Activated sludge | Biopolymers | Crude glycerol | [52] |
4 | Hydrogen-producing bacteria | Anaerobic digested sludge | Hydrogen | Glucose | [53] |
5 | Anaerobic bacteria and fungi | Cow Manure | Hydrogen | Cellulose | [46] |
Defined community | |||||
Predominant organisms | Source | Product | Substrate | Ref | |
1 | Clostridia, Actinobaculum, Pseudomonas, Azotobacter and Bacillus | Marine sediment | Carboxylic acids | Sorghum | [54] |
2 | Bacteroidetes, Firmicutes, Proteobacteria, Methanoculleus and Methanomassiliicoccus | Pig manure | Biogas | Corn stover | [55] |
3 | Clostridium, Escherichia, Bacillus, Lysinibacillus, and Firmicutes | Compost soil | Isopropanol | Corncob | [38] |
4 | Clostridium, Pseudomonas, Desulfovibrio, Bacteroides, Petrimonas, Escherichia, Shigella and Alistipes | Goat or sheep faeces | Caproic acid | Ethanol and acetic acid | [56] |
5 | Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, and Verrucomicrobia and Firmicutes | Soil | Butyrate, Hexanoate, Octanoate | Acetate and ethanol | [57] |
Artificial community | |||||||
---|---|---|---|---|---|---|---|
Organism 1 | Organism 2 | Other microbes | Role in the community | Product | Substrate | Ref | |
1 | Lactobacillus kefiranofaciens | Saccharomyces cerevisiae | NA | Lk – produces kefiran; Sc – lactic acid consumption thereby improving tolerance | Kefiran | MRS medium | [58] |
2 | Aspergillus fumigatus | Streptomyces peucetius | NA | Not clearly understood | N-Formyl Alkaloids | International Streptomyces Project Medium 2 (ISP2) | [43] |
3 | Bacillus cereus | Clostridium beijerinckii | NA | Bc – utilises starch; Cb – produces butanol | Butanol | Corn mash | [28] |
4 | Penicillium fuscum | Penicillium camembertii/ clavigerum | NA | Not clearly understood | Berkeleylactones, Antibiotic macrolides | Potato dextrose broth | [59] |
5 | Trichoderma reesei | Rhizopus delemar | NA | Tr – breakdown cellulose; Rd – produces fumaric acid | Fumaric acid | Corn stover | [44] |
6 | Trichoderma reesei | Rhizopus oryzae | NA | Tr – breakdown cellulose; Ro – produces lactic acid | Lactic acid | Microcrystalline cellulose | [44] |
7 | Ralstonia eutropha | Bacillus subtilis | NA | Re – produces PHA; Bs – sucrose utilisation | P(3HB-co-3HV) polymer | M9 minimal medium with sucrose | [19] |
8 | Clostridium beijerinckii | Saccharomyces cerevisiae | NA | Cb – produces butanol; Sc – produces amino acids for Cb and improves alcohol tolerance | Butanol | Glucose | [42] |
9 | Clostridium beijerinckii | Yokenella regensburgei | NA | Cb – produces hydrogen; Yr – produces lactate which boosts growth and hydrogen production by Cb | Hydrogen | Food waste | [60] |
10 | Schizophyllum commune | Bjerkandera adusta | Fomitopsis palustris | Sc – ethanol production; Ba – lignin degradation; Fp – cellulose degradation (all three microbes produces ethanol) | Ethanol | Japanese cedar wood chips | [61] |
11 | Bacteroides vulgatus | Desulfovibrio piger | Bifidobacterium longum, Eubacterium rectale, Roseburia intestinalis + 20 microbes | Not clearly understood | N-Formyl Alkaloids | DM38 medium | [45] |
Synthetic community | |||||||
---|---|---|---|---|---|---|---|
Organism 1 | Organism 2 | Role in the community | Significant mutations | Product | Substrate | Ref | |
1 | Escherichia coli | Escherichia coli | Ec1 – produces p-coumaric acid; Ec2 – converts p-coumaric acid to caffeyl alcohol and coniferyl alcohol | E. coli ATCC 31884 with pheA and tyrA disrupted, cloning of various plasmids with genes that encode for p-coumaric acid production | p-coumaryl alcohol, caffeyl alcohol and coniferyl alcohol | Modified M9 (M9Y) medium | [62] |
2 | Synechococcus elongatus | Halomonas boliviensis | Se – photosynthetically fixes carbon and exports as sucrose; Hb – produces PHB | Se – cloning of cscB gene, a sucrose transporter | Polyhyroxy-butyrate | Carbon dioxide | [63] |
3 | Escherichia coli | Corynebacterium glutamicum | Ec – utilisation of starch; Cg – production of L-lysine | Ec – deletion of lysA to make it a lysine-auxotroph and cloning of EcLys1 (α-amylase) from S. griseus to utilise starch; Cg – multiple deletions (Δpta-ackA Δcat ΔaceAB ΔldhA ΔnanR) to get strain CgLys4 for better production of L-lysine | L-lysine, L-pipecolic acid, cadaverine | Starch and sucrose | [49] |
4 | Escherichia coli | Escherichia coli | Ec1 – converts p-coumaric acid into resveratrol; Ec2 – converts the resveratrol into polydatin and resveratroloside | Ec1 – E. coli BL21 (DE3) containing pAC-4CL-STS (Cm); Ec2 – E. coli BL21 (DE3)/Δpgi/Δzwf containing pET28a-hasC (Km) and pQE30-PaGT3 (Amp) | Resveratrol | M9 minimal medium with glucose | [48] |
5 | Escherichia coli | Saccharomyces cerevisiae | Ec – produces ethanol from xylose; Sc – produces ethanol from glucose | Ec – deletion of ptsG, pgi and zwf genes to construct glucose negative strain of E. coli strain SL100 | Ethanol | Sugar cane bagasse | [64] |
6 | Pichia pastoris | Pichia pastoris | Pp1 – converts to dihydromonacolin L (DML); Pp2 – converts DML to monacolin and lovastatin | Pp1 – cloning of lovB, lovC, lovG, npgA genes; Pp2 – cloning of slovA, cpr genes | Monacolin and lovastatin | Methanol | [65] |
7 | Escherichia coli | Rhodopseudomonas palustris | Ec – produce organic acids; Rp – convert organic acids to hydrogen | Rp – deletion of nifA, amtB1, amtB2 genes for NH4+ excretion, deletion of hupS to prevent H2 oxidation and uppE to prevent biofilm formation | Hydrogen | M9-derived coculture (MDC) medium | [47] |
8 | Escherichia coli | Streptomyces venezuelae | Ec – produces phenylpropanoids like pterostilbene, naringenin, and apigenin; Sv – expresses a methyltransferase that catalyses mono-, di-, and tri-methylation of phenylpropanoids | Ec – cloning multiple genes responsible for phenylpropanoid synthesis (Os4CL, VvSTS, VvROMT, PeCHS, PcFNS and MtCHI); Sv – deletion of pikromycin polyketide synthase and cloning of a methyltransferase from Streptomyces avermitilis (SaOMT2) | O-methylated phenylpropanoids | LB medium and R2YE medium | [66] |
9 | Klebsiella pneumonia | Shewanella oneidensis | Kp – converts glucose and xylose into lactate; So – electron donor | Kp – deletion of adhE, pta genes and cloning of ldhD, lldP genes to improve lactate production; So – deletion of 1S1 and cloning of ribA, ribD, ribE and ribH genes to improve direct-contact extracellular electron transfer | Electricity | Corn stalk hydrolysate | [67] |
10 | Clostridium beijerinckii | Clostridium cellulovorans | Cb – produces butanol; Cc – breakdown lignocellulose | Cc – deletion of cell wall lyases genes (Clocel_0798 and Clocel_2169) and overexpression of agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii to improve pH tolerance, cloning of gene adhE1 from Clostridium acetobutylicum for butanol production | Butanol | Glucose | [68] |