Skip to main content
. 2021 Jul 3;19:3892–3907. doi: 10.1016/j.csbj.2021.06.048

Table 1.

Examples of products that have been successfully produced using microbial communities.

Natural community
Undefined community
Composition Source Product Substrate Ref
1 Mesophilic microbes Rumen fluid, Swamp and compost material Carboxylic acids Municipal solid waste, Sewage sludge [50]
2 Anaerobic microbes Activated sludge Biogas Food waste, cattle manure [51]
3 Yeasts and bacteria Activated sludge Biopolymers Crude glycerol [52]
4 Hydrogen-producing bacteria Anaerobic digested sludge Hydrogen Glucose [53]
5 Anaerobic bacteria and fungi Cow Manure Hydrogen Cellulose [46]



Defined community

Predominant organisms Source Product Substrate Ref
1 Clostridia, Actinobaculum, Pseudomonas, Azotobacter and Bacillus Marine sediment Carboxylic acids Sorghum [54]
2 Bacteroidetes, Firmicutes, Proteobacteria, Methanoculleus and Methanomassiliicoccus Pig manure Biogas Corn stover [55]
3 Clostridium, Escherichia, Bacillus, Lysinibacillus, and Firmicutes Compost soil Isopropanol Corncob [38]
4 Clostridium, Pseudomonas, Desulfovibrio, Bacteroides, Petrimonas, Escherichia, Shigella and Alistipes Goat or sheep faeces Caproic acid Ethanol and acetic acid [56]
5 Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, and Verrucomicrobia and Firmicutes Soil Butyrate, Hexanoate, Octanoate Acetate and ethanol [57]
Artificial community
Organism 1 Organism 2 Other microbes Role in the community Product Substrate Ref
1 Lactobacillus kefiranofaciens Saccharomyces cerevisiae NA Lk – produces kefiran; Sc – lactic acid consumption thereby improving tolerance Kefiran MRS medium [58]
2 Aspergillus fumigatus Streptomyces peucetius NA Not clearly understood N-Formyl Alkaloids International Streptomyces Project Medium 2 (ISP2) [43]
3 Bacillus cereus Clostridium beijerinckii NA Bc – utilises starch; Cb – produces butanol Butanol Corn mash [28]
4 Penicillium fuscum Penicillium camembertii/ clavigerum NA Not clearly understood Berkeleylactones, Antibiotic macrolides Potato dextrose broth [59]
5 Trichoderma reesei Rhizopus delemar NA Tr – breakdown cellulose; Rd – produces fumaric acid Fumaric acid Corn stover [44]
6 Trichoderma reesei Rhizopus oryzae NA Tr – breakdown cellulose; Ro – produces lactic acid Lactic acid Microcrystalline cellulose [44]
7 Ralstonia eutropha Bacillus subtilis NA Re – produces PHA; Bs – sucrose utilisation P(3HB-co-3HV) polymer M9 minimal medium with sucrose [19]
8 Clostridium beijerinckii Saccharomyces cerevisiae NA Cb – produces butanol; Sc – produces amino acids for Cb and improves alcohol tolerance Butanol Glucose [42]
9 Clostridium beijerinckii Yokenella regensburgei NA Cb – produces hydrogen; Yr – produces lactate which boosts growth and hydrogen production by Cb Hydrogen Food waste [60]
10 Schizophyllum commune Bjerkandera adusta Fomitopsis palustris Sc – ethanol production; Ba – lignin degradation; Fp – cellulose degradation (all three microbes produces ethanol) Ethanol Japanese cedar wood chips [61]
11 Bacteroides vulgatus Desulfovibrio piger Bifidobacterium longum, Eubacterium rectale, Roseburia intestinalis + 20 microbes Not clearly understood N-Formyl Alkaloids DM38 medium [45]
Synthetic community
Organism 1 Organism 2 Role in the community Significant mutations Product Substrate Ref
1 Escherichia coli Escherichia coli Ec1 – produces p-coumaric acid; Ec2 – converts p-coumaric acid to caffeyl alcohol and coniferyl alcohol E. coli ATCC 31884 with pheA and tyrA disrupted, cloning of various plasmids with genes that encode for p-coumaric acid production p-coumaryl alcohol, caffeyl alcohol and coniferyl alcohol Modified M9 (M9Y) medium [62]
2 Synechococcus elongatus Halomonas boliviensis Se – photosynthetically fixes carbon and exports as sucrose; Hb – produces PHB Se – cloning of cscB gene, a sucrose transporter Polyhyroxy-butyrate Carbon dioxide [63]
3 Escherichia coli Corynebacterium glutamicum Ec – utilisation of starch; Cg – production of L-lysine Ec – deletion of lysA to make it a lysine-auxotroph and cloning of EcLys1 (α-amylase) from S. griseus to utilise starch; Cg – multiple deletions (Δpta-ackA Δcat ΔaceAB ΔldhA ΔnanR) to get strain CgLys4 for better production of L-lysine L-lysine, L-pipecolic acid, cadaverine Starch and sucrose [49]
4 Escherichia coli Escherichia coli Ec1 – converts p-coumaric acid into resveratrol; Ec2 – converts the resveratrol into polydatin and resveratroloside Ec1 – E. coli BL21 (DE3) containing pAC-4CL-STS (Cm); Ec2 – E. coli BL21 (DE3)/Δpgizwf containing pET28a-hasC (Km) and pQE30-PaGT3 (Amp) Resveratrol M9 minimal medium with glucose [48]
5 Escherichia coli Saccharomyces cerevisiae Ec – produces ethanol from xylose; Sc – produces ethanol from glucose Ec – deletion of ptsG, pgi and zwf genes to construct glucose negative strain of E. coli strain SL100 Ethanol Sugar cane bagasse [64]
6 Pichia pastoris Pichia pastoris Pp1 – converts to dihydromonacolin L (DML); Pp2 – converts DML to monacolin and lovastatin Pp1 – cloning of lovB, lovC, lovG, npgA genes; Pp2 – cloning of slovA, cpr genes Monacolin and lovastatin Methanol [65]
7 Escherichia coli Rhodopseudomonas palustris Ec – produce organic acids; Rp – convert organic acids to hydrogen Rp – deletion of nifA, amtB1, amtB2 genes for NH4+ excretion, deletion of hupS to prevent H2 oxidation and uppE to prevent biofilm formation Hydrogen M9-derived coculture (MDC) medium [47]
8 Escherichia coli Streptomyces venezuelae Ec – produces phenylpropanoids like pterostilbene, naringenin, and apigenin; Sv – expresses a methyltransferase that catalyses mono-, di-, and tri-methylation of phenylpropanoids Ec – cloning multiple genes responsible for phenylpropanoid synthesis (Os4CL, VvSTS, VvROMT, PeCHS, PcFNS and MtCHI); Sv – deletion of pikromycin polyketide synthase and cloning of a methyltransferase from Streptomyces avermitilis (SaOMT2) O-methylated phenylpropanoids LB medium and R2YE medium [66]
9 Klebsiella pneumonia Shewanella oneidensis Kp – converts glucose and xylose into lactate; So – electron donor Kp – deletion of adhE, pta genes and cloning of ldhD, lldP genes to improve lactate production; So – deletion of 1S1 and cloning of ribA, ribD, ribE and ribH genes to improve direct-contact extracellular electron transfer Electricity Corn stalk hydrolysate [67]
10 Clostridium beijerinckii Clostridium cellulovorans Cb – produces butanol; Cc – breakdown lignocellulose Cc – deletion of cell wall lyases genes (Clocel_0798 and Clocel_2169) and overexpression of agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii to improve pH tolerance, cloning of gene adhE1 from Clostridium acetobutylicum for butanol production Butanol Glucose [68]