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For the analysis of COVID-19 pandemic data, we propose Bayesian multinomial
and Dirichlet-multinomial autoregressive models for time-series of counts of
patients in mutually exclusive and exhaustive observational categories, defined
according to the severity of the patient status and the required treatment. Cat-
egories include hospitalized in regular wards (H) and in intensive care units
(ICU), together with deceased (D) and recovered (R). These models explic-
itly formulate assumptions on the transition probabilities between these cate-
gories across time, thanks to a flexible formulation based on parameters that
a priori follow normal distributions, possibly truncated to incorporate specific
hypotheses having an epidemiological interpretation. The posterior distribution
of model parameters and the transition matrices are estimated by a Markov
chain Monte Carlo algorithm that also provides predictions and allows us
to compute the reproduction number Rt. All estimates and predictions are
endowed with an accuracy measure obtained thanks to the Bayesian approach.
We present results concerning data collected during the first wave of the pan-
demic in Italy and Lombardy and study the effect of nonpharmaceutical inter-
ventions. Suitable discrepancy measures defined to check and compare models
show that the Dirichlet-multinomial model has an adequate fit and provides
good predictive performance in particular for H and ICU patients.
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1 INTRODUCTION

We introduce Bayesian multinomial and Dirichlet-multinomial statistical autoregressive models for the observed time
series of COVID-19 count data. We also design a Markov chain Monte Carlo (MCMC) simulation algorithm for parameter
inference. The model based on a Dirichlet-multinomial distribution is able to account for overdispersion and provides
stable predictions, especially of the number of patients who need hospitalization and those who require intensive care.
These predictions can support decision makers in designing better informed emergency management plans (see, among
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others, Reference 1), both at the beginning of the outbreak, when scaling up health-care capacity is crucial to save lives,
and in the later phase of the epidemic, to better plan the timing to return to usual capacity in each hospital ward.

Predictions should be trusted with care because the official data may present biases due to the observational nature
and the delays of the collection process. For example with reference to Italy, it sometimes happens that some data col-
lected over a period of several days are officialized in a single day, causing spikes in the time series. Furthermore, this
reporting delay is not constant over time but rather emerges more prominently during the emergency phase. In this often
biased observational context, an advantage of our proposal is that it automatically smooths spikes in the data that can be
identified and later investigated to understand if they are due to reporting errors or other causes such as the resurgence
of the pandemic, in which case a warning signal should be issued.

Besides timing related issues, as suggested by Roda et al2 prediction is very difficult when there is a lack of reliable
data sources. One of the main problems, especially in Italy, is related to the fact that swabs to identify COVID-19 virus
infections have been dispensed only to those showing symptoms and having been in contact with a person who tested
positive. This was the protocol at the beginning but it was changed a few times during the emergency period and these
modifications also caused reporting biases. Therefore, due to nonrandomization of the tested people, lack of testing kits
and, even more importantly, due to scarcity of labs accredited to process the swabs, as suggested by Roda et al2 “the entire
iceberg represents the total infected population and the tip of the iceberg above the sea surface represents the case data.”
This phenomenon is called hidden epidemic and caused a critical care crisis in Italy as well as in other countries.3

A series of univariate models such as the Poisson4 and models based on a negative binomial distribution,5-7 as well as
the generalized logistic growth model,8 have been proposed for single time series of counts, especially to analyze Italian
data. These models are often formulated with a temporal trend9 through polynomials and splines. Differently from the
univariate models outlined above, the model we propose explicitly considers that the count for a certain category at a
certain time occasion is the sum of transitions from the same and other categories that these individuals occupied at the
previous time occasion. In other words, our model directly formulates assumptions on the sequence of contingency tables
of the “transition frequencies” between two consecutive time occasions. This assumption directly induces the distribution
of the total counts that, differently from the unobservable transition frequencies, are directly observed and should result as
column totals of the contingency tables. The advantage of our multivariate modeling framework is in terms of stability and
precision, leveraging on the fact that some of the counts on the variables included in the model are inherently less prone to
measurement errors. These errors may arise for many reasons such as because people in the population who were infected
by the virus remain asymptomatic during the first days of the infection. We also have to consider the undercounting of
deaths caused by social isolation and other factors as detailed in Reference 10, as well as due to delays in the reporting
schedule.

The proposed approach may be seen as an extension of that proposed in Reference 11 for 2 × 2 contingency tables.
Moreover, it is related to the SEIR (Susceptible-Exposed-Infected-Recovered) epidemiological model.12 Indeed, we explic-
itly model the reduction of the number of susceptible individuals, the virus transmission rate, the transfer rate from
exposed to infected, the diagnosis, and the recovery rate. We note that according to the Italian regulations during the
period of time we consider, the category of susceptible also includes asymptomatic cases. This is due to the health pol-
icy measures in place in Italy during the first wave of the pandemic when only individuals with symptoms were tested.
Indeed, asymptomatic and pauci-symptomatic cases are not reported among the “positive cases.” We also stress that the
deceased category includes both people who died because of COVID-19 as well as with COVID-19. A subsequent analysis
of the mortality cards revealed that 89% of the deaths are directly attributable to COVID-19.* We can furthermore estimate
the time evolution of the epidemic reproduction number together with credible bounds.

We cast our proposal in a Bayesian framework13-15 because it allows us to incorporate expert prior information that,
when data are lacking, helps in regularizing the likelihood function, and allows for predictions at the very beginning of
the pandemic period. Priors can also be informed from data available in countries where the epidemic started earlier, like
data from Hubei, where the first cases were reported on 22 January 2020, approximately 10 days earlier than in Italy. By
this time, in the Hubei area, more than 5800 cases were already present.†

The modeling strategy is flexible and proceeds in steps of increasing complexity. Our proposal is conceived to provide
a model that can explore the available data and thus is first estimated with noninformative priors. Then, to account for
epidemiological hypotheses, we introduce truncated priors enforced by imposing bounds to the admitted values of the
odds of transition across categories. Finally we also account for public health non-pharmaceutical interventions (NPI)

*https://www.istat.it/it/files//2020/07/Report_ISS_Istat_Inglese.pdf, accessed 3 December 2020.
†Data from the Johns Hopkins Coronavirus Resource Center see https://coronavirus.jhu.edu/about, accessed 3 December 2020.
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enforced to reduce the spread of the epidemic, thus causing changes to the time series of reported confirmed cases. This is
achieved by introducing dummies16 at certain time points to account for the effect of NPI. It is therefore important to retain
the capacity to fit increasingly complex models. We also provide an estimate of the reproduction number Rt following the
method described in Reference 17, where the authors assume that the “serial interval” has a Gamma distribution with
certain parameter values.

The multinomial and Dirichlet-multinomial autoregressive models may be considered as stochastic processes fol-
lowing a first-order Markov chain conditional on the latent disease status.18 In our formulation these models include
absorbing states, as that of deceased patients. For each category, including that of the susceptible individuals not pre-
viously ill, recovered, and deceased, we apply Bayesian inference14 to estimate the persistence in each category, the
transition probabilities between categories across time, and also the associated uncertainty of the estimates. Note that the
assumption of first-order dependence is typically formulated in the literature on time-series categorical data. The moti-
vation is that most of the relevant information to explain the counts at a given time occasion is contained in the counts
at the previous occasion, and we consider this as plausible also in our context. In principle, this assumption could be
relaxed by allowing for a higher-order dependence. However, this type of extension would be very complex to implement
and also for this reason we choose to retain a first-order dependence.

For model estimation we adopt an MCMC algorithm19 that simulates parameter values from their posterior distri-
bution. The algorithm is based on a unified data augmented scheme20 and comprises two iteratively repeated steps: the
first step is based on sampling tables of transition frequencies using the technique described in References 21,22; the sec-
ond draws new values of the model parameters on the basis of moves based on a Metropolis-Hastings (MH) acceptance
rule.23,24 Using a large number of iteratively generated MCMC draws, we obtain the estimated joint posterior distribu-
tion of parameters that is then summarized by marginal posterior averages and prediction intervals. To diagnose possible
violations of the model assumptions and compare the performance of alternative models we use a suitable discrepancy
measure and compute posterior predictive p-values.25-27

The remainder of the article is organized as follows. In Section 2 we describe the proposed models. In Section 3 we
illustrate the estimation of the model parameters, of the reproduction number together with predictions of various inter-
esting quantities, and derive some discrepancy measures for model checking and comparisons. In Section 4 we show the
results of the models estimated with the Italian data available during the first wave of the pandemic; we also report on the
results obtained with data coming from the Lombardy region where the spread of the virus began in Italy. In Section 5
we provide some concluding remarks. In the Appendix some additional details are presented.

2 PROPOSED APPROACH

Data consist of counts, over T time occasions, for K disjoint and exhaustive categories that will be jointly modeled: ytk, t ∈
 , k ∈ , where  = {1, … ,T} and = {1, … ,K}. For each time occasion, these observed frequencies are collected in
the vectors yt = (yt1, … , ytK)′, t ∈  . We assume, for simplicity, that the total population size is fixed over time, namely,
∑

k∈ ytk = N for all t. The corresponding random vectors are denoted by Yt and have elements Ytk that satisfy the same
constraint on the sum over k. In the application referred to official data provided at the national level on the COVID-19
pandemic, individuals are classified in K = 6 ordered (in terms of their severity) categories: susceptible not previously ill
(S), recovered (R), positive cases in quarantine (Q), hospitalized (H), intensive care (ICU), and deceased (D); for each of
these categories we observe the frequency on a daily basis. The “now positive” (NP) category is obtained as the sum of
individuals in the Q, H, and ICU categories.

2.1 Model assumptions

We consider the counts for the first time occasion, t = 1, as given, and, in formulating an autoregressive model for the
vector Yt, we assume that every element Ytk is the column total of a contingency table having row totals equal to the
elements Yt−1,k of Yt−1 for t > 1. In more detail, let Xtjk represent one of the frequencies in this contingency table, a
random variable corresponding to the number of individuals that at occasion t − 1 are in category j and at occasion t
move to category k. In symbols we have that Ytk =

∑
j∈ Xtjk, for all k, are the column totals and Yt−1,j =

∑
k∈ Xtjk, for

all j, are the row totals. These column and row sums are the only observable variables since they are the only publicly
provided counts. This structure is clarified in Table 1, where zero values are inserted to denote that the corresponding
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T A B L E 1 Data structure: Ytk denotes the observed count at occasion t of category
k for each of the K = 6 categories for the COVID-19 application; Xtjk denotes the
number of transitions from category j to category k at time t

S R Q H ICU D Total

S Xt11 Xt12 Xt13 Xt14 Xt15 Xt16 Yt−1,1

R 0 Xt22 Xt23 Xt24 Xt25 Xt26 Yt−1,2

Q 0 Xt32 Xt33 Xt34 Xt35 Xt36 Yt−1,3

H 0 Xt42 Xt43 Xt44 Xt45 Xt46 Yt−1,4

ICU 0 Xt52 Xt53 Xt54 Xt55 Xt56 Yt−1,5

D 0 0 0 0 0 Xt66 Yt−1,6

Total Yt1 Yt2 Yt3 Yt4 Yt5 Yt6 N

random variables are equal to zero with probability one (structural zeros). This is because state D is absorbing (zeros
in the last row) and because we assume that, once infected, patients are not susceptible anymore (zeros in the first
column).

The unobserved random variables Xtjk are collected in the vectors Xtj = (Xtj1, … ,XtjK)′, j ∈ , t ∈  ′, where  ′ =
{2, … ,T}, and are here named “transition frequencies.” For instance, in our application on COVID-19 illustrated in
the sequel, where we consider six categories, Xt35 corresponds to the number of individuals that moved from category Q
(number 3) at time t − 1 into category ICU (number 5) at occasion t.

It is natural to assume that every vector Xtj, given Yt−1, follows a multinomial distribution with size yt−1,j and specific
vector of “transition probabilities” ptj = (ptj1, … , ptjK)′ with elements summing to 1; in symbols, we have

Xtj|Yt−1 = yt−1, 𝜷 j ∼ Mult(yt−1,j;ptj),

for t ∈  ′ and j ∈ , where 𝜷 j is the matrix of the regression vectors 𝜷 jk, k ∈ j, that are involved in the model for the
probabilities in ptj as will be clarified below; see Equation (3). In particular, ptjk is the conditional probability that an
individual is in category k at occasion t given that he/she was in category j at the previous time occasion. Assuming the
multinomial distribution we can write

p(Xtj = xtj|Yt−1 = yt−1, 𝜷 j) =
K∏

k=1

yt−1,j!
xtjk!

pxtjk

tjk . (1)

It is well known that this conditional probability is related to the Poisson distribution. In particular, it is the con-
ditional distribution of a set of independent random variables having Poisson distribution given their total.29 The
conditional expected value and the variance-covariance matrix under the multinomial distribution have the following
expressions:

E(Xtj|Yt−1 = yt−1, 𝜷 j) = yt−1,jptj,

Var(Xtj|Yt−1 = yt−1, 𝜷 j) = yt−1,j[diag(ptj) − ptjp′tj].

In order to account for overdispersion, which may arise in the count data, we also consider a Dirichlet-multinomial
distribution29-31 for each vector Xtj given Yt−1, which is denoted by

Xtj|Yt−1 = yt−1, 𝜷 j ∼ Dir −Mult(yt−1,j;𝜶tj),

for t ∈  ′ and j ∈ , and depends on a vector of parameters 𝜶tj = (𝛼tj1, … , 𝛼tjK)′. Consequently, we have that

p(Xtj = xtj|Yt−1 = yt−1, 𝜷 j) =
yt−1,j!Γ(𝛼tj+)
Γ(yt−1,j + 𝛼tj+)

K∏

k=1

Γ(xtjk + 𝛼tjk)
xtjk!Γ(𝛼tjk)

, (2)
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where 𝛼tj+ =
∑

k∈ 𝛼tjk, so that

E(Xtj|Yt−1 = yt−1, 𝜷 j) = yt−1, j
𝜶tj

𝛼tj+
,

Var(Xtj|Yt−1 = yt−1, 𝜷 j) = yt−1, j

[

diag
(
𝜶tj

𝛼tj+

)

−
𝜶tj

𝛼tj+

𝜶′tj

𝛼tj+

]
yt−1, j + 𝛼tj+

1 + 𝛼tj+
.

Parameters collected in 𝜷 j affect the parameters 𝛼tjk as will be clarified below. Note that the level of overdispersion
decreases as the total 𝛼tj+ increases. This overdispersion may be motivated by the presence of measurement errors or
unobserved heterogeneity, as the national counts are obtained by collapsing counts referred to different regions. Moreover,
it is possible that, within our formulation, we omit important covariates because they are not available to us. These missing
covariates may act as risk factors and influence the observed counts.

Obviously, either if we assume a multinomial or a Dirichlet-multinomial distribution, formulated in (1) or (2),
respectively, the induced distribution for Yt given Yt−1 has a complex expression involving the sum of quantities like

∏

j∈
p(Xtj = xtj|Yt−1 = yt−1, 𝜷 j)

over all possible configurations of the contingency table with frequencies xt1, … , xtK having certain column totals. In the
multinomial case, the induced distribution is related to the multivariate hypergeometric that, however, may be difficult
to compute in practice.

2.2 Adopted parametrizations

Under the multinomial model, in order to parametrize each probability vector ptj we introduce the subsetsj of contain-
ing the indices of the elements of this vector that are not constrained to be equal to zero. Then, we assume the multinomial
logit parametrization

ptjk =
exp(f ′tjk𝜷 jk)

∑
l∈j

exp(f ′tjl𝜷 jl)
, t ∈  ′, j ∈ , k ∈ j, (3)

where the design column vectors ftjk contain the terms of a suitable polynomial of time t included in the model via the
regression parameter vector 𝜷 jk. These parameters may be interpreted in terms of the logit of the probability of moving to
category k starting from category j.

To ensure model identifiability, under the multinomial distribution we assume that 𝜷 jj ≡ 0, j ∈ , where 0 is a suitable
dimensional column vector of zeros. In our application, in particular, we use common vectors across categories containing
the elements of a second or third order polynomial, and we have ftjk = (1, t, t2

, t3)′ for all t, j, and k. These vectors may also
include covariates, such as dummies, to study the effect of epidemic containment policies16 imposed at a certain time for
mitigating the pandemic, as we show in our application. Alternatively, proper splines32,33 may be considered. Overall, the
free parameters of the multinomial model are collected in the matrix 𝜷; in particular, this matrix collects the vectors 𝜷 jk,
j ∈ , k ∈ ′j , where′j = j∖{j}.

The parametrization of the Dirichlet-multinomial version of the proposed model is simpler as we directly assume that

𝛼tjk = exp(f ′tjk𝜷 jk), t ∈  ′, j ∈ , k ∈ j, (4)

on the basis of the quantities already defined above. In this case we not need to introduce identifiability constraints on
the 𝜷 jk parameters and then we define the overall parameter matrix 𝜷 as that collecting the vectors 𝜷 jk, j ∈ , k ∈ j. The
corresponding probabilities may be computed as

pitk =
exp(𝛼tjk)

∑
l∈j

exp(𝛼tjl)
, t ∈  ′, j ∈ , k ∈ j. (5)
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In a Bayesian framework, we assume that a priori the regression parameters in each vector 𝜷 jk are independent and
have a diffuse prior distribution. The initial and most natural choice is that of a multivariate Gaussian distribution, that is,

𝜷 jk ∼ N(0, 𝜎2I), j ∈ , (6)

where k ∈ ′j for the multinomial version and k ∈ j for the Dirichlet-multinomial case, I is a suitable dimensional
identity matrix, and 𝜎

2 is the variance hyperparameter that can be fixed to be large, in case we want to assume a nonin-
formative prior to perform exploratory analysis; for instance, we use a value equal to 100 in our application. However, in
order to include certain epidemiological hypotheses in the model, such as the fact that some transitions are very rare or
even impossible, and in order to increase the numerical stability of estimation and prediction, we introduce inequality
constraints on convenient transformations of the parameters. These constraints can be used in a very flexible way and
may be reduced to equality constraints. Let otjk be the odds referred to category k with respect to category j at time occa-
sion t, which are defined as otjk = ptjk∕ptjj. Our approach allows us to include the constraint that, for selected pairs of
indices (j, k) in the set  to be appropriately chosen, for all time occasions t these odds are bounded from above and/or
below although, in the application illustrated in Section 4, we only use upper limits. More precisely, we assume that

ajk ≤ otjk ≤ bjk, t ∈  ∗, (j, k) ∈ , ajk, bjk ∈ R+, (7)

where  ∗ = {2, … ,T∗} and T∗ refers to the time until which predictions are computed. In summary, from a Bayesian
perspective, we can also assume truncated priors34 based on the multivariate Gaussian distributions in (6) under the
constraint given in (7). Then, the model prior formulation amounts to specify the value of the variance 𝜎

2 together with
the set  and the limits ajk and bjk for the odds having indices in this set.

An alternative to the approach to formulate prior distributions described above could rely on a reparametrization
ensuring that inequalities in (7) are always attained, so that a prior Gaussian distributions can be assumed on the trans-
formed parameters without introducing any truncation. However, we prefer to retain the proposed way to specify prior
distributions as the above inequalities can be easily accounted for in the MCMC estimation algorithm.

Possible extensions of the above formulation could consist in differentiating the order of the polynomial for the multi-
nomial or Dirichlet-multinomial parameters considered in (3) and (4) across the possible pairs (j, k), but we prefer the
approach based on truncated priors to avoid model selections issues and because the proposed truncation is based on a
clearly interpretable criterion. Moreover, in the proposed framework, it is also possible to use informative prior distribu-
tions for the parameter vectors 𝜷 jk. In particular, for each of these vectors we can assume a Gaussian prior distribution
with mean vector and variance-covariance matrix equal to the posterior estimates obtained from data available in coun-
tries that entered earlier in the pandemic emergency phase. In this way, we can have more accurate predictions at the
beginning of the pandemic, when only data referred to a few time occasions are available.

2.3 Comparison with alternative models

The main employed models to predict the expected number of infections use univariate counts assumed to follow a Pois-
son or a negative binomial distribution. However we jointly model all the observable counts while the full process of
transitions between categories is unobservable. An approach of this type for 2 × 2 contingency tables has been proposed
in Reference 11 on the basis of a Binomial distribution assumed for each row of these tables. Even this approach follows
a Bayesian formulation based on Beta prior distributions assumed for suitable probability parameters and it relies on an
MCMC estimation algorithm, with special attention to inference on the odds ratio as a measure of association in each
contingency table.

It is worth noting that our proposal may be cast in the literature on hidden Markov (HM) model.35-37 A model of this
class was first introduced to monitor epidemiological surveillance data for poliomyelitis counts.38 However the literature
in this field is not rich and this model is generally estimated by considering a penalized likelihood approach where the
choice of the penalty is crucial. In our context, we consider a simpler model avoiding the definition of the latent states and
we propose a fully Bayesian formulation by considering an MCMC algorithm which allows us to dispose of the simulated
posterior probabilities of the model parameters.

Similarly to the Poisson model, our model has an epidemiological interpretation in line with the more common SEIR
models12 and we also provide an estimate of the reproduction number Rt defined as the expected number of individuals
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a single infected person will infect over the course of his/her infection period. The Rt can be considered as the average
number of secondary cases per primary case; see Reference 39 for a study on the differences between the estimation of
Rt in a deterministic SEIR-type model and in a stochastic model like the Poisson model. A first attempt to estimate this
number for COVID-19 is provided by Shao et al40 and for Italy by Cereda et al17 among others.

3 BAYESIAN INFERENCE

In this section we provide some details about estimation of the parameters and of the reproduction number. We also deal
with methods for model checking and for model comparison across different specifications.

3.1 Parameter estimation

The model is estimated through a Metropolis sampler by implementing a fixed scan algorithm based on two steps that
are iteratively repeated. In the first step, we update the contingency tables Xt with elements Xtjk, j, k ∈ , given the cur-
rent value of the parameters and the observed margins yt−1 and yt, for t ∈  ′. In the second step we update the model
parameters 𝜷 jk and an MH ratio is computed for each parameter vector in order to decide if the candidate move may be
accepted.

Given the complexity of sampling tables with fixed margins under the assumption that frequencies in each row of
the contingency table follow a multinomial or a Dirichlet-multinomial distribution with parameters defined in (3) or (5),
we use the technique of Reference 41 based on: (i) randomly selecting two rows and two columns of the current table
so that a 2 × 2 subtable is identified; (ii) performing a switch that consists in adding (or subtracting) to the two cells in
the main diagonal of the subtable a random integer number that is subtracted (or added) to the off-diagonal cells; (iii)
provided that the table proposed on the basis of the random switch has all positive frequencies, accepting this table with
probability equal to

𝛼 = min

(

1,
∏

j∈

p(Xtj = x∗tj|Yt−1 = yt−1, 𝜷 j)
p(Xtj = xtj|Yt−1 = yt−1, 𝜷 j)

)

,

where xtj is the vector of the frequencies in the jth row of the current table, x∗tj is that of the proposed table, and 𝜷 j is the
matrix containing all current regression vectors 𝜷 jk, k ∈ j. On the basis of the definition of the probabilities involved in
the expression given in (1) or (2), several simplifications are possible in computing the acceptance MH ratio.

After having updated the tables, and when the multinomial formulation is adopted, for each j ∈  and k ∈ ′j , we
update the regression parameters with a random walk Metropolis step and propose a new value of 𝜷 jk from a normal
distribution centered on the current value of this parameter vector and with a proper variance-covariance matrix. Then,
provided that inequalities in are verified (7), the proposed vector, denoted by 𝜷∗jk is accepted with probability

𝛼 = min
⎛
⎜
⎜
⎝

1,

∏
t∈ ′ p(Xtj = xtj|Yt−1 = yt−1, 𝜷

†
jk)

∏
t∈ ′ p(Xtj = xtj|Yt−1 = yt−1, 𝜷 j)

𝜋(𝜷∗jk)

𝜋(𝜷 jk)

⎞
⎟
⎟
⎠

,

where 𝜷†jk is the same matrix as 𝜷 j with 𝜷 jk substituted with 𝜷∗jk, and 𝜋(𝜷 jk) is the prior density of the regression parameters.
For the Dirichlet-multinomial version, the updating step of the 𝜷 jk parameters is performed as above for each k ∈ j.

At the end of the algorithm we obtain the simulated tables X (s)
t , t ∈  ′, and the parameter vectors 𝜷 (s)jk drawn from

the posterior distribution, for s = 1, … , S, where S is the number of MCMC iterations. At every iteration we also include
estimation and prediction of the reproduction number Rt, as we detail in Section 3.3.

3.2 Frequency prediction

After having updated tables and regression parameters, at each iteration of the MCMC algorithm, we also make in-sample
and out-sample prediction of the frequencies ytk. In particular, the MCMC algorithm draws parameter vectors 𝜷(s)jk on the



5358 BARTOLUCCI et al.

basis of which it is possible to obtain the probabilities p(s)tjk computed according to Equation (3) or (5) depending on the
assumed count distribution, multinomial or Dirichlet-multinomial. Consequently, a prediction of the frequency ytk at step
s of the algorithm is given by

ŷ(s)tk =
∑

j∈
yt−1,jp(s)tjk, t ∈  .

The same formula may be applied for predicting ytk for t = T + 1, obtaining ŷT+1,k, whereas we can apply the recursive
formula

ŷ(s)tk =
∑

j∈
ŷ(s)t−1,jp

(s)
tjk

for t > T + 1. These predictions are collected in vectors ŷ(s)t in a suitable way.
An alternative way to perform out-sample predictions of the frequencies ytk is based on simulating, at each step,

the table for occasion T + 1, denoted by X (s)
T+1 for iteration s, from the assumed distribution on the basis of the current

parameter values and the observed frequencies in the vector yT . By summing the columns of table X (s)
T+1 we obtain the

predicted frequencies ỹ(s)T+1,k collected in vector ỹ(s)T+1. This process is performed recursively so as to obtain the simulated
tables X (s)

t on the basis of the frequencies ỹ(s)t−1 and the corresponding predicted frequencies ỹ(s)tk collected in vectors ỹ(s)t for
t > T + 1.

At the end of the algorithm we can obtain summary statistics for the predictions ŷ(s)tk and ỹ(s)tk starting from simple means
across the iterations, denoted by ŷtk and ỹtk, respectively. We can also associate measures of precision that take into account
the variance of the posterior parameter distribution. In particular, by computing the variance of the ỹ(s)tk predictions, we
appropriately measure the level of uncertainty of such predictions that are directly generated from the model.

3.3 Estimation of a time-evolving reproduction number

In order to estimate the net reproduction number Rt we take inspiration from the method already applied to the Italian
context17,42 and that is rather popular in epidemiology; see Reference 43, among others. In particular, we start from the
assumption that the “serial interval” for COVID-19 follows a Gamma distribution with parameters 1.87 and 0.28, so that
the mean is of 6.6 days, as established in Reference 17. However, note that from the literature uncertainty emerges about
the length of the serial interval, as highlighted in the meta-analysis provided in Reference 44. The assumed length of this
interval may strongly affect the final estimate of Rt. Still, the reference model we select for the serial interval has been
already used as a standard value for Italian data, and we thus adopt it for uniformity and comparability purposes.

At every iteration s of the MCMC algorithm described in Section 3.1 we predict the reproduction number at issue as

̂R(s)t =
̂ΔI

(s)
t

∑t−1
r=1𝜔s,t−1̂ΔI

(s)
t−r

,

where 𝜔r,t−1 is a weight obtained by normalizing the density of the Gamma distribution with the above parameters (1.87
and 0.28) so that

∑t−1
r=1𝜔r,t−1 = 1 and ̂ΔI

(s)
t is the number of individuals in category NP predicted by the model for day t.

The latter is directly computed on the basis of the sum of suitable elements of the transition probability matrix from the
first category, namely,

̂ΔI
(s)
t = yt−1,1

K∑

k=3
p(s)t1k.

Finally, we take the overall prediction as a mean across the MCMC iterations. These means are denoted by ̂Rt. This
procedure allows us to estimate the net reproduction number for the observed time occasions and out of sample. We may
also obtain a measure of precision and credible intervals to be associated with the predicted Rt values, also accounting for
the variability of the parameter estimators.
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Overall, the method we adopt to estimate the reproductive number presents elements of novelty with respect to the
previous proposals that require the use of an ad hoc MCMC algorithm involving a likelihood function for the counts of
NP individuals based on the Poisson distribution.

3.4 Model checking and comparison

From the MCMC algorithm we obtain the predicted frequencies ŷ(s)tk and ỹ(s)tk as illustrated at the end of Section 3.2. In
order to evaluate the goodness-of-fit of the model we then consider the following discrepancy measure

̂Dist
(s)
=

∑

t∈ ′

∑

k∈

(ytk − ŷ(s)tk )
2

ŷ(s)tk

, (8)

which is computed at every MCMC iteration s. The overall measure of fit of the model may then be obtained as the
mean of these quantities across the MCMC iterations, obtaining ̂Dist. In order to calculate the corresponding posterior
predictive p-value we follow the procedure illustrated in Reference 26, see also References 27 and 45. In particular, for
every iteration, we also compute a version of the discrepancy measure, denoted by ̃Dist

(s)
, using formula (8) but with each

observed frequency ytk substituted by a simulated frequency from the model with the current parameter value and based
on the previously observed frequencies yt−1,j. The mean of these statistics across iterations is denoted by ̃Dist. Then the
posterior predictive p-value is obtained as the proportion of times that ̃Dist

(s)
is at least equal to ̂Dist

(s)
across all the MCMC

iterations. Although this procedure has been criticized because the observed data are used twice, once for parameter
estimation and once for model checking, the resulting posterior predictive p-values is still a useful check of model fit
provided that it is correctly interpreted. In particular if the model has an adequate fit, then p-values close to 0.5 should be
observed.45

The above discrepancy measure may also be used to compare different models when they are used for obtaining
forecasts and for this aim, we consider an out-sample version that is time specific. In particular suppose that further
observations are available with respect to those used to estimate the model, that is, suppose we know ytk for t ∈  †, where
 † = {T + 1, … ,T†} with T† > T. Then, at every MCMC iteration we compute the discrepancy measure

̂Dist
(s)
t =

∑

k∈

(ytk − ŷ(s)tk )
2

ŷ(s)tk

, t ∈  †, (9)

which is again summarized by a mean denoted by ̂Distt and for which we obtain an out-of-sample posterior p-value
according to the same method illustrated above. In this case, using different data for parameter estimation and model
checking we consider p-values larger than 0.05 as adequate.

Finally, it may also be of interest to understand with respect to which categories, among the K considered, the proposed
approach presents a higher or lower performance in terms of forecasting. In this regard we use the following type of
discrepancy measure

̃Dist
∗
k =

∑

t∈ †

(ytk − ỹtk)2

ỹtk
, k ∈ . (10)

Note that in this case we directly use the predictions available at the end of the algorithm, and we compare them with
those produced by sampling from the assumed distribution and denoted as ỹtk.

4 APPLICATION

Following the spread of COVID-19 in Europe, we consider the daily counts for K = 6 categories illustrated at the beginning
of Section 2 and denoted by S, R, Q, H, ICU, and D. Results are shown with reference to the Italian data collected from
24 February until 24 April 2020 (day 61) in order to evaluate the performance of our proposal at the beginning of the
pandemic. First, we compare the goodness-of-fit of the estimated models, and then we report the results of the best model
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T A B L E 2 Table of the fixed upper bounds for the odds of the
transitions between categories

S R Q H ICU D

S — 10−7 0.001 10−4 10−6 10−7

R — — 0.001 10−4 10−6 10−7

Q — 0.1 — 0.1 10−5 10−6

H — 0.1 0.1 — 0.1 0.01

ICU — 10−7 10−7 0.25 — 0.25

D — — — — — —

along with some results of another model for comparison. Then in Section 4.2 we show additional results obtained with
data collected on the same period referred to individuals who reside in the Lombardy region where the Italian wave of
the epidemic started. In the Appendix we provide some additional details on the estimation algorithm, data, and codes.

4.1 Italian data

4.1.1 Model comparison

We started our analysis with a variety of models formulated according to the proposed approach. In particular, we consid-
ered both the multinomial and the Dirichlet-multinomial autoregressive versions with polynomials of order two or three
and with or without constraints on the odds, as formulated in (7). The constraints imposed on the odds for the transi-
tions between categories (otjk) are displayed in Table 2, reporting the maximum values that these odds can take (bjk). For
example, in Table 2 the odds for the transition from ICU to H is 0.25, meaning that the probability to move from ICU to
H can be at most one fourth of that of remaining in ICU in a given day.

Overall, we considered eight models by combining two distributions (multinomial or Dirichlet-multinomial), two
orders of the polynomial (two or three), and two specifications (with or without constraints). All these models included
two dummy variables to account for the effect of NPI enforced on 24 February and on 8 March 8 2020, aimed at containing
viral transmission by closing schools, limiting movements, and imposing social distancing. Two dummy variables have
been added on days 7 and 20, corresponding to the 1st and 14th of March, considering that the effects of these NPIs can
be detected approximately 1 week after their enforcement.

In order to compare the eight models we used the discrepancy measures illustrated in Section 3.4. In Table 3 we
report the observed values of statistics ̂Dist and ̃Dist and the corresponding average posterior predictive p-values. These
results suggest that the multinomial model shows a lack of fit, a problem that is resolved in the model based on the
Dirichlet-multinomial distribution. In particular, all the Dirichlet-multinomial autoregressive models have a much better
fit with respect to the models based on the multinomial distribution: they are more capable of reproducing the amount
of variation observed in the data. Among the models based on the Dirichlet-multinomial distribution, Model 7 is the best
to explore the information contained in the data and has a posterior predictive p-value very close to 0.5 as expected when
the model is adequate. In contrast Model 8, imposing upper limits on the odds as those illustrated in Table 2, is suitable
to provide an epidemiological interpretation in line with the most common SEIR epidemiological models.12

We forecasted the total number of reported cases according to the posterior predictive distribution over the course of 10
days after the estimation time window and compared them with the observed cases during these days. Table 4 shows the
realized values of the proposed discrepancy measure defined in (9) and ̃Distt, which is based on the simulated frequency
along with the corresponding posterior p-value for each predicted day resulting from Models 7 and 8. We observe that for
Model 8 the p-values are never less than 0.05. Moreover, as expected, the overall p-value decreases with the increasing
number of predicted days.

In Table 5 we also report the measure provided in (10) for both models and notice that the best predicted categories
are D and ICU. Category H is also very well predicted. This is an important feature of the model since ICU is the crucial
count to correctly predict in order to save lives by optimal management of health-care resources. In the following, we
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T A B L E 3 Average realized and predicted discrepancy measures for the autoregressive
multinomial and Dirichlet-multinomial models and posterior predictive p-values for Italian
data

Autoregressive model

Multinomial D̂ist D̃ist p-value

Model 1 (2nd order, without constraints) 1658.011 124.670 0.000

Model 2 (2nd order, with constraints) 2347.274 68.474 0.000

Model 3 (3rd order, without constraints) 1565.587 122.793 0.000

Model 4 (3rd order, with constraints) 2203.832 70.512 0.000

Dirichlet-multinomial ̂Dist ̃Dist p-value

Model 5 (2nd order, without constraints) 2608.502 3060.236 0.679

Model 6 (2nd order, with constraints) 2992.213 3629.419 0.750

Model 7 (3rd order, without constraints) 2414.970 2811.524 0.536

Model 8 (3rd order, with constraints) 2915.772 3344.208 0.661

T A B L E 4 Realized values of the discrepancy measures according to Models 7 and 8 for the
forecasted cases in Italy and posterior p-values over a period of 10 days

Model 7 Model 8

Day D̂istt D̃istt p-value D̂istt D̃istt p-value

25th April 18.971 9.128 0.202 7.383 23.344 0.769

26th April 200.800 16.790 0.003 60.573 44.372 0.403

27th April 596.703 23.242 0.000 2200.393 63.880 0.198

28th April 1202.657 28.746 0.000 335.829 81.942 0.161

29th April 2222.529 33.588 0.000 505.395 98.120 0.137

30th April 2664.510 37.776 0.000 434.868 113.028 0.164

1st May 4779.427 41.501 0.000 658.215 127.831 0.118

2nd May 8358.893 44.679 0.000 929.957 140.980 0.103

3rd May 13544.235 47.837 0.000 1219.478 153.172 0.095

4th May 21402.362 51.219 0.000 1767.593 165.840 0.069

T A B L E 5 Realized values of the discrepancy measure for each category referred to the observed
and predicted counts over a period of 10 days

S R Q H ICU D Total

Model 7 ̃Dist
∗
k 8.000 28 507 12 926 3527 177 339 45 484

Model 8 ̃Dist
∗
k 0.000 1409 1397 372 31 12 3220

provide more details on the results obtained with the selected models, starting from Model 8 that incorporates constraints
and provides a more straightforward epidemiological interpretation.

4.1.2 Results of obtained from Model 8

Figure 1 shows the daily observed and predicted counts for each category with a time horizon of 10 days and the estimated
95% prediction intervals depicted in gray.
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F I G U R E 1 Observed frequencies (before the vertical dashed line corresponding to the 25th of April) and 10 days predictions (after the
vertical line until the 4th of May) with Model 8 for categories: recovered (R), positive cases in quarantine (Q), hospitalized (H), intensive care
(ICU), deceased (D), and “now positive” (NP). The estimated 95% prediction intervals are visualized in gray [Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 6 Estimated posterior means of the predicted transitions between categories
obtained with Model 8 from 25th to 26th of April (from the 61st to the 62nd day)

S R Q H ICU D

S 60 121 632 0 2219 154 1 0

R 0 60 489 9 0 0 0

Q 0 2665 79 105 516 0 0

H 0 116 757 20 925 73 197

ICU 0 0 0 0 2023 149

D 0 0 0 0 0 25 969

The posterior means of the predicted transition frequencies referred to the 25th and the 26th of April, stored in the
transition matrix, are reported in Table 6. The corresponding 95% upper and lower predicted limits are reported in Table 7.
The configuration of the predicted frequencies in Table 6 is recovered from the fixed marginal frequency of total counts.
We observe that some transitions are absent and that the highest frequency is predicted for the transition from S to Q (2219
individuals), and the second highest transition is predicted from H to Q (757 individuals). Some patients are predicted to
transit from Q to H (516) and from H to ICU (73).

For 26 April compared with 25 April, it is estimated that 149 deaths are expected among ICU patients, with a credibil-
ity interval from 123 to 282. These estimates imply an average length of stay in ICU ranging from 10 to 22 days. Another
interesting observation is that on the same day of 26 April, 73 hospitalized patients (0.33%) are predicted to require inten-
sive care with a credibility interval of 25 to 137 patients (0.11%, 0.62%). On the other hand, 197 hospitalized patients are
predicted to die on the same day.

The estimated posterior means and the 95% predicted interval for the increase in totals for H and ICU from 26th to
29th April are reported in Table 8. These are of particular interest, since during the first period of the pandemic, there
was a significant daily increase in the demand for hospital beds and ICU, especially from the general population at risk
of being affected by the virus.

In order to show the temporal dynamics of the estimated daily reproduction number Rt, Figure 2 depicts the estimated
averages and 95% credible bounds obtained using all the data of the 61 days along with the predicted values for 10 days.

http://wileyonlinelibrary.com
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T A B L E 7 Estimated posterior 95% prediction upper and lower bounds for the transitions between categories
obtained with Model 8 from 25th to 26th of April (from the 61st to the 62nd day)

S R Q H ICU D

S — (0, 0) (1217, 3188) (0, 718) (0, 2) (0, 0)

R — (60 471, 60 498) (0, 26) (0, 0) (0, 0) (0, 0)

Q — (1269, 4357) (77 182, 80 672) (32, 1479) (0, 0) (0, 0)

H — (0, 506) (463, 1129) (20 438, 21 321) (25, 137) (123, 282)

ICU — (0, 0) (0, 0) (0, 40) (1963, 2075) (98, 210)

D — — — — — —

T A B L E 8 Estimated posterior means and 95% prediction intervals
(PI) of the increase in totals for H and ICU over a period of 10 days
obtained with Model 8

Day H PI ICU PI

25th April −472 (−1047, 446) −76 (−140, −2)

26th April −465 (−1032, 462) −73 (−134, −2)

27th April −460 (−1012, 459) −69 (−128, −1)

28th April −450 (−997, 465) −67 (−122, 0)

29th April −442 (−981, 470) −63 (−118, 0)

30th April −431 (−972, 450) −60 (−112, 2)

1st May −420 (−952, 465) −57 (−107, 3)

2nd May −409 (−948, 459) −55 (−104, 4)

3rd May −397 (−942, 484) −52 (−99, 6)

4th May −384 (−925, 454) −50 (−95, 7)

From this figure we observe that, on average, this value increases over time during the early phase of the epidemic before
containment measures became effective, and it only begins to decrease on the 11th day, corresponding to the 5th of March.
Trend and values resemble those provided by the Italian National Institute of Health.42

4.1.3 Some results obtained from Model 7

In the following, we show some results obtained from Model 7 for Italy since, as stated above, this model is reasonable,
especially for exploratory data purposes, as no constraints are imposed on the odds for the transitions across categories.
The posterior means of the predicted transition frequencies referred to 25th and 26th April stored in the transition matrix
are reported in Table 9. Comparing this table with Table 6 we note some differences, for example, the fact that 1243 people
are predicted to transit from S to R; however, this transition is rather implausible. This confirms that, as stated above, the
proposed constraints are suitable to comply with the epidemiological features of the pandemic.

The estimated posterior mean and the 95% predicted interval for the increase in totals for H and ICU from the 26th to
the 29th April are reported in Table 10. Comparing this table with Table 8 we notice that the main difference is observed
for the predicted frequencies for category H, and, as expected, these intervals are wider.

4.2 Lombardy data

We show additional results obtained when the proposed models are estimated with data referred to the Lombardy region.
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T A B L E 9 Estimated posterior means of the predicted transitions between categories
25th to 26th of April (from the 61st to the 62nd day) obtained with Model 7

S R Q H ICU D

S 60 121 106 1243 1632 22 4 0

R 0 58 106 2278 0 42 71

Q 0 3 461 76 798 1675 22 330

H 0 1155 1228 19 617 2 66

ICU 0 1 139 2 2029 1

D 0 0 0 0 0 25 969

T A B L E 10 Estimated posterior means and 95% prediction intervals (PI)
for 10 days of the increase in totals for H and ICU obtained with Model 7

Day H PI ICU PI

25th April −752 (−1486, −64) −75 (−132, 10)

26th April −800 (−1570, −80) −69 (−130, 20)

27th April −847 (−1626, −116) −62 (−127, 37)

28th April −898 (−1711, −145) −54 (−125, 55)

29th April −948 (−1810, −160) −46 (−126, 80)

30th April −996 (−1901, −191) −37 (−128, 111)

1st May −1042 (−1959, −205) −27 (−134, 150)

2nd May −1083 (−2021, −229) −16 (−141, 199)

3rd May −1116 (−2041, −241) −3 (−151, 258)

4th May −1140 (−2041, −246) 13 (−155, 349)

T A B L E 11 Average realized and predicted discrepancy measures for the
autoregressive multinomial and Dirichlet-multinomial models, average posterior two-sided
p-values for data from Lombardy

Autoregressive model

Multinomial D̂ist D̃ist p-value

Model 1 (2nd order, without constraints) 2487.417 147.896 0.000

Model 2 (2nd order, with constraints) 3868.846 70.011 0.000

Model 3 (3rd order, without constraints) 2532.507 139.870 0.000

Model 4 (3rd order, with constraints) 3855.632 71.237 0.000

Dirichlet-multinomial ̂Dist ̃Dist p-value
Model 5 (2nd order, without constraints) 4487.878 5911.391 0.765

Model 6 (2nd order, with constraints) 5210.567 4960.395 0.388

Model 7 (3rd order, without constraints) 4346.473 6514.379 0.646

Model 8 (3rd order, with constraints) 4957.757 5034.154 0.427
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F I G U R E 2 Estimated and predicted (from the vertical line) reproduction number Rt obtained with Model 8 (61 observed days,
prediction from 25th of April to 4th of May). The estimated 95% credibility and prediction intervals are displayed in gray

T A B L E 12 Realized values of the discrepancy measures according to Models 7 and 8 for the
forecasted cases in Lombardy and posterior p-values over a period of 10 days

Model 7 Model 8

Day D̂istt D̃istt p-value D̂istt D̃istt p-value

25th April 46.720 88.258 0.609 7.588 38.309 0.810

26th April 193.641 150.450 0.368 28.269 72.218 0.641

27th April 739.840 202.970 0.114 177.185 103.660 0.216

28th April 1282.245 249.381 0.076 245.815 132.068 0.229

29th April 2055.032 289.949 0.050 317.009 157.467 0.236

30th April 3136.772 332.528 0.034 409.247 180.781 0.220

1st May 4614.224 375.590 0.024 512.889 204.401 0.202

2nd May 6496.372 421.960 0.019 603.037 226.130 0.184

3rd May 8749.014 472.851 0.015 629.558 246.278 0.201

4th May 12072.930 536.123 0.011 783.759 266.754 0.174

4.2.1 Model comparison

The realized values of the discrepancy measures of the eight models estimated with the available data are reported in
Table 11. We note that, as for the Italian data, the Dirichlet-multinomial autoregressive models are more suitable to
explain the variability observed in the data with respect to the models based on the multinomial distribution. The posterior
predictive p-value closer to 0.5 is the one calculated for Model 8.

Table 12 shows the forecasted total number of reported cases according to the posterior predicted distribution and the
realized values of the proposed discrepancy measures defined in (9) and ̃Distt, along with the out-of-fit posterior p-value
for each day. We observe that the p-values obtained with the Dirichlet-multinomial models are higher than those in Table 4
referred to the Italian data, thus showing a better predictive power, probably because the observations collected within
the region are more homogeneous than those collected over the entire nation.
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T A B L E 13 Realized values of the discrepancy measure for each category referred to the
observed and predicted counts for Lombardy over a period of 10 days

S R Q H ICU D Total

Model 7 ̃Dist
∗
k 1.000 5492 3426 88 14 16 9037

Model 8 ̃Dist
∗
k 0.000 272 573 1116 18 10 1990
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F I G U R E 3 Observed frequencies (before the vertical dashed line corresponding to the 25th of April) and 5 days predictions (after the
vertical line until the 4th of May) for categories: recovered (R), positive cases in quarantine (Q), hospitalized (H), intensive care (ICU),
deceased (D), and “now positive” (NP). The estimated 95% prediction intervals are visualized in gray [Colour figure can be viewed at
wileyonlinelibrary.com]

Table 13 shows that the number of H and ICU patients is predicted with minimum error. This confirms that our
proposal is particularly appropriate to predict mortality risk as well as progression to severe disease.

4.2.2 Results obtained from Model 8 for Lombardy

Figure 3 shows the daily observed and predicted counts with a time horizon of 10 days along with the estimated 95%
prediction intervals depicted in gray.

The posterior means of the predicted transition frequencies between categories referred to the first predicted day are
shown in Table 14. The estimated 95% prediction upper and lower bounds are reported in Table 15. The estimated posterior
mean and the 95% predicted interval for the increase in totals for H and ICU are reported in Table 16.

Figure 4 displays the dynamics of Rt as obtained from the estimated model. We found that, on average, this value
increases over time during the early phase of the pandemic. Its decrease begins on the 11th day, corresponding to the 5th
of March, a few days after the issuance of the NPIs.

4.2.3 Some results obtained from Model 7 for Lombardy

In the following we show some results obtained adopting Model 7 for the Lombardy region. The posterior means of the
predicted transition frequencies referred to the 25th and the 26th of April are reported in Table 17. In this model no
constraints are imposed on the odds for the transitions across categories.

http://wileyonlinelibrary.com
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T A B L E 14 Estimated posterior means of the predicted transitions between
categories with obtained with Model 8 from 25th to 26th of April (from the 61st to the
62nd day)

S R Q H ICU D

S 9 988 451 0 774 93 0 0

R 0 23 779 3 0 0 0

Q 0 309 24 123 389 0 0

H 0 170 379 8142 28 72

ICU 0 0 0 0 703 52

D 0 0 0 0 0 13 106

T A B L E 15 Estimated posterior 95% prediction upper and lower bounds for the transitions between
categories from 25th to 26th of April (from the 61st to the 62nd day)

S R Q H ICU D

S — (0, 0) (246, 1210) (0, 581) (0, 1) (0, 0)

R — (23 759, 23 782) (0, 22) (0, 0) (0, 0) (0, 0)

Q — (0, 1337) (22 668, 24 796) (0, 1565) (0, 0) (0, 0)

H — (0, 510) (70, 737) (7683, 8446) (4, 67) (30, 121)

ICU — (0, 0) (0, 0) (0, 5) (668, 731) (24, 87)

D — — — — — —

T A B L E 16 Estimated posterior means and 95% prediction intervals
(PI) of the increase in totals for H and ICU over a period of 10 days
obtained with Model 8

Day H PI ICU PI

25th April −167 (−679, 988) −24 (−61, 18)

26th April −160 (−672, 1014) −23 (−58, 16)

27th April −147 (−656, 1058) −22 (−54, 15)

28th April −141 (−645, 1062) −20 (−51, 15)

29th April −130 (−635, 1082) −19 (−48, 14)

30th April −119 (−609, 1085) −18 (−45, 14)

1st May −105 (−596, 1116) −17 (−43, 13)

2nd May −94 (−573, 1110) −15 (−41, 13)

3rd May −87 (−562, 1090) −14 (−39, 13)

4th May −73 (−538, 1095) −13 (−37, 13)
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F I G U R E 4 Estimated and predicted (from the vertical line) reproduction number Rt for Lombardy obtained with Model 8 (61 observed
days, prediction from 25th of April to 4th of May). The estimated 95% credibility and prediction intervals are displayed in gray

T A B L E 17 Estimated posterior predicted transitions between categories from the
25th to the 26th of April (from the 61st to the 62nd day) according to Model 7

S R Q H ICU D

S 9 988 204 529 276 295 0 14

R 0 23 063 64 652 2 2

Q 0 814 22 782 1220 4 2

H 0 81 1940 6635 49 86

ICU 0 1 0 5 674 76

D 0 0 0 0 0 13 106

T A B L E 18 Estimated posterior means and 95% prediction intervals
(PI) of the increase in totals for H and ICU over a period of 10 days
obtained with Model 7

Day H PI ICU PI

25th April 15 (−1128, 1778) −28 (−90, 44)

26th April 62 (−1220, 2017) −25 (−90, 60)

27th April 113 (−1326, 2224) −21 (−91, 81)

28th April 155 (−1451, 2451) −16 (−92, 109)

29th April 180 (−1593, 2644) −11 (−91, 144)

30th April 214 (−1761, 2924) −6 (−94, 184)

1st May 221 (−1959, 3109) 2 (−98, 248)

2nd May 252 (−2118, 3426) 12 (−100, 323)

3rd May 270 (−2278, 3676) 21 (−102, 408)

4th May 272 (−2496, 3960) 32 (−103, 524)
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The estimated posterior mean and the 95% predicted interval for the increase in totals for H and ICU are reported in
Table 18. We notice that the length of the predicted intervals is higher than that estimated with Model 8, and it increases
with the number of predicted days.

5 DISCUSSION
We propose a novel Bayesian approach based on multinomial and Dirichlet-multinomial distributions for time-series
counts which can be useful to understand the diffusion of the coronavirus pandemic and to forecast, with good accuracy,
for some days ahead, the expected number of people in the following categories: susceptible not previously ill, recovered,
positive cases in quarantine, hospitalized, intensive care, and deceased. However, the models are formulated in a general
way, and may be adapted to a different number of categories according to data availability. Moreover, they transcend
the COVID-19 context since they can be suitable for many other situations where the assumption on the sequence of
contingency tables of the “transition frequencies” between two consecutive time occasions is appropriate. For example,
they could be used for the analysis of the transitions between categories of malignant tumors as in the tumor, node,
metastasis classification when it is conducted on aggregated data or for the analysis of the transitions between levels of
severity of other diseases.

The problem of low data quality has been illustrated by Wynants et al.46 We recognize that Italian official data may
suffer from high variability and may lack representativeness over the population. This might cause an underestimation of
the posterior and predictive uncertainties even if the proposed Dirichlet-multinomial model is also meant to mitigate this
issue. We remark that in the present work, we use data provided officially by the national authorities that do not account
for the counts of asymptomatic cases. This subcategory of individuals whose infection and recovery both go silent, could
not be included in the model, and this constitutes a limitation of the study.

In particular, the proposed prediction models based on a Dirichlet-multinomial distribution can be used to support
medical decisions, especially the management of intensive care units, and to plan increase in critical care bed capacity
during the emergency. As stated by Remuzzi and Remuzzi,47 the prediction is very important to plan new facilities all
over the countries and regions. The early identification of needs is a crucial aspect both for policy makers, and for physi-
cians. Once epidemiological hypotheses are introduced, our model can be interpreted in the same spirit of more standard
SEIR models and it can be used to estimate the daily reproduction number. With respect to SEIR models, it is more
exploratory because it requires fewer assumptions and hypotheses. Moreover, we do not preclude transitions among the
observed categories but we only place minimum requirements in the odds that are knowledge domain driven, which
results in more stable estimates.

We are also aware that the pandemic may be seen as many local epidemics that are dependent on each other. Still, we
believe that this does not create problems in interpreting our results since we model the joint time series without explicitly
dealing with the interactions.

A possible extension of the proposed model would be to consider a set of nodes that correspond to different regions,
and a network would describe the flow of people (either infected or susceptible) between nodes. A model having a
multinomial or a Dirichlet-multinomial distribution could be fitted at each node, and interactions between nodes could
be explicitly modeled. However, interesting comparisons can be made even within our proposal since the model can be
estimated with data at the regional level and then a comparison of transition rates among categories across regions can
be performed and the time spent in each category can be compared across regions. This analysis may be useful also to
better understand the dynamics of the deceased, which are remarkably different among the Italian regions. We are con-
fident that our proposal may help better plan active public health interventions in the feature and avoid the development
of critical illness for patients.

ACKNOWLEDGEMENTS
Francesco Bartolucci and Fulvia Pennoni acknowledge the financial support from the grant “InPresa: Individuazione
Precoce e contenimento SARS-siCoV-2. Strumenti e servizi per affrontare la sfida al COVID-19” funded by the Lombardy
Region (Italy) under the grant agreement No. 1832877. Antonietta Mira received funding from the European Union’s Hori-
zon 2020 research and innovation program “PERISCOPE: Pan European Response to the Impacts of COVID-19 and future
Pandemics and Epidemics”. PERISCOPE project has received funding from the European Union’s Horizon 2020 Research
and Innovation programme, under the Grant Agreement number 101016233. The authors thank A. Ebert, Università
della Svizzera italiana (CH), for support in running backtesting simulations and for a careful read of a preliminary version
of the paper. Open Access Funding provided by Universita degli Studi di Perugia within the CRUI-CARE Agreement.
[Correction added on 2 June 2022, after first online publication: CRUI funding statement has been added.]



5370 BARTOLUCCI et al.

DATA AVAILABILITY STATEMENT
We use publicly available data and in the Appendix we provide the link to the data source.

ORCID
Francesco Bartolucci https://orcid.org/0000-0001-7057-1421
Fulvia Pennoni https://orcid.org/0000-0002-6331-7211
Antonietta Mira https://orcid.org/0000-0002-5609-7935

REFERENCES
1. Phua J, Weng L, Ling L, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations.

Lancet Respir Med. 2020;8:506-517.
2. Roda WC, Varughese MB, Han D, Li MY. Why is it difficult to accurately predict the COVID-19 epidemic? Infect Dis Model. 2020;5:271-281.
3. Arabi YM, Murthy S, Webb S. COVID-19: a novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020;46:833-836.
4. Agosto A, Campmas A, Giudici P, Renda A. Monitoring COVID-19 contagion growth. Stat Med. 2021;1-11.
5. Greenwood M, Yule GU. An enquiry into the nature of frequency distributions to the occurrence of multiple attacks of disease or of

repeated accidents. J R Stat Soc Ser A. 1920;83:255-279.
6. Cameron AC, Trivedi PK. Econometric models based on count data: comparisons and applications of some estimators and tests. J Appl

Econometr. 1986;1:29-53.
7. Alexander N, Moyeed R, Stander J. Spatial modelling of individual-level parasite counts using the negative binomial distribution.

Biostatistics. 2000;1:453-463.
8. Wu K, Darcet D, Wang Q, Sornette D. Generalized logistic growth modeling of the COVID-19 outbreak in 29 provinces in China and in

the rest of the world; 2020. arXiv preprint arXiv:2003.05681.
9. Ferland R, Latour A, Oraichi D. Integer-valued GARCH process. J Time Ser Anal. 2006;27:923-942.

10. Basu A. Estimating the infection fatality rate among symptomatic COVID-19 cases in the United States: study estimates the COVID-19
infection fatality rate at the US county level. Health Aff . 2020;10-1377.

11. Eleftheraki AG, Kateri M, Ntzoufras I. Bayesian analysis of two dependent 2×2 contingency tables. Comput Stat Data Anal.
2009;53:2724-2732.

12. Li Michael Y, Muldowney JS. Global stability for the SEIR model in epidemiology. Math Biosci. 1995;125:155-164.
13. Dunson DB. Commentary: practical advantages of Bayesian analysis of epidemiologic data. Am J Epidemiol. 2001;153:1222-1226.
14. Casella G, Berger LR. Statistical Inference. 2nd ed. London, UK: Duxbury Press; 2002.
15. Berger JO. Statistical Decision Theory and Bayesian Analysis. 2nd ed. New York, NY: Springer Science & Business Media; 1985.
16. Box GE, Tiao GC. Intervention analysis with applications to economic and environmental problems. J Am Stat Assoc. 1975;70:70-79.
17. Cereda D, Tirani M, Rovida F, et al. The early phase of the COVID-19 outbreak in Lombardy; 2020:4. https://arxiv. org/abs/2003.09320.

Accessed April 20, 2020.
18. Taylor HM, Karlin S. An Introduction to Stochastic Modelling. 3rd ed. San Diego, CA: Academic Press; 1998.
19. Robert CP, Casella G. Monte Carlo Statistical Methods. 2nd ed. New York, NY: Springer-Verlag; 2010.
20. Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. J Am Stat Assoc. 1987;82:528-540.
21. Diaconis P. The Markov chain Monte Carlo revolution. Bull Am Math Soc. 2009;46:179-205.
22. Diaconis P. Some things we’ve learned (about Markov chain Monte Carlo). Bernoulli. 2013;19:1294-1305.
23. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem

Phys. 1953;21:1087-1092.
24. Hastings WK. Monte Carlo sampling methods using Markov chains and their application. Biometrika. 1970;1:97-109.
25. Meng X-L. Posterior predictive p-values. Ann Stat. 1994;22:1142-1160.
26. Gelman A, Meng X-L, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin. 1996;6:733-760.
27. Conn PB, Johnson DS, Williams PJ, Melin SR, Hooten MB. A guide to Bayesian model checking for ecologists. Ecol Monogr.

2018;88:526-542.
28. Agresti A. Categorical Data Analysis. 2nd ed. Hoboken, NJ: John Wiley & Sons; 2002.
29. Leonard T. Bayesian simultaneous estimation for several multinomial distributions. Commun Stat Theory Methods. 1977;6:619-630.
30. Mosimann JE. On the compound multinomial distribution, the multivariate 𝛽-distribution, and correlations among proportions.

Biometrika. 1962;49:65-82.
31. Paul SR, Liang KY, Self SG. On testing departure from the Binomial and multinomial assumptions. Biometrics. 1989;46:231-236.
32. Smith PL. Splines as a useful and convenient statistical tool. Am Stat. 1979;335:7-62.
33. Biller C. Adaptive Bayesian regression splines in semiparametric generalized linear models. J Comput Graph Stat. 2000;9:122-140.
34. Morris B, Sinclair A. Random walks on truncated cubes and sampling 0-1 knapsack solutions. SIAM J Comput. 2004;34:195-226.
35. Bartolucci F, Farcomeni A, Pennoni F. Latent Markov Models for Longitudinal Data. Boca Raton, FL: Chapman and Hall/CRC; 2013.
36. Zucchini W, IL MD, Langrock R. Hidden Markov Models for Time Series: An Introduction Using R. New York, NY: Springer-Verlag; 2017.
37. Weiß CH. An Introduction to Discrete-Valued Time Series. Hoboken, NJ: John Wiley & Sons; 2018.
38. Le Strat Y, Carrat F. Monitoring epidemiologic surveillance data using hidden Markov models. Stat Med. 1999;18:3463-3478.

https://orcid.org/0000-0001-7057-1421
https://orcid.org/0000-0001-7057-1421
https://orcid.org/0000-0002-6331-7211
https://orcid.org/0000-0002-6331-7211
https://orcid.org/0000-0002-5609-7935
https://orcid.org/0000-0002-5609-7935


BARTOLUCCI et al. 5371

39. Susvitasari K, Siswantining T. The stochastic modelling of endemic diseases. J Phys Conf Ser. 2017;795:1-8.
40. Shao N, Cheng J, Chen W. The reproductive number R0 of COVID-19 based on estimate of a statistical time delay dynamic system.

Conference Series; 2020:1-10; medRxiv, Cold Spring Harbor Laboratory Press, Woodbury, NY.
41. Diaconis B. Algebraic algorithms for sampling from conditional distributions. Ann Stat. 1998;26:363-397.
42. Riccardo F, Ajelli M, Andrianou XD, et al. Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers

1 month into the epidemic, Italy, 28 January to 31 March 2020. Euro Surveill. 2020;25:1-11.
43. Liu Q-H, Ajelli M, Aleta A, Merler S, Moreno Y, Vespignani A. Measurability of the epidemic reproduction number in data-driven contact

networks. Proc Natl Acad Sci. 2018;115:12680-12685.
44. Gatto M, Bertuzzo E, Mari L, et al. Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures.

Proc Natl Acad Sci. 2020;117:10484-10491.
45. Gelman A. Two simple examples for understanding posterior p-values whose distributions are far from uniform. Electron J Stat.

2013;7:2595-2602.
46. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical

appraisal. Br Med J. 2020;369:1-16.
47. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020;395:1225-1228.
48. Roberts GO, Rosenthal JS. Optimal scaling for various Metropolis-Hastings algorithms. Stat Model. 2001;16:351-367.
49. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

How to cite this article: Bartolucci F, Pennoni F, Mira A. A multivariate statistical approach to predict
COVID-19 count data with epidemiological interpretation and uncertainty quantification. Statistics in Medicine.
2021;40:5351-5372. https://doi.org/10.1002/sim.9129

APPENDIX

Additional details
The proposed multivariate Bayesian statistical approach relies on a Markov chain Monte Carlo (MCMC) algorithm based
on two steps which are iteratively repeated as described in Section 3.1. Regarding the first step, which consists in updating
the transition tables, we propose a possible switch that consists in adding (or subtracting) a random integer number
between 1 and 50 to the cells in the main diagonal of a randomly selected 2 × 2 subtable, and subtracting (or adding) the
same number to the off-diagonal cells. Regarding the second step, which consists in drawing new values for all vectors of
regression parameters 𝜷 jk, we use a multivariate normal proposal distribution with mean centered on the current vector
and variance-covariance matrix equal to 0.32I, even if the algorithm that we make available allows the user do adopt a
different proposal variance for each j and k. The MCMC algorithm is run for 500 000 iterations in addition to the initial
100 000 iterations considered as burn-in. The thinning parameter is set to 10 in order to reduce the autocorrelation along
the path of the Markov chain.

The MCMC algorithm, run with the data of the illustrated applications on a desktop computer with 2.7-GHz Intel(R)
Core(TM) i7 quad core processor, requires a computational time of approximately 7 hours.

In order to assess the performance of the MCMC algorithm, we have to consider that the proposed model based on
the Dirichlet-multinomial distribution, so as to include overdispersion, is essentially overparametrized with respect to
the number of observations. However, as already illustrated in Section 2.2, we recover numerical stability thanks to the
adoption of inequality constraints on the odds. Moreover, we notice that the algorithm performs adequately in terms of
predictions, which represent a crucial aspect in applications of this type. We note that these predictions are convolutions of
the frequencies contained in the forecasted transition tables. In this regard, we show in Table A1 the algorithm’s effective
sample size for the forecasted counts in the various categories of interest (S, R, Q, H, ICU, D) for 1, 2, and 3 days ahead
obtained with Models 7 and 8 using data for Italy and Lombardy. In updating the regression parameters, the acceptance
rate is on average 26% for model 8 estimated with the Italian data, and this is in line with the literature.48 For each case,
the effective sample size is calculated as the ratio between the number of available MCMC replications, 50 000, and the
integrated autocorrelation time obtained by the IAT function of the R library LaplacesDemon.

A final note concerns the data source. To define the number of the susceptible individuals, we used the last population
census data provided by the Italian Statistical Institute (available at the following link https://www.istat.it/it/archivio/
238447, accessed 3 December 2020). Daily counts on R, Q, H, ICU, D can be downloaded from the following repository

https://doi.org/10.1002/sim.9129
https://www.istat.it/it/archivio/238447
https://www.istat.it/it/archivio/238447
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T A B L E A1 Effective sample sizes of the estimated posterior means of the predicted counts in the various categories of
interest for 1, 2, and 3 days ahead obtained with Models 8 and 7 for the Italian and Lombardy data

Italian data Lombady data

Model 8 Model 7 Model 8 Model 7

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

S 12 893 5641 3677 6911 2049 897 15 297 6264 4747 11 042 5185 2034

R 11 605 4611 2865 4768 2129 1603 22 411 12 527 7016 12 561 2236 1844

Q 12 257 4288 3672 4660 2731 1046 10 335 5408 3340 12 936 2568 1878

H 20 548 3968 2892 3928 2459 1546 14 440 11 382 8385 12 907 3688 1779

ICU 16 892 4067 2914 14 014 3280 1767 31 998 23 413 19 022 10 947 5219 3195

D 16 512 6712 3447 3757 2463 1538 42 671 31 295 31 413 13 507 6212 2481

https://github.com/pcm-dpc/COVID-19/. For reproducibility purposes, the code to estimate the proposed models writ-
ten for the open source software R49 is available from the Github repository at the following link https://github.com/
francescobartolucci/ARMultinomial.

https://github.com/pcm-dpc/COVID-19/
https://github.com/francescobartolucci/ARMultinomial
https://github.com/francescobartolucci/ARMultinomial

	A multivariate statistical approach to predict COVID-19 count data with epidemiological interpretation and uncertainty quantification 
	1 Introduction
	2 Proposed approach
	2.1 Model assumptions
	2.2 Adopted parametrizations
	2.3 Comparison with alternative models

	3 Bayesian inference
	3.1 Parameter estimation
	3.2 Frequency prediction
	3.3 Estimation of a time-evolving reproduction number
	3.4 Model checking and comparison

	4 Application
	4.1 Italian data
	4.1.1 Model comparison
	4.1.2 Results of obtained from Model 8
	4.1.3 Some results obtained from Model 7

	4.2 Lombardy data
	4.2.1 Model comparison
	4.2.2 Results obtained from Model 8 for Lombardy
	4.2.3 Some results obtained from Model 7 for Lombardy


	5 Discussion

	Acknowledgements
	Data Availability Statement
	ORCID
	References

