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Abstract

Background: A substantial fraction of genes identified within bacterial genomes encode proteins of unknown
function. Identifying which of these proteins represent potential virulence factors, and mapping their key virulence
determinants, is a challenging but important goal.

Results: To facilitate virulence factor discovery, we performed a comprehensive analysis of 17,929 protein domain
families within the Pfam database, and scored them based on their overrepresentation in pathogenic versus non-
pathogenic species, taxonomic distribution, relative abundance in metagenomic datasets, and other factors.

Conclusions: We identify pathogen-associated domain families, candidate virulence factors in the human gut, and
eukaryotic-like mimicry domains with likely roles in virulence. Furthermore, we provide an interactive database
called PathFams to allow users to explore pathogen-associated domains as well as identify pathogen-associated
domains and domain architectures in user-uploaded sequences of interest. PathFams is freely available at https://
pathfams.uwaterloo.ca.

Keywords: Proteins of unknown function, Hypothetical proteins, Virulence factors, Pathogens, Environmental
association, Lineage specificity

Background
Bacterial virulence factors are proteins that facilitate
pathogen adherence, colonization, and survival with the
host. Despite a long history of virulence factor
characterization, new virulence factors and mechanisms
are continually being discovered, even in well character-
ized organisms. Given the rapidly growing availability of
genomic sequences across the bacterial tree of life, there
is a potential explosion of virulence protein diversity to
be discovered in genomes [1].
A key question in the bioinformatic identification and

analysis of virulence factors is how to detect candidate
virulence related proteins from sequence information.
Common strategies include the use of online virulence
factor databases such as the VFDB, which is a compre-
hensive, curated resource of virulence factors across the

best-characterized bacterial pathogens [2] Protein
sequences from newly sequenced organisms or metagen-
omes can be compared against the VFDB to identify ho-
mologs of known virulence factors, which include toxins
and adherence factors as well as more general protein
families that contribute, but are not specific, to virulence
(e.g., flagellar proteins).
Although virulence factors can be grouped into pro-

tein sequence families, a more fundamental level of ana-
lysis is to assess proteins at the level of domains. Even if
most of a protein sequence might be unrecognizable, the
identification of key domains within that sequence may
be sufficient to identify it as a candidate virulence factor
[3]. Domains are modular units of proteins that adopt
specific three-dimensional structures and functions. Re-
lated domains can be grouped by sequence similarity
into domain families, which have a common evolution-
ary ancestry, and adopt similar structures and functions
[4]. Domain families have been bioinformatically
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classified into databases such as CATH [5], the NCBI
Conserved Domain Database [6], Interpro [7], and Pfam
[8]. The Pfam v32.0 database contains a total of 17,929
domain families. These can be further classified into
“clans”, sometimes referred to as domain superfamilies.
Around 22 % (4049) of all domain families in Pfam v32.0
are defined as “domains of unknown function” or DUFs.
DUFs can be recognized bioinformatically as families in
sequenced genomes but have not been assigned a func-
tion. DUFs and other collections of uncharacterized pro-
tein families are a fascinating target for bioinformatic
analysis, since many encode potentially novel biochem-
ical activities and biological functions [9]. Identifying
which DUFs are virulence factors and their potential
mechanisms is an important task.
As an alternative to homology-based functional anno-

tation methods, functional insights into protein families
can be obtained by detecting statistical associations
between families and various biological traits. Quantifi-
cation of the relative abundance of a protein family
across different environments can help provide insights
into its functional context [10–16]. For example, Ellrott
et al. [12], used an automated computational procedure
to identify protein families specific to the human gut micro-
biome, and discovered 835 sequence families in metage-
nomic data. Subsequent experimental characterization of
some of these protein families have revealed functions that
are important for microbial physiology in the human gut
[13]. Second, the presence/absence of a protein family may
show a statistical association with a certain phenotype. For
example, numerous studies have compared protein family
abundance between pathogenic and non-pathogenic
genomes to detect those that may play roles in virulence
[17–19]. Levy et al. compared plant-associated bacterial ge-
nomes with non-plant-associated bacterial genomes and
found 767 domains that were significantly associated with
host-associated bacterial strains [20]. This led to the discov-
ery of a gene family involved with inter-microbe competition
in plant-associated environments.
In this work, we have applied several association-based

methods to analyze 17,979 Pfam domain families in terms
of their pathogen-association, taxonomic distribution, en-
richment in the human gut, and other factors. Our ana-
lysis identifies hundreds of pathogen-associated domains,
which include known and potentially novel candidate
virulence factors for future characterization. We provide
an online database (https://pathfams.uwaterloo.ca) to
allow researchers to analyze their proteins of interest and
explore our pathogen-associated domain families.

Results and discussion
Identification of pathogen-enriched domains
To identify domain families enriched in pathogens, we
first constructed a dataset of 354 pathogen and 7897

non-pathogen bacterial proteomes (Data S1) based on
the PATRIC database [21] and metadata from Dhillon
et al. [22] (see Methods). The pathogens are associated
with a wide-range of host species including not only
humans, but also other animals, and plants [22]. Import-
antly, we acknowledge that a binary classification of
“pathogen” versus “non-pathogen” is an oversimplifica-
tion and may lead to biases based on taxon sampling
and human annotation. We also appreciate issues related
to pooling pathogens of multiple host species, which
may reduce the host-specificity of our predictions and
ability to make targeted predictions. Nevertheless, we
hypothesized that comparative analysis of our pathogen
vs. non-pathogen dataset could facilitate detection of
protein domain families with an increased tendency to
be involved in virulence-related interactions.
For each Pfam domain, we calculated its statistical

overrepresentation in pathogen proteomes using a
hypergeometric test (see Fig. 1a). To account for
proteome-specific duplications, which could bias the en-
richment statistic, only binary presence/absence of the
domain in a proteome was assessed. We identified 2007
significantly enriched (padj < 0.05) domains (including
517 DUFs), in the pathogenic set, out of 11,299 domains
present in bacterial proteomes (Fig. 1a). Among
pathogen-associated domains, DUFs were slightly
enriched (1.16-fold, p = 4.4 × 10− 4). As expected, patho-
genic lineages such as the Enterobacteriaceae had the
highest frequency of pathogen-associated domains per
proteome (Figure S1). Also, consistent with expectation,
the GO term “pathogenesis” was significantly overrepre-
sented in this set of Pfam domains (2.67-fold above
background frequency in Pfam database, p = 1.50 ×
10− 6). Among the top-scoring pathogen-associated Pfam
families are numerous domains from known toxins and
virulence factors (Table S1). For example, three of the
four domains within the botulinum neurotoxin protein
(Toxin_trans, Peptidase_M27, Toxin_R_Bind_N), a
protein family previously thought to be restricted to
Clostridium but recently demonstrated to be more
broadly distributed [23–25], occurs in the top 20
pathogen-associated Pfam families (Table S1).

We also examined the degree to which pathogen-
associated domain families represent known virulence
factors based on existing virulence factor databases. 29 %
of the proteins in the VFDB [2] and 32 % of the proteins
in the Victors virulence factors database [26] contain at
least one pathogen-enriched domain (Table S2). This
coverage increased to 60 % when looking at proteins
classified as “toxins” in the VFDB and 44 % for proteins
with functions in “biofilm formation” (Table S2). This
likely reflects the fact that current virulence factor data-
bases include many non-specific proteins that contribute
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to but are not exclusively associated with virulence (e.g.,
common flagellar proteins, metabolic enzymes, and
regulatory proteins).

Incorporating taxonomic information enhances virulence-
domain detection
Among the top-scoring predictions were many domains
that were exclusive to one species or lineage of bacteria
(e.g., Mycoplasma-specific domain families) (Table S1).

To identify pathogen-associated domains that were more
broadly distributed, we applied a lineage-specificity score
(F1) metric [27] (see Methods) to filter taxonomically re-
stricted domains. Combining pathogen-association and
lineage-specificity scores together resulted in a signifi-
cant increase in our ability to distinguish domains with
the GO term “pathogenesis”. Particularly, domains not
restricted to a particular lineage (F1 scores < 30) were 9-
fold enriched in “pathogenesis” compared to domains

Fig. 1 Scatterplots of Pfam domain pathogen-association. a Pfam domain presence in pathogen versus non-pathogen proteomes, with
significant pathogen-associated patterns shown. Only domains present in > = 5 pathogens were included. b Trends in pathogenesis GO term
annotation shown with respect to enrichment in pathogen proteomes and a measure of lineage specificity, the F1 score. The horizontal dotted
line is at log10(0.05), showing the pathogen-association threshold. The vertical dotted line is at an F1 score of 30
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with higher F1 scores (Fig. 1b). This is consistent with
the idea that many pathogen-associated protein families
(i.e. virulence factors) tend to undergo horizontal gene
transfer and therefore may be less likely to exhibit high
lineage-specificity [28]. This also illustrates the utility of
combining lineage information and pathogen-association
for virulence factor discovery. The top-scoring domains
according to this combined criteria include IPT,
DUF386, DUF2779. The IPT domain family encodes
Isopentenyltransferases, which produce plant cytokinin,
and are found both in plant pathogenic bacteria, plant-
growth promoting bacteria, and plants [29]. The
DUF386 domain family has been implicated in regulation
of biofilm formation and sialic acid catabolism [30, 31].
DUF2779 is of unknown function but is a member of the
Ribonuclease H (RNase_H) clan in Pfam.
A subset of virulence factors modulates or disrupts

host function by “mimicry” of eukaryotic proteins [17,
32, 33]. To identify candidate virulence factors with
eukaryotic-like domains, we intersected the set of bacter-
ial pathogen-associated domains with domains identified
as being most common in eukaryotes. The following
“eukaryotic-like” domains were identified as overrepre-
sented in pathogens: 7TM_GPCR_Sri, BRICHOS, Cho-
line_kinase, Cystatin, Cytadhesin_P30, DIT1_PvcA,
DNA_pol_B, DNA_pol_B_exo1, DUF1479, DUF1726,
DUF1729, DUF3827, DUF762, Dynein_heavy, Ecl1, Ehr-
lichia_rpt, Elongin_A, EMP24_GP25L, Erp_C, F-box, F-
box-like, GDA1_CD39, GNAT_acetyltr_2, Helicase_
RecD, His_Phos_2, HMG_CoA_synt_C, HMG_CoA_
synt_N, IES5, Latrotoxin_C, LMP, Methyltransf_10,
MRG, MyTH4, Octapeptide, P_C10, P16-Arc, PAM2,
PBC, PC4, Peptidase_M16_M, PhoLip_ATPase_C, Pro-
teasom_PSMB, PTPlike_phytase, Rad33, RasGEF, SAT,
Secs. 7, YMF19, and zf-Nse. Among the identified pro-
teins are known examples of molecular mimicry by bac-
terial pathogens including the RalF virulence factor of
Legionella which mimics host Sec7 guanine exchange
factors (GEFs) (PF01369) [17]. Additional Legionella se-
creted effectors, such as a protein family containing a
eukaryotic RAS-GEF domain (PF00617), are also in-
cluded in this list. Other interesting predictions include
the Latrotoxin_C domain (PF15658) found in the black
widow spider insecticidal latrotoxin, but also present in
Wolbachia species. Each of these cases implies an ances-
tral horizontal gene transfer event from a eukaryotic
species to bacteria.

Incorporating metagenomic information reveals
pathogenic functions in the human gut microbiome
To further focus our predictions toward domains with
potential human specificity, we examined domain family
abundance in human gut metagenomes and compared it
to that in soil and marine metagenomes (Data S2, S3).

Using a stringent q-value threshold of 1 × 10− 15, we
identified a set of 2061 domains with significant enrich-
ment in the human gut. Additionally, we identified 1050
in soil, and 1246 in marine systems (see heatmap in
Fig. 2a). Among the set of 4357 environment-associated
families, 1056 (24.2 %) were DUFs. DUFs were most
strongly enriched in human gut associated families (1.20
fold, p = 1.37 × 10− 5), followed by soil-associated families
(1.13-fold, p = 0.016), and were underrepresented in
marine-associated families (0.82 fold, p = 3.0 × 10− 4).
Example DUFs with extreme environmental specificity
are shown in Fig. 2b and top-scoring Pfam and DUF
families are listed in Tables S3 and S4.
The top enriched GO terms for human-gut associated

protein families included the phosphoenolpyruvate-
dependent sugar phosphotransferase system, O-glycosyl
hydrolase activity, and carbohydrate metabolic process
(Table S5). Also, among the top human-gut enriched do-
mains are domains with known roles in host adhesion/
colonization and gut microbial metabolism (Table S5). Both
characterized and uncharacterized (DUF) domains are found
within this list. For example, DUF4906 (PF16249; ranked #1)
appears to be a homolog of the fimbrial proteins Mfa2
(PF08842) and P_gingi_FimA (PF06321), known to be in-
volved in cell adhesion. Fimbrillin_C (PF15495; ranked #11)
is also associated with P_gingi_FimA. These domain families
appear to be members of a broader superfamily of fimbrial
proteins [13] in the human gut microbiome, and may be re-
sponsible for cell adhesion to the human gut epithelium.
The identification of the carbohydrate-binding module
CBM32 (PF18344; ranked in top 10) also makes sense from
the perspective of microbial carbohydrate metabolism in the
human gut. Finally, the identification of Maff2 (PF12750)
within the top 10 domains also agrees with previous litera-
ture since this protein family is associated with tetracycline
resistance cassettes that are extremely abundant in the hu-
man gut microbiome [34].

To identify candidate human gut virulence factors, we
intersected the list of pathogen-associated domain families
with domain families more enriched in the human gut
microbiome than other environments (Data S3). The top 20
of these are listed in Table S6. We observed a striking
enrichment of known virulence factors in these predictions
with numerous DUF families interspersed (Table S6, Data
S3). Families identified by this analysis include the LcrG fam-
ily (PF07216), which encode a component of the Yersinia
yop operon for secretion of virulence factors, BNR_3
(PF13859; bacterial neuraminidase repeat-like domain),
HrpB7 (PF09486; type III secretion effector), Glyco_transf_
52 (PF07922) which produces lipooligosaccharide (a patho-
genicity determinant), the toxin family Thiol_cytolysin
(PF01289), and the virulence factor Pertactin (PF03212).
BNR_3 is a domain family that includes trans sialidases from
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the parasitic protist Trypanosoma cruzi (trans-sialidase;
TcTS) and other Trypanosoma spp., as well as sialidases
from human gut bacteria including Prevotella spp. and
Bacteroides spp. Sialidases allow pathogenic bacteria and
commensals to release free sialic acids in the gut as a nutri-
ent source, and sialic acid catabolism has been demonstrated
to promote the growth of gut pathogens (e.g., E. coli) and
drive intestinal inflammation and dysbiosis [35].
DUFs within the list of pathogen-enriched and gut-

enriched domains include DUF2492 (PF10678),
DUF1430 (PF07242), and DUF3173 (PF11372). Based on
InterPro descriptions for entries IPR019620 and
IPR006541, DUF2492 appears to be a metal binding sul-
fatase and may play a role in sulfated mucin metabolism.
DUF1430 appears to be a transporter and occurs in nu-
merous pathogens including C. difficile, Enterococcus,
and S. pneumoniae. DUF3173 (PF11372) is largely re-
stricted to Firmicutes including numerous pathogens,
and appears to be conserved near phage integrase genes.
DUF families identified by this analysis are of particular
relevance and we suggest should be prioritized for func-
tional characterization in the context of human gut
pathogenesis.

PathFams: an online database for exploration of
pathogen-associated domain families
In order to provide these analyses to the community, we
constructed an online database (pathfams.uwaterloo.ca)
which facilitates interactive exploration of all Pfam

domain families. Included are measures of abundance
and taxonomic breadth, as well as indicators of struc-
tural determination feasibility (see Methods). As an ex-
ample demonstrating the use of our database, Fig. 3
illustrates the PathFams page for Pfam family LcrG
(PF07216) described earlier. A summary panel provides
an overview of LcrG’s scores according to overall abun-
dance, lineage-specificity, environmental association, and
pathogen-association. This family is significantly
enriched in the human gut metagenome, is significantly
pathogen-associated, is non-lineage-specific and thus
distributed across taxa, and is relatively low in abun-
dance. PathFams also reports the top co-occurring Pfam
domain families based on the PhyloCorrelate algorithm
[36]. These include a variety of type III secretion system
domains (#1 rank is LcrV), which is consistent with the
known role of LcrG as a type III secretion system com-
ponent [37].

PathFams also allows the user to query the database
with a protein sequence of interest. A submitted protein
sequence will then be scanned against all Pfam models
in the VirFam DB using either a “strict-mode” or “sensi-
tive-mode”, and the predicted domain architectures will
be visualized along with the pathogen-association scores
for each identified domain (Fig. 4). Domains of interest
can be explored further through links to their individual
PathFams domain pages. Figure 4 shows example predic-
tions for four recently discovered virulence factors.

Fig. 2 Detected Pfam families with strong environmental associations. a Abundance heatmap of Pfam families with significant environmental-
specificity scores (padj < 1 × 10− 15). The adjusted family size was calculated as the logarithm of the normalized adjusted family size (base 10),
scaled across the domain values. The red lines on the right-side of the plot denote DUF rows. b Selected DUF families with strong environment-
specificity scores. Plotted are the per-sample distributions of normalized adjusted family size in three environments: human gut, marine, and soil
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Despite occurring outside of the Clostridium taxonomic
lineage, a botulinum neurotoxin (BoNT) like protein was
identified in the gut commensal organism Enterococcus
faecium [25]. The PathFams prediction for this protein
identifies all four domains found in BoNT and also cor-
rectly reports them as being significantly pathogen-
associated. An additional BoNT-like protein called Cp1
was also recently discovered in Chryseobacterium piperi,
but this protein appears to possess structural differences
from BoNTs and displays cytotoxic versus neurotoxic
function [16]. The PathFams prediction for Cp1 is con-
sistent with this, since it is predicted to contain a BoNT-
like peptidase_M27 N-terminal domain that is highly
pathogen-associated, a diphtheria-like translocation do-
main which is also > 4-fold enriched in pathogens, and a
C-terminus composed of ricin-like repeats that are not
pathogen-associated and occur more broadly. As a third
example, a novel variant of bacterial flagellin called fla-
gellinolysin was recently discovered in the animal patho-
gen Clostridium haemolyticum as well as in diverse
bacterial taxa [38]. Flagellinolysin is unique from other
flagellins by possessing a central zinc-metalloproteinase
domain, which in C. haemolyticum provides flagellar

filaments with proteolytic activity against extracellular
host substrates [38]. Consistent with this, the PathFams
prediction for flagellinolysin reveals a domain architec-
ture including standard N- and C-terminal flagellin with
no pathogen-association, but also detects a central
collagenase-like (M9) protease domain that is predicted
to be significantly (> 2-fold) enriched in pathogens. As a
final example, recent work has shown that the large clos-
tridial toxins from Clostridium difficile (TcdA and TcdB)
are highly abundant outside of the Clostridium difficile
lineage [39]. These TcdA/B-like proteins represent can-
didate virulence factors. Shown in Fig. 4 is the PathFams
prediction for one of these proteins from the opportun-
istic pathogen Serratia marascens, which is currently an-
notated in the NCBI database as a “hypothetical protein”
(NCBI accession WP_073532240.1). Three domains
common to TcdA and TcdB are predicted within this
protein, all of which are pathogen-associated. As S. mar-
ascens is an insect pathogen and the top homologs of
this protein according to BLAST occur in insect patho-
genic Photorhabdus spp., we suggest that protein is likely
an insecticidal toxin. We anticipate that, similar to these
cases, other candidate virulence factors may be identified

Fig. 3 Screenshot of the domain info page from PathFams for the LcrG Pfam family (PF07216)
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using PathFams tool by assessing domain architectures
of uncharacterized proteins and identifying those that
show significant pathogen associations.

Conclusions
In this work, we analyzed all 17,929 protein domain fam-
ilies in the Pfam v32.0 database in order to rank them
based on several biological criteria. We were able to
identify significant lineage, pathogen, and/or environ-
ment associations for 1675 out of 4049 (41 %) of all
DUFs. These associations provide a biological context
from which uncharacterized domain families (DUFs) can
be prioritized for future virulence factor studies. In
addition, by combining different scores, it was possible
to identify Pfam families with specific phenotypic or
functional associations, such as candidate virulence fac-
tors in the human gut microbiome, as well as candidates

predicted to be feasible for structure determination.
PathFams provides a clear and interactive way to explore
this data, allowing users to assess the virulence factor
potential of a domain family and/or submitted protein.
Future work will update and expand our computational
analysis of the Pfam database to include new metadata
and phenotypic associations, and new domain families as
they continue to be uncovered through ongoing sequen-
cing efforts.

Methods
Pathogen association
354 proteomes in Pfam v32.0 were designated as bacter-
ial pathogens (Data S1) based on PATRIC (https://www.
patricbrc.org) [21] bacterial pathogens with metadata re-
lating them to disease and a manually curated set of
pathogens from Dhillon et al. [22]. Specifically, genera
containing “Pathogens” were identified under the

Fig. 4 Detection of pathogen-associated domains and domain architectures for four example proteins by the online PathFams resource.
Accession IDs are OTO22244.1 (Enterococcus faecium BoNT/En toxin), WP_034687872.1 (Chryseobacterium piperi Cp1 toxin), BAB87738.1 (Clostridium
haemolyticum flagellinolysin), and OKB66574.1 (Serratia marascens hypothetical protein). Sensitive mode with an E-value cut-off of 1 × 10− 7 was
used for all sequences except the C. piperi Cp1 toxin. For the C. piperi sequence, an E-value cut-off of 1 × 10− 3 was required to visualize the more
divergent ricin domains
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“Organisms” list within PATRIC, and genomes with
disease metadata were selected. These genomes as well
as the Dhillon et al. [22] set were then mapped to Pfam
proteomes based on species names. All other Pfam pro-
teomes that were not defined as a pathogen by PATRIC
or Dhillon et al. [22] were included in the “non-patho-
gen” category.
Enriched pathogenic domains were detected with the

hypergeometric test (phyper in R) based on the number
of pathogenic proteomes in Pfam where the domain is
present, compared to non-pathogenic bacterial
proteomes in Pfam where the domain is present. The p-
values were FDR corrected with p.adjust using the
Benjamini-Hochberg model. The enrichment of DUFs in
pathogen-associated domains was calculated in the same
way as with the environment-associated domain set. For
this paper, Pfam domains called UPF (uncharacterized
protein family) were also treated as DUFs. The fre-
quency of the pathogenesis GO term in domains identi-
fied as pathogen-associated and other Pfam domains
present in bacterial proteomes were compared with the
hypergeometric test (phyper in R). Eukaryotic-like do-
mains in bacterial pathogens were identified as being
most common in eukaryotic proteomes as well as
pathogen-associated (p-value < 0.05) or with hits in bac-
terial pathogens but without hits in non-pathogen pro-
teomes. We expanded past the pathogen-associated
domain set in this case, to capture domains present in a
low number of proteomes (which meant they weren’t
statistically significant) that seemed like promising
“mimicry” candidates.
In order to examine domain prevalence in virulence factor

databases, the Victors [26] protein sequences and the protein
sequences from VFDB’s full dataset [2] were downloaded
from their websites (http://www.phidias.us/victors/
downloads/gen_downloads_protein.php and http://www.
mgc.ac.cn/VFs/Down/VFDB_setB_pro.fas.gz, respectively on
Jul. 28, 2021). These proteins were annotated with PfamScan
(version updated on Feb. 28, 2017; default settings) using
HMMER3 v.3.1b2 [40] against the Pfam database v32.0. The
“Intra-genera VFs comparison tables” (http://www.mgc.ac.
cn/VFs/Down/Comparative_tables_from_VFDB.tar.gz) were
used to extract the virulence factor category (e.g. “toxin” or
“adherence”) to gene mapping. The prevalence of proteins
with at least one pathogen-enriched domain (as determined
previously) was calculated in the two different virulence
factor databases, and within various virulence factor categor-
ies from VFDB.

Lineage association
The taxonomy ID and taxonomic lineage of proteomes
with Pfam domain matches were extracted, respectively,
from PfamA_ncbi.txt.gz and taxonomy.txt.gz at Pfam’s
ftp server (Pfam v.32.0; retrieved Oct. 16, 2018). We

calculated the sensitivity and precision of the Pfam
domain distribution across the NCBI taxonomy system
using these taxonomy ids and taxonomic lineages. The
total number of proteomes within any one taxonomic
group is based on the taxonomy ids in the PfamA_
ncbi.txt file. These scores were calculated for the most
common taxon (presence/absence counts of a domain
hit per proteome) in each domain family at the Super-
kingdom, Kingdom, Phylum, Class, Order, Family, and
Genus taxonomic levels. The best taxonomic level to de-
scribe a domain’s lineage specificity was chosen based
on the F1 score: 2*(sensitivity*precision)/(sensitivity +
precision). In the case of a tie between taxonomic levels,
the higher level in the taxonomic hierarchy (i.e. Super-
kingdom) was given preference. If the majority of pro-
teomes that the domain was present in did not have any
classification at a certain taxonomic level, this taxonomic
level would not be considered for “best taxonomic level.”
The enrichment of DUFs in extreme lineage-specific
cases was determined in the same way as with the
environmental-associated domain set.

Environmental association
Metagenomic assemblies and raw reads were taken from
public repositories (Data S2). No samples smaller than
1,000,000 bp were used. The raw reads from the human
gut studies [41, 42] were processed and assembled with
the following procedure. Any read that aligned to the
human genome (GCA_000306695.2) with Bowtie 2
(v2.2.9) [43] default settings was removed (along with its
pair). Quality trimming was performed by sickle v1.33.
The reads were assembled with Megahit v1.0.6-3-
gfb1e59b [44] with default settings. The raw reads from
the Global Ocean Sampling study [45] were not assem-
bled as the reads, which were sequenced with a modified
form of Sanger sequencing, were already quite long.
FragGeneScan v1.30 [46] was used to detect coding se-
quences (CDSs) in the samples. To remove any puta-
tively spurious CDSs, any CDS with greater than 40 %
repetitive sequence, detected by segmasker from the
BLAST package v2.2.28+, was removed. Annotation with
PfamScan (version updated on Feb. 28, 2017; using de-
fault settings) using HMMER3 v.3.1b2 [40] against the
Pfam database v32.0 with a threshold of 1 × 10− 3 was
performed on the remaining sequences. The annotated
region of each metagenomic sequence (aligned with a
Pfam domain) was clustered with CD-HIT v4.6.8 [47] to
99 % similarity for each sample within each set of do-
main matches. This removed redundant domain matches
to give a measure of adjusted family size of the domain
families for each sample. To normalize to sample size,
the adjusted family member count was divided by the
number of base pairs in the assembly and multiplied by
1,000,000. A ratio of samples across each human gut
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study analyzed was chosen to maximize regional diver-
sity while making the sample size in each environment
more comparable. We used all 14 healthy samples from
the Spanish cohort [48], and then randomly selected 34,
16, and 16 healthy samples from the Danish cohort [48],
the Chinese cohort originating from Peking University
Shenzhen Hospital, Shenzhen Second People’s Hospital
and Medical Research Center of Guangdong General
Hospital [41], and the Chinese cohort originating from
the First Affiliated Hospital of Zhejiang University [42],
respectively (see Data S2). However, in per-domain fig-
ures all human gut samples have been added back in for
visual comparison. Domains not present in greater than
95 % of the selected samples were excluded. Domains
where at least one environment (soil, marine or human
gut) showed significant differences based on the normal-
ized adjusted family size were determined with the
Kruskal-Wallis test. p-values were adjusted with p.adjust
using the Benjamini-Hochberg model. The logarithm of
the normalized adjusted family size (base 10) and the
subsequent scaling across the domain hits (scale) was
done in R v3.3.3 for the heatmap. Enrichment of DUFs
in the environment-associated domain sets compared to
the background frequency of DUFs in Pfam was tested
using the binomial test (pbinom in R). To determine GO
term enrichment within the environment-associated do-
main sets, a Pfam to GO term map was retrieved from
http://geneontology.org/external2go/Pfam2go (last up-
dated February 12, 2019). The frequency of GO terms in
domains associated with one of the three environments
(soil, marine and human gut) and the frequency of GO
terms corresponding to other Pfam domains present in
at least 5 % of the selected samples were compared with
the hypergeometric test (phyper in R), with p-values
again adjusted with the Benjamini-Hochberg model.

Abundance and taxonomic breadth
The NCBI sequence database domain alignments were
sourced from.www.ftp.ebi.ac.uk/pub/databases/Pfam/
current_release/Pfam-A.full.ncbi (Pfam v.32.0; retrieved
Feb. 9, 2019). The proteins that were aligned to Pfam
domains and the total number of hits were taken from
this file. An environmental average of the normalized
adjusted family size for each domain (see Environmental
association section of Methods) present in at least 5 % of
the selected samples used to determine environment-
association was calculated for Data S3. For taxonomic
breadth, the proteomes with domain hits, their tax-
onomy ids and taxonomic lineages were used (see the
Lineage specificity section in Methods). The percentage
of species where each domain is present, and the corre-
sponding percentage for the Genus, Family, Order, Class,
Phylum, Kingdom and Superkingdom taxonomic levels
are included in Data S3. Spearman rank correlations

between the different abundance measures (percentage
of species, environmental average, and protein hits in
NCBI) were calculated with the corr function in R
v3.3.3. Using the above data, we calculated three abun-
dance metrics: NNCBI, the number of protein family
members in the NCBI sequence database; Nspecies, the
percentage of species containing the domain family in
the Pfam proteome collection; and Nmeta, the number of
non-redundant matches in a diverse dataset of
metagenomes.

Additional filters
All data was taken from Pfam v.32.0 (files retrieved on
Oct.16, 2018). A list of Pfam families with PDB struc-
tures was taken from.
www.ftp.ebi.ac.uk/pub/databases/Pfam/current_

release/database_files/pdb_PfamA_reg.txt. Domain ar-
chitectures were sourced from.
www.ftp.ebi.ac.uk/pub/databases/Pfam/current_

release/database_files/architecture.txt.
Predicted transmembrane and disordered regions in

sequences with Pfam domain alignments were retrieved
from.
www.ftp.ebi.ac.uk/pub/databases/Pfam/current_

release/database_files/other_reg.txt. Overlap of predicted
transmembrane or disordered regions with an annotated
domain was evaluated by comparing to www.ftp.ebi.ac.
uk/pub/databases/Pfam/current_release/Pfam-A.regions.
uniprot.tsv. The standard deviation for domain family
percentage disorder was calculated using std from the
NumPy package v1.16.1. Domains that were prioritized
for structural feasibility had no representatives in the
PDB, an average across the domain family members of
less than 10 % of the domain sequence predicted to be
disordered, less than 10 % of their members with a pre-
dicted transmembrane region (anywhere along the pro-
tein), and less than 10 % of their members with
transmembrane-domain overlap.
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The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-07982-8.
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