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Abstract

Rapid and consistent protein identification across large clinical cohorts is an important goal for 

clinical proteomics. With the development of data-independent technologies (DIA/SWATH-MS), 

it is now possible to analyze hundreds of samples with great reproducibility and quantitative 

accuracy. However, this technology benefits from empirically derived spectral libraries that define 

the detectable set of peptides and proteins. Here we apply a simple and accessible tip-based 

workflow for the generation of spectral libraries to provide a comprehensive overview on the 

plasma proteome in individuals with and without active tuberculosis (TB). To boost protein 

coverage, we utilized non-conventional proteases such as GluC and AspN together with the gold 

standard trypsin, identifying more than 30,000 peptides mapping to 3,309 proteins. Application 

of this library to quantify plasma proteome differences in TB infection recovered more than 400 

proteins in 50 minutes of MS-acquisition, including diagnostic Mycobacterium tuberculosis (Mtb) 
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proteins that have previously been detectable primarily by antibody-based assays and intracellular 

proteins not previously described to be in plasma.
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Introduction

Mass spectrometry-based proteomics is among the most promising technologies for 

biomarker discovery due to the ability to simultaneously detect thousands of proteins, 

post-translational modifications, and isoforms, all of which holds great potential as future 

biomarkers.1 This high throughput approach can lead to the identification of proteins that 

can be translated into simple, affordable, and non-invasive assays at the point-of-care for 

disease diagnosis and monitoring. For example, tuberculosis (TB) is a leading cause of 

mortality from an infectious disease globally for which diagnosis remains a key challenge. 

There is a critical need for rapid, low-cost, point-of-care assays but there are few promising 

biomarker2 targets for assay development. Proteomics offers the potential to address this 

challenge and facilitate advances in diagnostics development for TB and other diseases.

Plasma is easy to obtain and has been used for diagnosis of a variety of infectious 

diseases, such as AIDS,3 Hepatitis C4 and recently, Sars-CoV-2.5 The plasma proteome 

also represents a particularly challenging matrix to analyze due to the large dynamic range 

of protein concentrations spanning 10 orders of magnitude and the overwhelming presence 

of a select set of highly abundant proteins (e.g. albumin). Historically, this has limited both 

the number of proteins detected, as well as the reproducibility of detection. Several strategies 

have been employed to reduce the dynamic range of plasma samples, and correspondingly, 

increase protein dections, however they often require additional sample preparation steps 

that can be costly and low-throughput. For example, one common strategy to tackle 

this issue involves reducing the dynamic range by antibody-based depletion of abundant 
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proteins such as albumin, immunoglobulins and similar proteins which has been shown to 

improve identification rates in plasma proteomics.6,7 Alternatively, numerous studies have 

also successfully employed extensive off-line chromatographic fractionation, allowing for 

the injection of individual fractions of reduced complexity into the mass spectrometer. 

This approach has been highly successful to increase the number of proteins detectable 

in plasma,8,9 albeit at the cost of a correspondingly dramatic increase in MS acquisition 

time to analyze dozens of fractions. Furthermore, the reliance on off-line fractionation 

introduces a low-throughput and cumbersome additional step in sample preparation that is 

not accessible to many labs. On the other hand, tip-based fractionation, is an accessible 

method to increase the analysis depth by separating peptides based on their hydrophobicity 

and has been successfully applied together with isobaric labelling to increase throughput in 

proteomics applications.10 Reproducible protein quantification is also critical for biomarker 

discovery, as differences in the abundance of specific proteins can be used as a clinical 

marker. Regardless of the method of quantification employed, data-dependent acquisition 

(DDA)11 strategies suffer from stochastic precursor ion sampling, resulting in incomplete 

quantification, particularly with increased sample numbers.12 In contrast, data independent 

acquisition mass spectrometry approaches (DIA/SWATH-MS)13 sequentially sweep across 

m/z precursor isolation windows to acquire multiplexed tandem mass spectra irrespective 

of which peptides are being sampled. This results in highly complete and consistent 

quantification that readily scales for the analysis of hundreds or thousands of samples. 

While DIA offers great potential for plasma proteomics, most studies have been limited to 

measuring ≈ 300 proteins,14 partially due to the lack of comprehensive spectral libraries that 

are used to guide peptide identification and quantitative data extraction.

In this study we investigate the application of orthogonal proteases (trypsin, GluC, and 

AspN) to enhance sequence coverage,15,16 and allow for direct detection of Mtb proteins 

in DIA-MS. Here we offer a plasma proteomics spectral library in which we have utilized 

accessible tip-based fractionation (via high pH reversed-phase) and orthogonal proteases 

(trypsin, GluC, or Asp-N) to boost proteome sequence coverage, and combined this with a 

DIA-MS strategy to reproducibly quantify the differential regulation of the plasma proteome 

upon active TB infection.

Materials and Methods

Ethics

All plasma samples were obtained from patients from South Africa, all had symptoms 

concerning for TB, cough and, all completed a standard evaluation for TB including acid 

fast bacilli smear microscopy and mycobacterial culture. TB patients included in this 

analysis were smear and culture positive with drug-susceptible M. tuberculosis complex, 

and non-TB patients were defined as smear negative, culture negative, not treated for TB, 

and improved at follow-up. We utilized de-identified samples and data for this study. Ethical 

approval to collect and store plasma samples was obtained from the University of Cape 

Town (UCT) Human Research Ethics Committee.
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Sample-specific library generation

Plasma samples from 3 adults with (0 with HIV) and 3 adults without (0 with HIV) active 

pulmonary TB were used from the FIND specimen bank see Table S3 for details). The 

samples were inactivated by addition of 2x inactivation buffer (8M urea, 100mM ammonium 

bicarbonate, 150 mM NaCl) in a 1:1 v:v ratio, followed by addition of RNAse (NEB) to 

0.75μL/mL concentration. 10 μL of plasma from the individuals with active TB were pooled 

and depleted using the top12 most abundant depletion kit (Thermo-Fisher) according to 

manufacturer’s instructions. Following depletion, the samples were boiled at 90°C for 5 

minutes. Denatured proteins were reduced with 5 mM TCEP for 30 minutes at 56°C and 

then alkylated with 10 mM of chloroacetamide for 30 minutes at room temperature in the 

dark. The samples were then loaded into a Vivaspin 3 KDa Molecular Weight Cut-Off 

(MWCO) (Sartorius) and washed three times with 200 μL of LC-MS grade H2O. Samples 

were resuspended in 100 μL of 50 mM ammonium bicarbonate and then subjected to 

proteolysis using either 2 μg of trypsin (Promega), 2 μg of AspN (Promega), or 2 μg of GluC 

(Sigma-Aldrich) for 14 hours at 37°C on a shaker at 1000 rpm. Peptides were collected 

by centrifugation (8000 g for 30 minutes) and the filters were washed once with 100 μL 

of ddH2O. To perform high-pH reveresed-phase fractionation, the samples were acidified 

to 0.1% TFA final concentration. C18 spin columns (Nest group) were activated with 1 

column volume of ACN and equilibrated with two column volumes of 0.1% TFA. Peptides 

were bound to the column and washed twice with 0.1% TFA. For elution, 7 solutions were 

used with increasing concentration of ACN in 0.1% triethylamine from 2.5% to 20% and 

following the last elution the column was washed twice with 1 column volume of 50% ACN 

(see Table S1). The elution was done at pH ≈ 10. Fractions were dried under vacuum and 

resuspended in 15 μL buffer A (0.1% FA in LC-MS grade H2O) and approximately 500 ng 

were subjected to proteomic analysis.

In plate sample processing for Mtb positive and negative samples

5 μL of plasma from individuals with and without TB diseases were inactivated following 

a similar procedure to the library generation and were separated into three samples (AspN, 

GluC, and Trypsin). Each samples was then loaded on a 96 well filter plate (Acroprep, 

PALL) with 3 KDa MWCO cutoff following a similar protocol to what we previously 

reported.17 Samples were washed twice with 200 μL of LC-MS grade H2O. 50 μL 

of TUA buffer (8M Urea, 5 mM TCEP, 25 mM ammonium bicarbonate) were addded 

and the samples were incubated on a thermo shaker at 37°C and 400 rpm for 1 hour. 

Chloroacetamide was added to 10 mM final concentration and samples were incubated at 

room temperature in the dark for 30 minutes. Buffer was removed by centrifugation at 1000 

RPM for 1 hr and samples were washed three times with 200 μL of LC-MS grade water 

and centrifuged to dryness. Proteins were resuspended in 50 μL of 25 mM ammonium 

bicarbonate. 2 μg of either trypsin, AspN, or GluC were added to each corresponding well 

and incubated on a shaker at 37°C for 14 hours. Peptides were recovered by centrifugation 

at 1000 rpm for 1 hour and plate was washed twice with 100 μL of LC-MS grade H2O. 

Peptides were transferred to low-binding tubes and the receiver plate was washed with 100 

μL of 80% ACN to increase recovery of hydrophobic peptides. Peptides were dried under 

vacuum and resuspended in 12 μL buffer A (0.1% FA in LC-MS grade H2O). 3 μL per tube 
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was pooled together and pooled sample was defined as orthogonal proteases (trypsin, GluC, 

or Asp-N) digested sample (MS pool). Approx 500 ng were analyzed by mass spectrometry.

DDA PASEF acquisition for spectral library generation

Approximately 500 ng for each of fraction were acquired on a Trapped Ion Mobility 

Spectrometry Time Of Flight (timsTOF) Pro mass spectrometer (Bruker) interfaced with 

a Thermo Easy-nLC 1200 (Thermo Fisher Scientific). The peptides were separated at a 

flow rate of 400 nL/min over a manually packed 15 cm long column containing 1.7 μm 

BEH beads (Waters) packed with a silica PicoTip™ Emitter (inner diameter 75 μm) (New 

Objective, Woburn, USA). Peptides were eluted from the column using a linear gradient 

from 2% to 32% buffer B (80% acetonitrile and 0.1% formic acid in LC-MS grade H2O) in 

Buffer A (0.1% formic acid in LC-MS grade H2O) in 70 minutes, buffer B was increased 

to 40% in 10 minutes and then the column was washed with 90% buffer B for 10 minutes 

resulting in gradient length of 90 minutes. The peptides were sprayed into the timsTOF Pro 

using a CaptiveSpray source (Bruker), with a end plate offset of 500 V, a dry temp of 200°C, 

and with the capillary voltage fixed at 1.6 kV. The mass spectrometer was operated in 

positive ion mode. For DDA acquisition the timsTOF Pro (Bruker) was operated in Parallel 

Acquisition SErial Fragmentation (PASEF) mode18 using Compass Hystar v5.1 and oTOF 

control v6.2. The mass range was set between 100-1700 m/z, with 10 PASEF scans between 

0.6 Vs/cm2 and 1.6 Vs/cm2. Accumulation time was set to 2 ms and ramp time was set 

to 100 ms. Fragmentation was triggered at 20,000 arbitrary units (a.u.) and peptides (up 

to charge 5) were fragmented using collisionally-induced dissociation (CID) with a spread 

between 20 eV and 59 eV.

DIA PASEF Acquisition

For DIA acquisition, approximately 500 ng were acquired on the same HPLC-MS setup 

previously described, and analyzed with either the 90 min gradient used for DDA analysis, 

or a shorter 50 minute gradient in which peptides were separated for 35 minutes using a 

linear gradient of buffer B (80 % acetonitrile and 0.1% formic acid in LC-MS grade H2O) 

from 5% to 33%, then buffer B was increased to 40% in 5 minutes and the column was 

washed at 90% for 10 minutes before the next run. The separation was done at 400 nL/min 
while the column wash was performed at a flow rate of 500 nL/min. Similar MS1 range, 

PASEF parameters, and fragmentation parameters were employed as described above for 

DDA. 12 DIA-PASEF scans were performed.19

Mass spectrometry data analysis

Sample-specific library generation—The AspN library and trypsin libraries were 

generated using Spectronaut.20 The samples were searched using Pulsar against a 

combined database encompassing the Mycobacterium Tubercolosis proteome (4081 entries, 

downloaded from Uniprot on the 12/02/21) and Homo Sapiens proteome (20,397 entries, 

downloaded on 07/01/21). The default BGS settings without iRT normalization were 

used. The GluC spectral library was generated using MS-Fragger.21 Briefly, the ‘SpecLib’ 

workflow was employed using default parameters. The number of missed cleavages 

was fixed to 2, using cysteine carbamydomethylation as fixed modification, N-terminal 

Fossati et al. Page 5

J Proteome Res. Author manuscript; available in PMC 2022 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acetylation and methionine oxidation as variable modifications. The GluC DDA-PASEF files 

were also searched against the combined human-Mtb database. Decoys were generated by 

pseudo-inversion as previously described.22 Both searches were performed with 1% FDR 

at peptide and protein level. EasyPQP (https://github.com/grosenberger/easypqp, commit 

#dfa4ead) was used to generate the aligned retention time using high confidence iRT 

(ciRT). The resulting library was then converted into a Spectronaut-compatible library 

using an in-house Python script. The final sample specific spectral assay combined data 

from all proteases and encompasses 765,411 assays from 30,400 peptides mapping to 

3309 protein groups (see Table S2). The spectral assay library has been deposited to 

the ProteomeXchange via the PRIDE23 partner repository with the dataset identifier 

PXD025671. To compute sequence coverage the protein coverage summarizer from the 

Pacific Northwest National Laboratory was used (https://github.com/PNNL-Comp-Mass­

Spec/protein-coverage-summarizer).

Data processing and analysis for DDA and DIA data—DIA data for each protease 

was searched independently for both 90 minutes and 50 minutes gradients using Spectronaut 

and the correspondent spectral library. The settings employed in Spectronaut were default 

BGS (iRT normalization kit off) and each file was exported at the peptide level. For protein 

inference the average top3 peptide intensities were used. The resulting protein level matrix 

was log2-transformed and the data was normalized using median-centering. For missing 

value imputation, a distribution-based strategy was employed. For each sample, we selected 

the lowest 10% of values and calculated standard deviation (σ) and mean (μ). We then 

generated a normal distribution having similar σ but downshifted mean by 1.8 × σ. Rational 

for this imputation strategy is that lack of peptide detection cannot be differentiated between 

precursor ion intensity being below the limit of detection (LOD) or true biological absence. 

By sampling intensities below the LOD (defined here as the lowest 10% of recorded values 

per MS-injection) we assume that all not-detected peptides are below the LOD of the 

instrument. Following normalization and imputation the log2FC was calculated as ratios of 

the average intensities between Mtb infected and not infected individuals in log space. P 
were calculated using a two-tailed Welch t-test and corrected for multiple testing using the 

Benjamini-Hochberg correction. The coefficient of variation was calculated on the non-log 

transformed data and defined as σ
μ .

For estimation of concentration for proteins detected in the spectral library, the 

concentration was downloaded from Human Protein Atlas24 (https://www.proteinatlas.org/

humanproteome/). Concentrations were converted to ng/L and a quadratically penalized 

general linear model (GAM) was used for regression using logged intensity and logged 

concentration values. To estimate the concentration of Mtb proteins, the combined library 

was subset to only Mtb peptides and imported into Skyline v 20.2.0.343 (https://skyline.ms/

project/home).25 Each transition was then exported for all spectral library DDA runs 

using its specific protease and fragment-level intensities. Transitions were summed up into 

peptides and then peptide intensities were average across proteases and fractions (in case 

of identification in multiple fractions) to obtain the overall protein intensity used for further 

concentration analysis. Interpolated value were used as is to estimate the concentration for 

the detected Mtb proteins and the rest of the identified proteins. Spectrums for ALKEGNER 
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and DGRAVLR peptide were annotated using the IPSA tool.26 For enrichment analysis, 

Enrichr27 was used (https://maayanlab.cloud/Enrichr/) and the corrected p was used for all 

plots.

All data analysis was performed in python v3.8.1 (https://www.python.org) using 

pandas v1.1.3 (https://pandas.pydata.org), numpy v1.19.2 (https://numpy.org),28 scikit-learn 

v0.23.2 (https://scikit-learn.org/stable/).29 Figures 2 ACD, 3 AB, 4 AB, 5 ABCD and 

Figures S 2,S 3,S 4 were generated in R version 4.0.3 (https://www.r-project.org), 

using ggplot2 v3.3.2 (https://ggplot2.tidyverse.org) and ggpubr v0.4.0 (https://github.com/

kassambara/ggpubr). Venn diagrams in Figures 2 and S1 were generated using 

matplotlib v3.3.2 (https://matplotlib.org) and matplotlib-venn v0.11.6 (https://github.com/

konstantint/matplotlib-venn). Figure 3 panel C and D were generated within the IPSA 

website. Workflow figure (Figure 1) and graphical table of content were created using 

BioRender.com.

Results

Comprehensive plasma proteome spectral library generation

To reduce the sample complexity and facilitate the detection of low abundant proteins upon 

proteomic analysis, we first performed a depletion of high abundant proteins (Figure 1) and 

then individual aliquots of the depleted plasma were digested using either trypsin, AspN, or 

GluC. Finally, we applied a reversed-phase tip-based fractionation scheme (see method for 

details) under basic pH (≈ 10) to generate orthogonal fractions and analyze each fraction in 

DDA-PASEF mode using a novel ion-mobility mass spectrometer.18 The resulting spectral 

library encompassed in total unique 30,400 peptides of which 20,567 are derived from the 

trypsin digested samples, 2,924 from the AspN, and 6,942 from the GluC (Figure 2A). 

These numbers translate into 3,308 protein groups being identified across all proteases 

(Table S2), with additional proteins being identified by digestion with either GluC or AspN 

(Figure 2B), possibly due to the generation of peptides more amenable for proteomics 

analysis.15,30 As expected, we observed an averaged increase in sequence coverage (7%) 

when combining AspN and GluC to the tryptic digested samples (Figure 2C). For 70% 

of the identified proteins we found annotation of their existence in plasma either in the 

Human Protein Atlas24 or Peptide Atlas,31 while 40% were found in both of these databases 

(Figure S1). Notably, these databases are a combination of several hundred experiments, 

while we recapitulated a large portion of the identified proteins within a less than a day of 

MS acquisition.

Proteins were detected across 8 orders of magnitude based on their reported concentrations 

from the Secretome Atlas,24 ranging from 0.003ng/mL (HUWE1) to > 8e5ng/mL (CP); 

showcasing the great sensitivity of the timsTOF Pro for detection of low abundance proteins 

(Figure 2D). We observed linearity between MS response and concentration (R2 = 0.88) over 

5 orders of magnitude, suggesting a great degree of quantitative accuracy, which is essential 

for large scale biomarker studies.
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Identification and quantification of Mtb proteins

Mycobacterium tuberculosis (Mtb) proteins have been challenging to detect in plasma due to 

their intrinsic low abundance, estimated to be in the picomolar range32 (around 0.5-5 ng/ml), 

and their possible clearance by the immune system in immunocompetent individuals. In our 

DDA library samples from immunocompetent patients, we detected 10 Mtb proteins (Figure 

3A) across all enzymes employed.

We proceeded to estimate the concentration of the Mtb proteins using generalized additive 

models (see Method for details). Among these proteins we identified those known to 

be secreted such as the tyrosine phosphatases PtpB33 for which we observed one of 

the lowest estimated concentrations among all TB proteins detected (≈ 6 − 7ng/mL). 

Interestingly, while the proteins expressed at the highest abundance in the infection site 

(lungs) are reported to be the component of the cholesterol metabolism and nitrogen 

processing pathways,34 we identified additional metabolic enzymes such as nrdB and 

mtcA2, potentially suggesting these proteins are secreted or more likely released after 

clearance of Mtb by immune cells. To further support the presence of mtcA2 in the 

analyzed plasma sample, we manually extracted all identified peptides using Skyline25 

for all proteases employed (Figure 3C and D). Comprehensive fragment coverage and the 

presence of two proteotypic peptides for this protein are observed, confirming its presence 

in our samples. Among the other proteins detected, we observed the transporter Rv2994 
which is an uncharacterized Mtb protein recently shown to be clinically valuable for Mtb 

serodiagnosis.35 Lastly, Rv2204c has also been shown to be a marker of active and latent 

Mtb infection.36,37

DIA analysis of orthogonal protease digested Mtb infected samples

DIA analysis of each protease sample individually resulted in the combined detection (in 
silico pool) of 14,665 peptides (636 proteins), the majority of which resulted from trypsin 

digestion (Figure 4A). Each sample was analyzed also both using a short (50 minutes) or a 

longer (90 min) chromatographic gradient. We found the number of proteins or peptide did 

not significantly increase with longer gradients (Figure 5A, Figure S2), highlighting the fast 

duty cycle of qTOF mass spectrometers.38

We also mixed samples from each protease into a single samples and performed DIA of 

these pooled samples (MS pool). Comparison of the MS-pooled sample to the in-silico 
generated one showed a recovery of 73% (10,572/14,465) at the peptide level compared to 

the in-silico pooled sample (as depicted in Figure 4A) albeit at a reduced number of proteins 

identified (489) compared to trypsin (581). We hypothesized this effect was dependent 

on the presence of several high-abundant peptides in each protease-digested sample, and 

that such pooling masked the detection of low abundance peptides due to an increase 

in the total fraction of the sample comprised of high abundance peptides. Indeed, when 

comparing the distribution of detected peptides in the MS-pooled sample to the in-silico 
pooled sample, we observed a decrease in identification of low-abundant peptide precursors 

in MS-pooled sample, with an increase in high-abundant peptides (Figure 4B), corroborating 

our hypothesis. Additionally, the MS-pooled DIA data showed great consistency in protein 

identification (Figure 5B) and quantitation, resulting in only 17% of incomplete features 
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(defined here as peptides not consistently identified across all samples), which outperforms 

the trypsin digested samples by ≈ 6% in the 50 minutes gradient and ≈ 20% in the 90 

minutes gradient. This consistency resulted in an average coefficient of variation (CV) of 

38% (Figure S3A) for the pooled data, approximately 8% less of the tryptic samples (p = 1.5 

× 10−5) and an overall lower number of missing values across samples (Figure S3B).

While statistically underpowered due the small number of samples analyzed, we identified 

34 proteins being enriched in the TB diagnosed samples compared to the control samples. 

Among the top dysregulated proteins we found several proteins which are known to be 

involved in TB pathology. For example, we observed elevated (Log2 fc = 2.97) Macrophage 

mannose receptor 1 (MRC1) protein which is a C-type lecitin responsible for recognition 

of bacterial infection.39 Additionally, we found the protein cluster of differentiation 163 

(CD163) increased upon active TB. This protein mediates the transition from monocyte to 

macrophages and has been previously reported to be of clinical relevance as a biomarker of 

treatment efficiency and overall diseases progression.40 Unsurprisingly, the majority of the 

upregulated proteins are part of inflammatory pathways (Figure 5D), which highlights the 

burden of the immune system in Mtb infected individuals. Gene-disease association analysis 

revealed the enriched proteins to be primarily associated with pneumonia (Figure S4). When 

analyzing the downregulated proteins, we observed several immunoglobulins having lower 

abundance in our TB cohort compared to the healthy controls. Interestingly, this has also 

been observed in another proteomics study.9 Overall our analysis recapitulates previous 

findings and showcases the applicability of DIA and orthogonal protease digestion for robust 

analysis of clinical samples.

Discussion

Clinical proteomics play an important role in understanding the pathogenesis of human 

disease and identifying new biomarkers for diagnosis and treatment monitoring. As plasma 

is easy to obtain and commonly used in diagnostic testing, we developed a novel protocol 

that utilizes orthogonal proteases coupled with DIA-MS to improve dynamic range, protein 

coverage, and quantification. While mass spectrometry has not been routinely used in 

large scale clinical trials and biomarker discovery cohorts, it has the potential to be a key 

technology for robust protein detection and quantification in a variety of clinical settings. 

We have demonstrated its utility in TB disease, which triggers a large host response and 

creates a complex plasma sample that can challenge standard mass spectrometry approaches. 

From a biological perspective, our results recapitulate several previous transcriptomic and 

proteomic analyses from TB patient samples, such as the upregulation in inflammatory 

pathway components reported to be specific for TB disease.41 The sensitivity of our methods 

enabled the recovery of nearly half of the previously reported plasma proteins within 

a single fractionation experiment and resulted in the identification and quantification of 

diagnostic Mtb proteins in plasma, which were previously accessible primarily by antibody­

based assays. Interestingly, this included the detection of intracellular Mtb proteins not 

expected to be secreted and suggests the intriguing hypothesis that, even before treatment, 

a fraction of Mtb is cleared and the proteins are released in the circulation. The recent 

discovery of several mechanisms by which the pathogen releases extracellular vesicles42 

(EVs) could also provide an explanation for our observation. While none of the Mtb proteins 
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detected here have been reported in Mtb vesicles,43 EVs composition is known to vary44 

thereby more work is needed to highlight the compositional heterogeneity of Mtb vesicles. 

Thus, these findings highlight the need for unbiased analysis of biofluids to gain insights 

into TB biology. The rapid development of DIA-MS shows great potential towards biofluid 

analysis, however previous studies were limited in the number of proteins identified due the 

lack of comprehensive spectral assay libraries. Here we shown the use of non-conventional 

proteases, combined with DIA-MS, to increase coverage of the plasma proteome. The 

combination of orthogonal proteases within a single sample improved identification and 

quantification robustness, which are key features for technologies currently applied in 

modern diagnostic (PCR, NGS, etc). While we observed a slight decrease in protein 

identifications upon pooling proteases in DIA analysis, the proteins additionally identified 

by trypsin were not consistently found across samples and are thus unlikely to have potential 

clinical utility.

Altogether, we showcase the applicability of library-based DIA-MS for plasma proteomics 

for consistent recovery of hundreds of proteins with a great degree of quantitative accuracy. 

We anticipate our spectral library can serve as a useful base for future biomarker studies 

utilizing the timsTOF Pro, or complemented with additional assays to increase proteome 

coverage. While our approach showed improvements over previous methods, a limitation 

is that current tools for DIA analysis, and more broadly DIA acquisition, have been 

developed specifically for tryptic digests. Thereby it is conceivable to develop ad-hoc DIA 

windows schemes which exploit differences between proteases (e.g. z, m/z, etc.) to more 

comprehensively sample the precursor space while reaching an optimal duty cycle. Further 

advances in software could also include FDR models trained on non-tryptic sets or novel 

decoy-generation methods may also significantly improve the number of peptides which 

are possible to extract from DIA data using alternatives proteases. Looking forward, the 

application of alternative proteases could be beneficial to perform deep proteomic profiling 

of clinical specimen and to increase the confidence in identified proteins in large clinical 

cohorts.

Conclusions

We used digested plasma from different proteases and acquired them in DIA-MS using 

a library derived from a tip-based fractionated representative plasma sample. We showed 

increased sequence coverage, robustness, and reduced missing values for the combination of 

AspN, GluC, and trypsin compared to a standalone tryptic digested sample.

Data and materials availability:

All raw MS data files, search results and individual spectral libraries are available from the 

Pride partner ProteomeXchange repository under the PXD025671 identifier

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the experimental workflow employed.
Graphical representation of the workflow in which plasma is first depleted of high­

abundance proteins, digested using either AspN, GluC, or Tryspin, and then individually 

separated by tip-based high-pH reverse phase fractionation. The resulting fractions are 

used to generate protease-specific sample libraries by DDA-PASEF(A). Lastly, un-depleted 

plasma samples digested with the same three proteases are analyzed using DIA-PASEF 

either individually, or as mixture (1:1:1) the three proteases for a give sample (MS pool). All 

DIA experiments utilize the aforementioned spectral library (B).
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Figure 2. Description of the plasma spectral library derived from the combination of orthogonal 
proteases.
A Barplot showing the number of peptides for each protease (AspN, GluC, Trypsin) and 

their combination. B Venn diagram showing the overlap of identified proteins for each 

protease. C 2D scatterplot illustrating the increase in sequence coverage by combined 

results from ApsN, GluC, and trypsin (Y axis) compared to only trypsin digestion (X axis). 

Each dots represents an individual protein. Color represents the percentage of increase 

in sequence coverage. D 2D scatterplot showing the estimated protein concentration from 

Human Protein Atlas24 on the X-axis and the MS response on the y axis.
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Figure 3. Coverage of Mtb proteins using orthogonal proteases.
A Barplot showing recovery of Mtb proteins in the pooled spectral library. B Mirror plot 

showing the extrapolated concentration for TB proteins (black dots) versus the reference 

concentrations from the Human Protein Atlas (blue density) and the extrapolated intensity 

for the remaining proteins in the spectral library (red density). C, D Annotated MS2 

spectrum for two proteotypic mtcA2 peptides identified using Trypsin (C) or AspN (D).
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Figure 4. Comparison between in-silico pooled samples and MS acquired pooled samples.
A Cumulative number of identified proteins and peptides from all proteases (in silico pooled 

samples), MS acquired pool, or trypsin only samples. B Density plot for peptide intensities.
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Figure 5. Differential analysis of Mtb infected samples using DIA-MS.
A. Boxplot showing the number identified peptides by trypsin and the MS pooled sample 

using 50 and 90 minutes chromatographic gradients. Box represents the interquantile range 

(IQR) and its whiskers 1.5×IQR. Each dot represents one individual sample. P value 

represents the results of a paired Student t-test. B. Lineplot illustrating the number of 

missing values expressed as percentage of not consistently detected precursor ions using 

trypsin and the pooled sample. Color represents an enzyme and a specific gradient length 

(50 or 90), while samples are shown as black dots. C. Volcano plot for MS pooled data. X 

axis represent the log2 fold change. Y axis represents the negative log10 of the BH-adjusted 

p-value. D. Barplot showing the enriched GO terms for upregulated proteins. Bar represents 

the significance on the log scale from an hypergeometric test.
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