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Background.  The protozoan parasites in the Cryptosporidium genus cause both acute diarrheal disease and subclinical (ie, 
nondiarrheal) disease. It is unclear if the microbiota can influence the manifestation of diarrhea during a Cryptosporidium infection.

Methods.  To characterize the role of the gut microbiota in diarrheal cryptosporidiosis, the microbiome composition of both 
diarrheal and surveillance Cryptosporidium-positive fecal samples from 72 infants was evaluated using 16S ribosomal RNA gene 
sequencing. Additionally, the microbiome composition prior to infection was examined to test whether a preexisting microbiome 
profile could influence the Cryptosporidium infection phenotype.

Results.  Fecal microbiome composition was associated with diarrheal symptoms at 2 timepoints. Megasphaera was signifi-
cantly less abundant in diarrheal samples compared with subclinical samples at the time of Cryptosporidium detection (log2 [fold 
change] = –4.3; P = 10–10) and prior to infection (log2 [fold change] = –2.0; P = 10–4); this assigned sequence variant was detected in 
8 children who had diarrhea and 30 children without diarrhea. Random forest classification also identified Megasphaera abundance 
in the pre- and postexposure microbiota as predictive of a subclinical infection.

Conclusions.  Microbiome composition broadly, and specifically low Megasphaera abundance, was associated with diarrheal 
symptoms prior to and at the time of Cryptosporidium detection. This observation suggests that the gut microenvironment may play 
a role in determining the severity of a Cryptosporidium
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Protozoan parasites in the Cryptosporidium genus cause both 
acute diarrhea and subclinical (ie, nondiarrheal) disease, and 
both clinical outcomes are associated with poor physical and 
neurocognitive growth in infants [1–6]. These parasites are the 
fifth leading cause of diarrhea in young children [7], and recent 
studies have estimated the global burden of Cryptosporidium 
diarrhea mortality to be as high as 50 000 deaths annually [8]. 
This burden is disproportionately borne by young children [9]. 
Importantly, no therapies exist to treat Cryptosporidium infec-
tion in children or immunocompromised individuals [10]. Thus, 
there is a pressing need to prevent cryptosporidiosis mortality.

Understanding the difference in the host, parasite, and envi-
ronment during acute diarrheal and subclinical infections may 
reveal new therapeutic solutions. Human polymorphisms are 

associated with an increased host susceptibility to cryptospor-
idiosis; however, these mutations do not completely explain 
the differences in infection outcomes [11, 12]. Parasite genetics 
(within and across species) have been associated with differ-
ences in their host range [13–16]. The role of the microbiome 
upon infection by Cryptosporidium has been examined in 
healthy adults [17] and animals [18, 19]; however, its role 
in differentiating diarrheal and subclinical infections is not 
known, nor is the impact of any differences in the microbiome 
composition occurring during infant cryptosporidiosis.

Here, we interrogate the association between diarrheal 
status during cryptosporidiosis and a child’s microbiome using 
fecal samples from infants living in Mirpur and Mirzapur, 
Bangladesh. In Mirpur, Cryptosporidium diarrhea was fre-
quent (24% of infections); detected Cryptosporidium species 
included Cryptosporidium hominis, Cryptosporidium parvum, 
and Cryptosporidium meleagridis, with C. hominis as the most 
common. In contrast, most infections in Mirzapur were sub-
clinical (98%), and C.  meleagridis was the most common 
detected species [1]. Because Cryptosporidium-associated diar-
rhea was infrequent in Mirzapur and most infections involved 
C. meleagridis rather than C. hominis or C. parvum, the asso-
ciation between diarrheal status and microbiome composition 
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in infants in Mirzapur could not be decoupled from an alter-
native infection phenotype caused by C. meleagridis. We there-
fore focused our analysis on Mirpur due to the variation in 
diarrheal status and the dominance of the C.  hominis species 
in this population. We found that the microbiota demonstrated 
high variability between children but, despite this observation, 
microbiota composition and a low abundance of Megasphaera 
were associated with diarrheal symptoms both at the time of 
Cryptosporidium detection and prior to infection. Thus, we 
propose that Megasphaera may prevent acute diarrhea during 

parasite infection or at least can serve as a biomarker for other 
unknown protective factors.

MATERIALS AND METHODS

Cohort

Children were enrolled into a community-based prospective 
cohort study of enteric infections that was established at the 
urban and rural Bangladesh sites, Mirpur and Mirzapur, re-
spectively (ClinicalTrials.gov identifier NCT02764918) (Figure 
1A) [1, 14]. Stool samples were collected monthly and during 

Figure 1.  Study design. A, Overall cohort design and sample collection. For more information, see [1, 14]. Samples from Mirzapur were only used in post hoc anal-
ysis in Figure 4F. B, Paired samples were selected to assess Cryptosporidium-positive samples (time of detection) and the preceding surveillance sample (predetection). 
Cryptosporidium-positive samples were identified from both monthly surveillance and diarrheal stool samples, generating our subclinical and diarrheal sample groups.
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diarrheal episodes. Diarrhea was defined as ≥3 loose stools 
within 24 hours, as reported by the child’s caregiver. Both pan-
species and species-specific quantitative polymerase chain 
reaction assays were used to identify the Cryptosporidium spe-
cies infecting the children (Steiner et al 2018) [1]. If positive 
samples were collected within an interval of ≤65  days, they 
were regarded as derived from 1 infection event [1, 14]. In ad-
dition to the collection of stool samples, a study database was 
created containing clinical information on each episode of di-
arrhea a child experienced, antibiotic consumption, and an-
thropometric measurements as well as data on the household 
demographics [1]. A  subset of the Cryptosporidium-positive 
and corresponding “predetection” Cryptosporidium-negative 
surveillance samples were analyzed. The data from Mirzapur 
(Figure 1A) were only included in the post hoc analysis due to 
the limited amount of information on the antibiotic history of 
these children, the rarity of diarrheal cases at this site, and the 
high prevalence of C. meleagridis at the site relative to the more 
common C. hominis species detected in Mirpur.

The study was approved by the Ethical and Research Review 
Committees of the International Centre for Diarrhoeal Disease 
Research, Bangladesh, and by the Institutional Review Board 
of the University of Virginia. For each child, informed written 
consent was obtained from their parent or guardian.

DNA Extraction

On the day of collection, stool samples were brought to the 
study clinic and transported to our laboratory at 4°C, where 
they were aliquoted in DNase- and Rnase-free cryovials for 
storage at –80°C. For DNA extraction, samples were thawed 
and 200 mg removed for total nucleic acid extraction (see de-
tails in [1]). To verify the extraction protocol, phocine herpes-
virus (European Virus Archive Global, Department of Virology, 
Erasmus Medical Center, Rotterdam, the Netherlands) and 
bacteriophage MS2 (ATCC 15597B; American Type Culture 
Collection, Manassas, Virginia) were added into each sample 
as positive controls.

16S Ribosomal Sequencing and Processing

The V4 region of the 16S ribosomal (rRNA) gene was ampli-
fied using the previously described phased Illumina-eubacteria 
primers and protocol from [20, 21] with the minor modifi-
cation that the Illumina MiSeq version 3 chemistry was used 
to generate 300-bp paired-end reads. Sequencing was per-
formed by the University of Virginia’s Genome Analysis and 
Technology Core. Negative controls included extraction blanks 
throughout the amplification and sequencing process. As pos-
itive controls, DNA was extracted from the HM-782D Mock 
Bacteria Community (ATCC through BEI Resources) and ana-
lyzed on each sequencing run (Supplementary Figure 1A–C). 
Additionally, a PhiX DNA library was added at 20% into each 
sequencing run to increase genetic diversity prior to parallel 

sequencing in both forward and reverse directions using the 
Miseq version 3 kit and machine (per the manufacturer’s 
protocol).

Sequencing produced 48  146  401 reads with a mean of 
118  295.8 and median of 121  519 reads per sample (raw reads 
from Supplementary Figure 1D). Sequence adaptors were then 
removed using Bbtools [22] and primers were removed using 
CutAdapt [23]; quality-based filtering was performed with 
DADA2 [24]. Quality filtration reduced the total number of reads 
to a mean of 59 202.2 reads per sample (Supplementary Figure 
1D). In brief, reads were removed and trimmed based on overall 
read quality and base pair quality: forward and reverse reads were 
trimmed to 250 or 200 bp and removed if there were more than 
3 or 6 expected errors, respectively. Reads were also truncated at 
the first instance of a quality score (Phred or Q score) of ≤2. Next, 
forward and reverse reads were merged with only 1 mismatch per-
mitted. Last, taxa assignments were made using DADA2’s naive 
Bayesian classifier method and the Ribosomal Database Project’s 
Training Set 16 (release 11.5) reference database [24] and reads 
that did not map to bacteria (including human contaminants, ar-
chaea, and mitochondrial or chloroplast DNA) were removed, re-
sulting in a mean of 27 809 reads per sample.

Samples with <10 000 reads and unpaired samples (those with 
no predetection or time-of-detection sample within 42  days) 
were removed from consideration; all were subsampled to a 
uniform depth of 10  000 reads per sample to correct for dif-
ferences in sequencing depth across samples and to enable the 
comparison (rather than cataloging) of sequenced taxa among 
samples [25]. Following these filtration and processing steps, 
2953 amplicon sequence variants (ASVs) and 182 stool samples 
remained in the dataset.

The 182 paired predetection and time-of-detection samples 
(91 pre- and 91 postdetection), as well as additional positive 
and negative control samples (amplification blanks) and addi-
tional samples that did not pass our selection criteria, were split 
into 2 sequencing runs to increase the sequencing depth. The 
first sequencing run included all predetection samples and the 
second sequencing run included all time-of-detection samples. 
As an unintentional result of this choice, sequencing batch ef-
fects may result in spurious differences between predetection 
and time-of-detection samples; thus, analyses are focused on 
symptomatic vs subclinical samples within each time point (ie, 
within the same sequencing batch).

Statistical and Machine Learning Analyses

All of the following data processing and statistical analyses 
were performed in R software [24, 26–29] (see Supplementary 
Materials for code and software versions). Appropriate sta-
tistical tests were selected and are described as introduced 
throughout the Results.

For machine learning analyses, random forest analysis was 
used to classify subclinical or diarrheal samples using associated 
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metadata and/or ASV abundances, and the trained models (ie, 
classifiers) were used to identify individual variables that were 
important for prediction accuracy [30]. Within a random forest 
classifier, individual trees were built from subsets of the data 
and model performance was evaluated by predicting the class 
of each sample using only the trees in the random forest that 
were not constructed using that sample (ie, out-of-bag perfor-
mance). Here, variables were ranked by their effect on classifier 
certainty, which influenced overall accuracy, using the mean 
decrease in node impurity (via the Gini coefficient). Variables 
that maximally split samples by classification group yielded a 
larger forest-wide node impurity (or evenness of the split); 
thus, more important variables had a higher mean decrease in 
node impurity. Analytic code is provided in the Supplementary 
Materials; analyses and figure generation were performed in R 
software [29, 31–43].

RESULTS

Prevalence of Diarrhea and Antibiotic Use

Infants were enrolled into a prospective cohort from Mirpur, 
Dhaka, Bangladesh to study enteric infections (Figure 1A); this 
cohort was part of a larger assessment of diarrhea in Bangladesh, 
published previously (Figure 1A) [1]). Each child was moni-
tored by community health workers for enteric disease, in-
cluding collection of monthly surveillance and diarrheal stool 
samples during the first 2 years of life. Diarrhea and antibiotic 
use were common in this cohort (Figure 2A and Supplementary 

Figure 2), and Cryptosporidium species, including C.  hominis 
and C.  meleagridis, were frequently detected during diarrhea 
(Table 1). These parasites cause both subclinical and overt di-
arrheal infections [1].

Children who had at least 1 symptomatic episode of 
cryptosporidiosis had more cumulative episodes of diar-
rhea than children with exclusively subclinical infections 
or no Cryptosporidium-positive stool samples (Figure 2B). 
Additionally, children with only diarrheal episodes (ie, no 
observed subclinical cryptosporidiosis) had more frequent 
exposure to antibiotics than children who had never tested 
positive for Cryptosporidium (Figure 2C). Frequent antibiotic 
use occurred (Supplementary Figure 2A), but there was no 
difference in antibiotic use during the month prior to infec-
tion between children with subclinical or diarrheal infections 
(Supplementary Figure 2B).

Microbiota Sequencing

Given the difference in all-cause diarrheal frequency between 
children with subclinical and diarrheal cryptosporidiosis 
(Figure 2B), we hypothesized that microbiome composition 
may influence the development of acute symptoms during 
cryptosporidiosis. 16S rRNA gene sequencing was performed 
on both the time-of-detection stool samples (Cryptosporidium 
positive, including subclinical and diarrheal) and the corre-
sponding surveillance stool collected immediately prior to the 
Cryptosporidium-positive sample (predetection; Figure 1B) for 
a subset of children who tested positive for Cryptosporidium 

Figure 2.  Diarrheal infection and antibiotic treatment were common and heterogenous in infants from Mirpur. A, Prevalence of diarrhea. Frequency of diarrheal episodes 
per child. Full Mirpur cohort is shown in in gray; red subset indicates the children whose samples were used in the microbiome study (and all subsequent figures). B, All-cause 
diarrhea was heterogenous among children with divergent Cryptosporidium outcomes. Number of diarrheal events per child based on cumulative Cryptosporidium status, both 
over the first 2 years of life. C, Antibiotic usage was heterogenous among children with divergent Cryptosporidium outcomes. Number of antibiotic events per child based 
on cumulative Cryptosporidium status, both over the first 2 years of life. Combination therapies were treated as separate doses. For B and C, the full cohort was used and 
statistics are shown if significant. For B and C, each box represents the median (inner line), 25th percentile, and 75th percentile. Upper whiskers extend from the top of the 
box to the largest value within 1.5 times the interquartile range (distance between 25th and 75th percentile), and the lower whisker extends to the smallest value within 1.5 
times the interquartile range. P values were generated from a t test without multiple testing correction.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab207#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab207#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab207#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab207#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab207#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab207#supplementary-data


e1246  •  cid  2021:73  (15 September)  •  Carey et al

(Table 1 and Figure 2A). Predetection samples were collected 
within approximately 1 month of the time-of-detection samples 
(Table 1).

Sequencing produced 48  146  401 reads with a mean of 
118 295.8 and median of 121 519 reads per sample (raw reads 
from Supplementary Figure 1D). Following quality filtration 
and taxonomy assignment, a mean of 27 809 reads per sample 
remained, permitting us to subsample reads to a uniform 
depth of 10 000 reads per sample to correct for differences in 
sequencing depth across samples.

Microbiota Diversity

Following sequencing, taxonomy was assigned to reads using 
DADA2. Nearly 25% of reads were assigned to an ASV be-
longing to the genus Bifidobacterium (Figure 3A) that repre-
sents a number of functionally diverse species which colonize 
the infant gastrointestinal tract soon after birth. Microbiota 
α-diversity measures (richness and evenness) were not statisti-
cally significantly different between sample groups (2-way anal-
ysis of variance, post hoc testing via Tukey honest significant 
difference method; significance cutoff of P < .05; Figure 3B and 
3C). Despite this lack of significance (P > .21 for all compari-
sons), the microbiota of infants who had diarrheal infection 
was, on average, less diverse than infants with subclinical infec-
tion, both prior to and at the time of infection (Figure 3B and 
3C). Moreover, this cohort exhibited high interindividual vari-
ation as many ASVs were specific to just a few children. Only a 
few ASVs were found in >50% of samples (Figure 3D).

Associations Between Diarrheal Symptoms and the Microbiota

To identify compositional differences in the microbiome among 
sample groups, principal coordinate analysis was performed 
using the Euclidean distance between samples. Predetection 
samples overlapped substantially with Cryptosporidium-positive 

samples and, among positive samples, subclinical and diarrheal 
samples did not separate (permutational multivariate analysis 
of variance using distance matrices [PERMANOVA]; P > .05; 
Figure 4A). Alternative distance metrics, such as Unifrac, also 
failed to separate sample groups (Supplementary Figure 4A). 
The change in microbiota from predetection to time of detec-
tion for each child was similarly variable for both diarrheal and 
subclinical infections (PERMANOVA; P > .05; Supplementary 
Figure 4B).

Given the lack of separation between samples when consid-
ering overall microbiome composition, univariate analyses were 
used to identify individual ASVs that were significantly dif-
ferent between subclinical and diarrheal samples prior to and at 
the time of infection (Figure 4B). However, univariate statistics 
rely on assumptions of independence and, thus, may perform 
poorly with microbiome datasets due to correlations between 
and statistical interactions among members of the microbiota 
[44]. To make robust inferences of the importance of individual 
ASVs, we utilized a univariate approach designed specifically 
for sparse count data [45], as well as random forest classification 
to consider interactions among ASVs. Interpreting the results of 
these 2 approaches together provided a more stringent assess-
ment of ASV importance.

Thus, classification using the random forest models was 
performed to determine if specific members of the micro-
biota were predictive of the development of diarrheal symp-
toms; important variables from the random forest models 
are highlighted on the volcano plots, which also show the 
results of univariate statistical tests (Figure 4B and 4C). This 
machine learning approach was used to prioritize the results 
generated from univariate statistics. Classifier performance 
using the predetection or time-of-detection microbiome sep-
arately yielded predictive models (area under the curve >0.6 
for both prior to and at the time of infection Figure 4C); this 

Table 1.  Sample Summary Statistics for Samples From Mirpur

  Subclinical Infections Diarrheal Infections Total

Children 72

  Male/female sex 28/44

  Children with repeat infections in dataset 19

Samples 182

  No. of PD samples 60 31 91

 No. of TOD samples 60 31 91

 Age at collection, d, mean (SD) 362.5 (128.8) 321.3 (136.3) 348.7 (132.1)

 Days between PD and TOD samplea, mean (SD) 31.1 (4.6) 19.2 (9.1) 27.0 (8.6)

 Parasite burden at TOD (pan-Cryptosporidium qPCR Ct), mean (SD) 28.6 (6.2) 29.9 (7.3) 29.0 (6.6)

 Positive qPCR (for positive samples) Pan-Cryptosporidium: 100% Pan-Cryptosporidium: 100% Pan-Cryptosporidium: 100%

 C. hominis: 60% C. hominis: 58% C. hominis: 59%

 C. meleagridis: 7% C. meleagridis: 6% C. meleagridis: 7%

 First infection/repeat infection, No. 42/18 28/3 70/21

Abbreviations: Ct, cycle threshold; PD, predetection; qPCR, quantitative polymerase chain reaction; SD, standard deviation; TOD, time of detection. 
aStatistically different between subclinical and diarrheal infections via t test (P = 4 × 10–8). All other comparisons between clinical types were not significantly different using a t test (all 
comparisons except first vs subsequent infection) or χ 2 test (first vs subsequent infection).
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performance was similar to the highest-performing classifi-
cation models across a metanalysis of case-control clinical 
microbiome studies [46, 47].

Both classifiers supported conclusions drawn by univariate 
analyses and identified several additional ASVs as important to 
classify subclinical and diarrheal samples (Figure 4B and 4C). 
Some important microbes for each classifier were not enriched 
in either sample group (Figure 4B), suggesting that these ASVs 
are only important when analyzed in combination with others. 
Despite the effect of antibiotic treatment on the microbiota [48], 
the addition of a child’s antibiotic history did not significantly 
augment classifier performance (Supplementary Figure 5), 
indicating that there was no interaction between the important 
ASVs and antibiotic use. The infecting Cryptosporidium species 
(C. hominis or C. meleagridis) were not important variables in 

the random forest models, and child age was not an important 
variable in the time-of-detection model (Figure 4D).

We focused on ASVs that were identified via both the uni-
variate statistics and machine learning approaches. For the 
predetection timepoint, these prioritized ASVs were assigned 
to the Megasphaera, Flavonifractor, Morganella, Collinsella, and 
Lactobacillus genera; for the time-of-detection timepoint, these 
included the same Megasphaera ASV, as well as ASVs assigned 
to Parabacteroides, Enterococcus, Prevotella, Bifidobacterium, 
Sutterella, Veillonella, Megamonas, and Faecalibacterium (Figure 
4B and 4D). Combinations of ASVs were more predictive of di-
arrhea than any individual ASV, as evident by the similar Gini 
importance for all important variables (Figure 3D).

One Megasphaera ASV in particular was identified at both 
timepoints and both analytic approaches (Figure 4B and 4E). 

Figure 3.  Microbiome samples were highly variable. A, Most abundant amplicon sequence variants (ASVs) in the study. Only the top 10 most abundant ASVs are shown; 
the abundance of these common ASVs per sample is also represented in Supplementary Figure 3. Nearly 25% of all reads were assigned to an ASV in the Bifidobacterium 
genus. B, Richness of each sample, or the number of ASVs present in a sample, was not significantly different across sample groups. B and C, Each box represents the median 
(inner line), 25th percentile, and 75th percentile. Upper whiskers extend from the top of the box to the largest value within 1.5 times the interquartile range (distance between 
25th and 75th percentile), and the lower whisker extends to the smallest value within 1.5 times the interquartile range. C, Evenness was also minimally different across 
sample groups. Evenness is a diversity metric calculated to represent how many different species are present and how well distributed those species are across samples; it 
is calculated using the inverse Simpson index. No significant differences in evenness was observed among any comparisons of clinical type (2-way analysis of variance with 
multiple testing correction via Tukey honest significant difference). D, Fraction of all samples containing a particular ASV, ordered by from highest to lowest. Very few ASVs 
were detected in many samples; however, almost all samples contain the most common Bifidobacterium ASVs. 
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Figure 4.  Identifying associations between diarrheal symptoms and the microbiota. A, Predetection (PD) and time-of-detection (TOD) sample microbiota were indistin-
guishable via principal coordinate analysis using a permutational multivariate analysis of variance using distance matrices and a significance cutoff of P < .05, as were sub-
clinical and diarrheal Cryptosporidium-positive samples. Principal coordinate analysis of amplicon sequence variants (ASV) quantification across all samples using Euclidean 
distance. B, Univariate statistics identifies ASVs associated with symptoms in the PD samples and TOD samples. Statistically significant differential expressed ASVs are 
colored, whereas gray points represent ASVs that were not different or not significantly different, using DESeq2. Large points indicate ASVs that were also identified as 
important using random forest classification, whereas small points were not among the top 15 most important variables. Random forest classifiers were built to predict the 
presence of diarrhea upon Cryptosporidium infection. Importantly, purple points represent statistically significant ASVs that were also among the most important variables 
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This Megasphaera ASV also accounted for at least 1% of reads 
across the entire study (Figure 2A), and was present in 25% of 
samples (Supplementary Figure 6A). This bile acid–resistant 
species colonizes the small intestines [49], among other sites on 
the human body [50, 51]. It can therefore be a major compo-
nent of the microbiome at the site of Cryptosporidium parasite 
colonization. The other ASVs that contributed to model per-
formance were either less abundant or resided predominantly 
in the large bowel. Interestingly, Megasphaera ASVs broadly 
did not show the same trend as the important individual ASV 
(Supplementary Figure 6B) and were present in 54.9% of 
samples.

Although there were many environmental differences between 
the study sites, this ASV was also more likely to be detected at high 
abundance in our second study site, rural Mirzapur (Figure 4F), 
despite the observation that Megasphaera ASV did not vary with 
Cryptosporidium species (Supplementary Materials). The most 
common Cryptosporidium species at Mirzapur was C. meleagridis 
rather than the C. hominis in Mirpur, but C. meleagridis has been 
associated with gastrointestinal disease in other studies and has 
also been shown to cause diarrhea in a human challenge ex-
periment [52, 53]. Children in Mirzapur were, however, less 
likely to develop diarrhea upon Cryptosporidium infection; 3% 
of Cryptosporidium-positive stools in Mirzapur were diarrheal, 
compared to 32% in Mirpur [1].

DISCUSSION

Here, we identified differences in the microbiota composition 
and in the abundance of an individual ASV, Megasphaera, in in-
fants who had either a subclinical or a diarrheal Cryptosporidium 
infection. Fecal samples from 72 Cryptosporidium-infected 
children in Mirpur, Bangladesh, were used to profile the human 
microbiota during cryptosporidiosis (Table 1 and Figure 1) with 
16S rRNA gene sequencing (Figure 3). It is well established that 
the microbiome shifts with child development [54–56] and that 
it is highly variable in infants aged <2 years [57–59]. There was 
also universally frequent antibiotic use and enteric infections in 
this young population (Table 1, Figure 2C, and Supplementary 
Figure 2). It was therefore unsurprising that there was a high 
degree of intersample variability among these infants’ samples 
(Figure 3A and 3D).

Despite this variation, microbiome composition was predic-
tive of diarrheal symptoms at the time of infection and up to 
a month prior (Figure 4C). Although individual members of 
the microbiome were associated with diarrhea (Figure 4B), no 
single ASV completely explained the clinical type of infection 
(Figure 4D). This observation is consistent with animal models 
of infection that have highlighted a complex relationship be-
tween the microbiota, host, and parasite [60–62]. For example, 
previous work found that antibiotics alone did not sensitize im-
munocompetent mice to infection [18], although certain pro-
biotics [63], antibiotics [64], and deprivation of prebiotics [65] 
could exacerbate disease severity.

Higher abundance of 1 ASV, Megasphaera (class: Clostridia), 
was associated with subclinical Cryptosporidium infection 
whereas its absence or low abundance was more common in 
cases of Cryptosporidium-associated diarrhea (Figure 4B and 
4D). This Megasphaera ASV was not associated with antibi-
otic use in this cohort (Supplementary Figure 5) or all-cause 
diarrhea (ie, total number of diarrheal episodes; Supplementary 
Materials). Megasphaera species can collocate in the small intes-
tines [49] with Cryptosporidium, and they were more frequently 
observed at high abundance in a community in which diar-
rhea was rarely seen during cryptosporidiosis (Figure 4F) [1]. 
Megasphaera are known to synthesize short-chain fatty acids 
[66], compounds that regulate the intestinal homeostasis [67], 
impact the host immune response [68], and modulate osmotic 
diarrhea [69]. Interestingly, Megasphaera elsdenii is used as a 
probiotic in veterinary medicine to treat diet-induced meta-
bolic acidosis because of the bacteria’s ability to convert lactate 
(a key acidic metabolite responsible for acidosis) to short-chain 
fatty acids [70]. This ability of Megasphaera to produce short-
chain fatty acids or to modulate the host’s immune system 
through other mechanisms may be protective in attenuating di-
sease outcome during Cryptosporidium infection. Alternatively, 
Megasphaera may be a biomarker for another microbiome- or 
immune-mediated mechanism of protection from diarrhea.

Limitations of this study include the wide age range of chil-
dren enrolled in this study, the microbial diversity of samples, 
widespread antibiotic use and infections, and the unknown 
generalizability to global populations. In addition, technical 
limitations include moderate sample size, the fact that time-of-
detection and predetection samples were sequenced separately, 

for classifiers made at both timepoints. C, Random forest classifiers were built from the TOD microbiota (blue) or predetection microbiota (red). Area under the curve (AUC), a 
metric of classifier accuracy, is listed for each classifier. D, Most important variables, as ranked by mean decrease in node impurity (or Gini importance), from the PD and TOD 
classifiers. Important variables were similarly important, within and across models. Of note, age was not an important variable in the TOD classifier. E, One ASV assigned to 
the Megasphaera genus was significantly less abundant in diarrheal cases via univariate analyses (at both timepoints) and was among the top 15 most important variables 
for the classifiers for both timepoints. Relative abundance of each ASV is plotted for each sample, with each box representing the median (inner line), 25th percentile, and 
75th percentile. Upper whiskers extend from the top of the box to the largest value within 1.5 times the interquartile range (distance between 25th and 75th percentile), and 
the lower whisker extends to the smallest value within 1.5 times the interquartile range. F, The Megasphaera ASV was also more likely to be high-abundance (above dashed 
line) in samples at the second study site, Mirzapur, where diarrheal cryptosporidiosis was less common when compared to Mirpur; however, environmental factors, including 
the causal Cryptosporidium species, were also different in Mirzapur [1]. Increased Megasphaera abundance in Mirzapur may partially explain reduced diarrhea associated 
with cryptosporidiosis in that community. 
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and the need for read count normalization due to the variable 
sequencing depth across samples.

In sum, the microbiome was predictive of Cryptosporidium 
diarrhea both prior to and at the time of infection. Low abun-
dance of 1 member of the microbiome, Megasphaera, was asso-
ciated with diarrheal symptoms. There is currently no effective 
drug for treating Cryptosporidium diarrhea in children, and 
modulating members of the microbiota such as Megasphaera 
may be an appealing prevention strategy.
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