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Abstract

How well do we know the particulate backscattering coefficient (bbp) in the global ocean? 

Satellite lidar bbp has never been validated globally and few studies have compared lidar bbp 

to bbp derived from reflectances (via ocean color) or in situ observations. Here, we validate 

lidar bbp with autonomous biogeochemical Argo floats using a decorrelation analysis to identify 

relevant spatiotemporal matchup scales inspired by geographical variability in the Rossby radius 

of deformation. We compare lidar, float, and ocean color bbp at the same locations and times 

to assess performance. Lidar bbp outperforms ocean color, with a median percent error of 18% 

compared to 24% in the best case and a relative bias of −11% compared to −21%, respectively. 

Phytoplankton carbon calculated from ocean color and lidar exhibits basin-scale differences that 

can reach ±50%.

Plain Language Summary

Backscattering of light by particles is an important input for many studies concerning ecology 

and the carbon cycle. There are two main types of satellite sensors that measure backscattering 

but they have not been validated worldwide. In order to use backscattering for global questions, 

we need to understand how well both satellite approaches perform. Passive ocean color sensors 

act like wide-view cameras capturing sunlight scattered by ocean constituents, whereas active 

sensors use a laser system that illuminates the ocean and measures the return pulses of light 

within a narrow spatial range. In this study, we compare backscatter data from both satellite sensor 

types to matchup backscattering data collected in situ by a global network of floats. We find 

that backscatter data from the active and passive satellite sensors disagree, particularly at low 

backscattering values. Overall, the active sensor performs best when compared to field data. We 
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applied the lidar data to reassess global phytoplankton carbon and find regional differences from 

conventional estimates that can reach ±50%.

1. Introduction

The spectral particulate backscattering coefficient (bbp; m−1; with spectral dependence 

hereafter implied unless noted) is central to applications of ocean optics for marine ecology 

and biogeochemistry. Satellite-derived bbp has been used to assess particulate organic carbon 

(Loisel et al., 2001; Stramski et al., 1999), phytoplankton carbon (PhytoC, Behrenfeld et al., 

2005; Graff et al., 2015), particle sizes (Brewin et al., 2012; Kostadinov et al., 2009; Loisel 

et al., 2006), and daily animal migrations (Behrenfeld et al., 2019). Satellite bbp has enabled 

global investigations of phytoplankton physiology (via the cellular chlorophyll to carbon 

ratio, Behrenfeld et al., 2005), improvements in ecological models where particle size is 

needed (e.g., Bisson et al., 2020), advanced mechanistic net primary production algorithms 

(Silsbe et al., 2016; Westberry et al., 2008), determinations of carbon export (Siegel et al., 

2014), and global analyses of marine biogeochemical change (e.g., Behrenfeld et al., 2006).

There are currently three ways to measure bbp globally: (1) autonomous profiling floats 

(Bittig et al., 2019), (2) passive (or “ocean color”) satellite remote sensing, and (3) active 

satellite remote sensing (light detection and ranging, lidar). Recent progress in using bbp 

derived from satellite lidar measurements (hereafter “lidar bbp”) to study ocean biology 

(Behrenfeld et al., 2013, 2017, 2019; Lu et al., 2016, 2020) has established lidar as a 

prominent tool, such that we are now entering a “satellite lidar era in oceanography” 

(Hostetler et al., 2018). There is little doubt that lidar bbp observations will continue 

to advance our understanding of ocean processes because lidar bbp can observe polar 

ecosystems in the absence of sunlight and at low sun angles, potentially provide constraints 

on inversion algorithms for passive remote sensing approaches, and contribute another 

independent measurement of ecosystem stocks.

For decades, it was not possible to assess passive satellite performance of bbp retrievals on 

global scales because there were few in situ observations. For example, the NASA Moderate 

Resolution Imaging Spectroradiometer (MODIS) onboard Aqua was launched in 2002, but 

its most spatially extensive bbp performance assessment was not realized until 2019 (K. M. 

Bisson et al., 2019), when a global network of Argo floats equipped with backscattering 

sensors was used. Here, we conduct a similar analysis of lidar bbp.

Identifying in situ matchup observations with MODIS is straightforward relative to lidar 

because passive ocean color satellite instruments produce wide swaths of data, often 

stretching 2,000 km in the cross-track direction. In contrast, defining matchups for lidar and 

in situ observations is challenging because a single lidar pulse, like an in situ measurement, 

gives a snapshot in time for pinpricks in space. On regional scales, MODIS and lidar have 

been compared before in polar regions and in the North Atlantic (Behrenfeld et al., 2017; 

Lacour et al., 2020). Satellite lidar has not been validated globally. In this study, we ask, 

“Are ocean color and lidar bbp retrievals consistent on global scales?”
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Satellite bbp (λ) needs to be contextualized with known biases and assessed errors because 

the fidelity of past and future modeling efforts relies on the accuracy of bbp as an input 

product. Here, we introduce a method to globally validate lidar backscattering from the 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the NASA 

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, 

and we compare CALIOP bbp, MODIS bbp, and Argo bbp with the goal of quantifying 

satellite bbp performance and bias.

2. Materials and Methods

2.1. Argo bbp

Vertical profiles of bbp (700 nm, m−1) were downloaded from the Argo Data Assembly 

Center (ftp://ftp.ifremer.fr/ifremer/argo/dac/ on May 20, 2020) and processed as in K. M. 

Bisson et al. (2019). Float bbp profiles were despiked with a three-point moving median and 

outliers in log-space were removed (given by those bbp values outside the bounds of 1.5 

times the interquartile range). After outliers were removed, there were 37,337 data points 

at independent locations. To make the float profiles comparable to remote sensing products 

(where CALIOP data represent a fixed 22.5 m layer, and MODIS data are exponentially 

weighted toward the surface), the mean bbp value is reported within the calculated mixed 

layer depth (MLD, given by the depth where density is greater than 0.03 kg m−3 relative 

to the density at 10 m). The median MLD is 18 m for the global Argo data set, with an 

interquartile range of 3.9 m. Choosing the first light attenuation layer rather than the MLD 

did not significantly change the values of Argo bbp.

2.2. Retrieving Ocean Color bbp

The retrieval of ocean color bbp(λ) is an ill-posed inverse problem that requires spectral 

remote sensing reflectances (Rrs(λ); sr−1) as input and is constrained with a set of 

assumptions about the absorbing and backscattering constituents in the ocean. Our analysis 

is focused on the MODIS instrument onboard Aqua and the generalized inherent optical 

properties algorithm in its default configuration (GIOP-DC, Werdell et al., 2013) because 

MODIS outperformed the other contemporary global ocean color satellites such as Visible 

Infrared Imaging Radiometer Suite (VIIRS) and Ocean and Land Color Instrument (OLCI) 

in K. M. Bisson et al. (2019). Likewise, the GIOP-DC outperformed the other inversion 

algorithms such as Quasi Analytical Algorithm (Lee et al., 2002) and Garver–Siegel–

Maritorena algorithm (Maritorena et al., 2002) when confronted with Argo float bbp in 

K. M. Bisson et al. (2019).

We obtained MODIS Level-3 9-km remote sensing reflectance data (Rrs, λ = 412, 443, 

488, 531, 547, and 667 nm) to generate global bbp maps using the GIOP-DC algorithm, as 

well as MODIS Level-2 1-km Rrs (same wavelengths, all from the NASA Ocean Biology 

Processing Group, https://oceancolor.gsfc.nasa.gov) to generate coincident matchups with 

Argo bbp according to the Bailey and Werdell (2006) quality control criteria. We identified 

satellite matchups that occur within a ±3-h window in a 5 × 5 satellite pixel box, and also 

within a ±24-h window in a 9 × 9 pixel box centered on the float observation (where the 
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larger box accounts for assumed advection). All Rrs (λ) data were corrected to remove 

Raman scattering through the empirical algorithm of Lee et al. (2013).

GIOP is a flexible inversion algorithm that allows different formulations within the 

framework to be modified (full details in Supplementary Material Text S1). We ran the 

GIOP-DC on MODIS Rrs observations and report our derived bbp at 532 nm so that MODIS 

and CALIOP bbp are compared at the same wavelength. Finally, because MODIS bbp 

is a function of eigenvector choices for bbp(λ), phytoplankton absorption (aph(λ); m−1), 

and nonalgal particle plus colored dissolved organic matter absorption (acdm(λ); m−1), we 

performed a sensitivity analysis to quantify MODIS bbp performance depending on which 

specific assumptions are used (see Supplementary Material Text S2, Table S1).

2.3. Satellite Lidar Retrievals of bbp

The CALIPSO satellite was launched in 2006 with the primary goal of observing the vertical 

distribution of clouds and aerosols. Like MODIS, CALIPSO flies in the A-train constellation 

and has a 16-day repeat cycle (Winker et al., 2009). CALIPSO’s main instrument is 

CALIOP, which is a nadir-pointing lidar with two measurement wavelengths, 532 nm and 

1,064 nm, and has a footprint diameter at the ocean surface of ~100 m. CALIOP measures 

the copolarized and cross-polarized channel component of column integrated backscatter. 

Although CALIOP was not intended for ocean research, its polarization properties have been 

used to characterize bbp at 532 nm for the first vertical 22.5-m bin in the ocean (Behrenfeld 

et al., 2013). Since 2013, there have been refinements to the lidar bbp algorithm. In this 

analysis, we use the daytime lidar product published in Behrenfeld et al. (2019), which is 

freely available online (data access details are in the acknowledgments, and data processing 

details are in Supplementary Material Text S3). We made one key modification to the 

Behrenfeld et al. (2019) CALIOP bbp product. The Behrenfeld et al. (2019) study used a 

processing factor of 0.16 for the ratio of b(π) to bbp. More recent work (Lacour et al., 2020; 

Lu et al., 2020) used a constant value of 0.32.

In our study we choose a beta(π)/bbp value of 0.32. Because the Behrenfeld et al. (2019) 

CALIOP data were processed using a value of 0.16, we multiply the retrieved bbp product by 

0.5. Using this factor, the global bbp frequency distributions between CALIOP and MODIS 

are similar (Figure S1). Given this, we focus our efforts on point by point comparisons 

of spatiotemporal matchups common to CALIOP, MODIS, and Argo observations. Argo 

bbp is used from 2015 to present, and the CALIOP bbp product used in this study spans 

2006–2017, so we restrict our analysis to 2015–2017.

2.4. Identifying Matchups Across CALIOP, MODIS, and Argo bbp

Observations from CALIOP and Argo are single points separated by distance and time, 

so we could not use a method that relies on their intersection for comparison. Instead, we 

adopted a decorrelation approach to quantify near-coincident space (Figures 1(a) and 1(b), 

black and purple lines) and time windows (Figures 1(c) and 1(d), black and purple lines) that 

yield sufficient matchups (cyan lines) for analysis. Rather than group all data together, we 

chose to subset regions by annually averaged sea surface temperature (SST), where an SST 

of 15°C was used to distinguish warmer waters that are permanently stratified within the 
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euphotic layer from cooler, high latitude waters with deeper active mixing (after Behrenfeld 

et al., 2006). Regions with annual SST < 15°C (Figures 1(a) and 1(c)) and >15°C (Figures 

1(b) and 1(d)) represent different physical environments because the first baroclinic Rossby 

radius of deformation (defining the length scale of baroclinic variability) is dependent on 

the Coriolis parameter (and therefore on latitude, Chelton et al., 1998). Higher latitudes 

are expected to exhibit shorter decorrelation length scales of physical variability, which are 

expected to influence the decorrelation in bbp.

We calculated distances (in km) between Argo and CALIOP using the haversine formula. 

Pearson’s correlation (r) is used to quantify similarity between CALIOP and Argo bbp 

on log-10 transformed data. We defined coincidence with MODIS following Bailey and 

Werdell (2006). Backscattering spectral slopes (γ) calculated as part of the GIOP-DC 

inversion were applied to the Argo bbp at 700 nm to derive Argo bbp at 532 nm so that all bbp 

are comparable at the same wavelength (see Equation 4 in Supplementary Material Text S1). 

We calculated the median percent error (MPE, the median of 100% × |satellite bbp/Argo bbp 

– 1|) and relative bias (the median of 100% × [satellite bbp − Argo bbp]/Argo bbp) to compare 

MODIS, CALIOP, and Argo bbp (all at 532 nm; m−1, and data are not log-transformed prior 

to these calculations because the data are normalized by Argo bbp).

We used the shapes of decorrelation for r and MPE to find cutoff distance values where the 

slope of MPE increases and the slope of the correlation decreases (Figure 1). The intent of 

this approach was to maximize the number of paired observations while maintaining a high 

correlation and low MPE. Based on this analysis, we chose 15 km radius for matchups in 

regions with annual SST < 15°C and 50 km for regions with annual SST > 15°C (Figure 1). 

In all cases, the correlation is similar across all hours (up to 24). With these matchup criteria, 

we take a subset of the Argo observations common to both CALIOP and MODIS bbp (within 

a ±3-h window, n = 93 as well as ±24-h window, n = 261) so that all three sensor types can 

be compared. One alternative approach to the paired matchup method as outlined here is to 

look at general correspondence between distributions of CALIOP and Argo bbp in particular 

regions, as is done in Lacour et al. (2020) in the North Atlantic. Differences between Lacour 

et al. (2020) and the current study are discussed further in Supplementary Material Text S4.

3. Results

The spatial distribution of matchup Argo bbp observations common to both CALIOP and 

MODIS exhibits good global coverage with representation in the Southern Ocean, Arctic 

Ocean, South Pacific Gyre, Atlantic basin, and Indian Ocean (Figure 2(a)). Global annually 

averaged maps of MODIS and CALIOP bbp reveal similar patterns (Figures 2(b) and 2(c)), 

with elevated bbp in coastal and/or upwelling regions and lower bbp in the oligotrophic gyres.

Evaluation of equivalent matchup data between Argo observations of bbp and retrievals 

from CALIOP and the optimum parameterization of MODIS GIOP-DC reveals a superior 

performance of CALIOP (black bars vs. purple bars in Figure 3), having lower MPE 

(Figures 3(a) and 3(c)) and relative bias (Figures 3(b) and 3(d)). This improved performance 

is observed both for the 3-h matchup data (where CALIOP has 18% MPE vs. 24% MPE 

for MODIS [Figures 3(a), S1(a), and S1(c)] and CALIOP has a lower relative bias [−11%] 
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compared to MODIS [−21%] [Figure 3(b))] and the 24-h matchup data (Figures 3(c), 3(d), 

S2(b), and S2(d)). CALIOP also exhibits superior performance in bbp retrievals compared to 

four alternative ocean color inversion (GIOP) parameterizations (MPE and relative bias bars 

to the right of the vertical red line in Figure 3).

We find clear inconsistencies between CALIOP and MODIS bbp (Figures S2(c) and S2(g)). 

For bbp values around 0.001 m−1, MODIS exhibits a higher dynamic range of bbp compared 

to CALIOP, spanning nearly an order of magnitude in the ±24-h case (Figure S2(g)).

In a qualitative sense, MPE and bias are better for both sensors in the ±3-h window 

compared to the ±24-h window, and both MODIS and CALIOP underestimate Argo bbp in 

general (Figures 3(b), 3(d), S2, and S3).

As an illustration of the ecological and biogeochemical significance of CALIOP and 

MODIS bbp differences, we converted these data into estimates of PhytoC concentrations 

using the linear relationship reported by Graff et al. (2015). While annual global average 

PhytoC estimates from MODIS (PhytoCM) and CALIOP (PhytoCC) are similar (17 mg 

C m−3 and 18 mg C m−3, respectively), notable regional differences are observed (Figure 

4). For example, PhytoCC is ~20% higher than PhytoCM in the South Pacific gyre and 

temperate regions of the North Pacific and South Atlantic. In contrast, PhytoCM exceeds 

PhytoCC by ~20% in the Equatorial Pacific and the central gyres of the South Atlantic 

and Indian Oceans. The largest differences between retrievals are found in the North Indian 

Ocean, the equatorial Atlantic west of Africa, and the Artic/Subarctic, where PhytoCC 

may exceed PhytoCM by up to 50%, and in the Southern Ocean where PhytoCM exceeds 

PhytoCC by 50%.

4. Discussion

The improved performance of lidar bbp retrievals relative to ocean color reported here 

is a somewhat unexpected finding because spatial coverage of lidar data is so restricted 

compared to ocean color data. In other words, the average spatiotemporal coincidence 

between Argo bbp data and lidar is far broader than that for wide-swath, 2-day repeat cycle 

ocean color measurements, suggesting (a priori) that ocean color bbp should yield better 

performance when compared to float data, at least in spatiotemporal heterogenous waters. 

Instead, the relatively low MPE (18%) and relative bias (−11%) for the CALIOP data is a 

clear improvement over all contemporary ocean color satellites, even when considering their 

highest performing bbp algorithm (MODIS-24% MPE, bias = −21%, this study, VIIRS-31% 

MPE, bias = −11% [K. M. Bisson et al., 2019], and OLCI-45% MPE, bias = 2% [K. M. 

Bisson et al., 2019], with biases recalculated according to our definition here, Figure S1). 

Although the study of K. M. Bisson et al. (2019) featured more matchups between Argo 

and ocean color bbp, we note that lidar MPEs are below 25% even for ±24-h matchups at 

distances >50 km in the SST > 15°C case, which represents ~75% of the ocean by area. We 

also note that MODIS performance degrades with distance and time (as expected), with an 

MPE of 27% in the 9 × 9 pixel box, ±24-h matchup case. While the performance of MODIS 

bbp is indeed affected by choices within the GIOP inversion, no particular configuration 

can produce the performance metrics of CALIOP bbp. If more exact spatial matchups were 
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possible between lidar and Argo bbp data, we would expect the enhanced performance of 

lidar compared to ocean color to be even more pronounced.

Although we have found good agreement between CALIOP and Argo bbp, CALIOP bbp 

is imperfect, particularly at low Argo bbp values (Figure S4). Future lidar products may 

especially benefit by optimizing bbp to float values (as is done currently with the MODIS 

SST algorithm, Kilpatrick et al., 2015), especially because there are sufficient (~750) 

matchups between CALIOP and Argo observations. CALIOP bbp is also sensitive to the 

scattering phase function used (which might vary regionally/seasonally) and data are only 

available along the orbit track as opposed to the large ocean color swaths.

There are necessarily limitations of ocean color bbp. Lidar is a more direct measurement 

of bbp compared to MODIS, as the latter retrieval uses the remote sensing reflectances, 

Rrs(λ), with assumptions about the absorption and backscattering spectral shapes of the 

ocean components and specific relationship between Rrs(λ) and inherent optical properties. 

Rrs(λ) is retrieved following atmospheric correction, which removes radiometric effects 

from ocean surface glint and white-caps, as well as molecular and aerosol absorption and 

scattering. The chemical composition and size distribution of aerosols are assumed (Gordon, 

1997; Gordon & Wang, 1994) and inferring the aerosol signal from satellite observations 

can be challenging since the atmospheric signal contribution is typically 90% at 440 nm 

at the top of the atmosphere while the residual signal is from the ocean. Even worse, the 

contribution of the ocean signal quickly decreases at longer wavelengths (i.e., >500 nm), 

making it more challenging to accurately estimate Rrs(λ). While useful for sensor-to-sensor 

comparisons, the bidirectional reflectance distribution function correction, as part of the 

atmospheric correction, can impart additional uncertainty in Rrs(λ) retrievals, as it cannot 

ubiquitously represent all conditions at all times (Mobley et al., 2016). Small uncertainties 

in the aerosol correction lead to large uncertainties in Rrs at green and red bands due to 

two inherent limitations: (1) the ocean signal is small relative to the aerosol signal and 

(2) the dynamic range of Rrs in the green and red wavelengths is small compared to the 

more dynamic aerosol signal. A future assessment is required to quantify the impacts of 

atmospheric correction on bbp retrievals. Despite the issues outlined above, we find a good 

overall correspondence between ocean color and Argo bbp.

CALIOP, Argo, and MODIS observe bbp in different areas of the volume scattering function. 

CALIOP is nadir viewing (scattering angle of 180°), typical backscattering sensors used 

on Argo float have a nominal scattering angle of 142° (but some have 124° and 149°, 

Poteau et al., 2017), while MODIS has viewing angles relative to nadir spanning ±49.5° 

(corresponding to scattering angles between 131° and 180°; https://aqua.nasa.gov/modis). 

As Rrs is known to be influenced by viewing angle and particle phase function (with 

variations up to 65% in some cases, Xiong et al., 2017), the viewing angle differences 

between sensors are a potential source of error for the retrieved bbp products. Another source 

of discrepancy between sensors is the water column depth used to generate bbp observations. 

MODIS, CALIOP, and Argo consider slightly different depths of the water column, which 

may be potentially important for instances when the sensor depth exceeds the mixing 

depth. A further source of error arises from the different sensor wavelengths used in this 

study. Given that ocean color bbp performance is affected by assumed backscattering and 
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absorption shapes, it would be a meaningful improvement for future floats to be equipped 

with a backscattering sensor including green wavelengths. Having Argo bbp observations in 

the green would eliminate the influence of the backscattering spectral power-law-fit slope 

assumption and also the influence of absorption assumptions because the green bands are 

minimally influenced by phytoplankton and water absorption.

In this study, we validated global lidar bbp and compared it to the best case ocean color 

sensor and algorithm pairing. Regional differences in derived PhytoC between CALIOP and 

MODIS quantify the consequences of bbp product choice. PhytoC is essential for calculating 

phytoplankton physiology through the chlorophyll:PhytoC ratio and it is a central term in 

state-of-the-art NPP algorithms (i.e., Silsbe et al., 2016; Westberry et al., 2008) and carbon 

export models (where differences in data products have wide effects on model outcomes, K. 

M. Bisson et al., 2018). Although there are clear spatial differences between CALIOP and 

MODIS bbp, we choose not to focus on regional differences within our analysis because 

there are too few observations (93 globally, with only 5 observations poleward of 50 

degrees) to make rigorous statements about performance on regional scales.

Because CALIOP has limited spatial coverage compared to MODIS, an optimal approach 

may come from generating products that combine data from the two sensors. Continued 

efforts are needed to improve CALIOP lidar retrievals in low bbp areas. Nevertheless, the 

CALIOP record provides a less uncertain and an independent global data set of bbp that 

presents an opportunity for evaluating and improving satellite ocean color retrievals of this 

fundamental optical property related to plankton ecosystem structure and biogeochemistry.
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Key Points:

• Spatiotemporal correlation scales are quantified between global lidar and in 

situ observations

• Satellite lidar has lower error and bias compared to ocean color observations 

of particulate backscattering

• Phytoplankton carbon values determined from global lidar and ocean color 

differ within basins by as much as 50%
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Figure 1. 
Correlation (black) and median percent error (purple) distances (a, b) and times (c, d) 

between CALIOP and Argo bbp for areas with mean ocean temperature < and >15°C (left 

and right panels, respectively). Cyan lines correspond to the number of observations at a 

given distance or time. (a, b) Argo and CALIOP are ±24 h apart. (c) Argo and CALIOP are 

15 km apart. (d) Argo and CALIOP are 50 km apart. CALIOP, Cloud-Aerosol Lidar with 

Orthogonal Polarization.
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Figure 2. 
(a). Map of locations with coinciding Argo floats and either CALIOP observations (black 

plus) or CALIOP and MODIS L2 imagery within 24 h (blue, n = 261) or 3 h (red, n = 

93). (b). Annually averaged MODIS bbp (531 nm, m−1), constructed from L3 9 km files 

binned to a 1-degree grid. (c). Annually averaged CALIOP bbp (532 nm, m−1), constructed 

from CALIOP observations binned to a 1-degree grid. CALIOP, Cloud-Aerosol Lidar with 

Orthogonal Polarization; MODIS, Moderate Resolution Imaging Spectroradiometer.
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Figure 3. 
Comparison of CALIOP performance metrics and those for variants of MODIS inversions. 

V1 changes the bbp slope used, V2 changes the acdm shape, V3 changes the assumed 

aph shape, and V4 is the GIOP result using Rrs data that were not corrected for Raman 

scattering. (a), (b) +/−3 h matchup data. (c), (d) +/−24 h matchup data. (a), (c) median 

percent error. (b), (d) relative bias (%). In all panels, black bar is CALIOP and purple bar is 

for MODIS using the optimum (default) configuration of the GIOP algorithm. Red vertical 

line separates results for this GIOP configuration from other inversion variants (v1, v2, v3, 

and v4—see Supplementary Text S2 and Table S1 for description of variants). CALIOP, 

Cloud-Aerosol Lidar with Orthogonal Polarization; MODIS, Moderate Resolution Imaging 

Spectroradiometer; GIOP, generalized inherent optical properties.
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Figure 4. 
Annually averaged relative percent difference in PhytoC between MODIS and CALIOP, 

relative to CALIOP (i.e., 100 × [PhytoCM – PhytoCC]/PhytoCC). MODIS, Moderate 

Resolution Imaging Spectroradiometer; CALIOP, Cloud-Aerosol Lidar with Orthogonal 

Polarization.
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