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H E A L T H  A N D  M E D I C I N E

Classifying chronic pain using multidimensional  
pain-agnostic symptom assessments and  
clustering analysis
Gadi Gilam*, Eric M. Cramer, Kenneth A. Webber II, Maisa S. Ziadni,  
Ming-Chih Kao, Sean C. Mackey

Chronic pain conditions present in various forms, yet all feature symptomatic impairments in physical, mental, 
and social domains. Rather than assessing symptoms as manifestations of illness, we used them to develop a 
chronic pain classification system. A cohort of real-world treatment-seeking patients completed a multidimensional 
patient-reported registry as part of a routine initial evaluation in a multidisciplinary academic pain clinic. We ap-
plied hierarchical clustering on a training subset of 11,448 patients using nine pain-agnostic symptoms. We then 
validated a three-cluster solution reflecting a graded scale of severity across all symptoms and eight independent 
pain-specific measures in additional subsets of 3817 and 1273 patients. Negative affect–related factors were key 
determinants of cluster assignment. The smallest subset included follow-up assessments that were predicted by 
baseline cluster assignment. Findings provide a cost-effective classification system that promises to improve clinical 
care and alleviate suffering by providing putative markers for personalized diagnosis and prognosis.

INTRODUCTION
Chronic pain is a global epidemic reflecting a health care crisis for 
the person suffering from it, their family, and society as a whole 
(1–3). More than 100 million individuals are affected by various 
chronic pain conditions in the United States alone, with medical 
expenses and lost productivity costing more than $635 billion 
annually and projected to become much worse (4–6). Primary chronic 
pain conditions present in various shapes and forms, commonly 
classified by anatomical location of experienced pain, from low-back 
pain and headaches to pelvic or bladder pain, including widespread 
nonspecific or overlapping pain (7, 8). However, shared by all 
conditions is a global functional impairment that is manifested in 
the experience of multiple physical, “mental,” and social health 
symptoms, reflective of the biopsychosocial model of shared etio-
logical factors across chronic pain conditions (7, 9–12). While various 
studies aimed to uncover and classify subgroups of chronic pain 
(13–22), little is known whether a combination of domain-general 
symptoms agnostic to pain can be used to classify one’s chronic 
pain condition and subsequently serve as potential markers for clinical 
diagnosis and prognosis (23, 24). A symptom-based approach may 
also reveal potentially modifiable factors as targets for therapeutic 
interventions. Therefore, we suggest a reversal of the common practice; 
instead of assessing patient-reported symptoms as features of the a 
priori determined pain condition, we examined whether such symptoms 
may serve to classify current and predict future pain condition. If 
confirmed, our approach could be used to support personalized and 
efficient treatment of individuals with chronic pain.

We implemented unsupervised machine learning, specifically 
agglomerative hierarchical clustering analysis (AHCA) (25–27), on 
multidimensional patient-reported symptoms that assess physical, 
mental, and social health status factors, to identify idiosyncratic 
groups, or clusters of patients with chronic pain. Patients reflected a 

real-world clinical population with a heterogeneous mix of pain 
conditions seeking treatment at a tertiary academic pain clinic. 
As part of their routine initial evaluation, they completed multi-
dimensional patient-reported assessments using Stanford’s Collaborative 
Health Outcomes Information Registry (CHOIR) registry-based 
learning health system (Fig. 1A) (28, 29). We used nine symptoms 
for clustering based on the National Institutes of Health’s (NIH) 
Patient-Reported Outcomes Measurement Information System 
(PROMIS), which was designed and validated for precise and effi-
cient measurement of health-related symptoms in patients with a 
wide variety of chronic health conditions (30). These symptoms 
were agnostic to nine pain-specific measures that we subsequently 
used to validate the diagnostic-like nature of the data-driven 
clusters independently.

Mechanistically, we aimed to uncover whether the multivariate 
pattern of symptoms and pain-specific measures characterizing 
each identified cluster reflects a general graded scale of severity or a 
differential pattern. Furthermore, given the centrality and comorbidity 
of mental health related factors with chronic pain, predominantly 
negative affect–related symptoms such as anxiety, depression, and 
anger (10, 31, 32), we expected these symptoms to be key drivers for 
the determination of cluster assignment, thus highlighting them as 
targets for treatment. We based cluster discovery on a training 
dataset of 11,448 patients and subsequently validated it in two addi-
tional datasets of 3817 and 1273 patients. The later dataset included 
follow-up assessments allowing us to examine whether cluster 
assignment at baseline would be predictive of pain-related measures 
at follow-up, thus providing potential prognostic-like validation of 
the identified clusters. Last, we examined the dynamics across 
assigned clusters between time points.

RESULTS
Demographic characteristics
Demographic characteristics of study participants are described in 
Table 1 (see also table S1).
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Cluster discovery, characterization, reliability, and validity
The dendrogram reflecting results of the AHCA as implemented on 
the training dataset is shown in Fig. 1B. On the basis of the gap 
statistic, we grouped patients into an optimal number of three 
clusters (Fig. 1C). In line with our expectation, the negative affect–
related clustering symptoms of depression, anxiety, and anger were 
the most important factors driving the clustering process, ranked 
first, second, and fourth, respectively, and contributing 42.4% to the 
overall separability between clusters (Fig. 1D).

We labeled the clusters Cluster1, Cluster2, and Cluster3 to 
reflect the graded scale of severity that characterized all clustering 
symptoms (Table 2 and Fig. 2, A to I) and all pain-specific measures 
(Table 2 and Fig. 2, J to R). These results provided initial validation 
of these clusters such that Cluster1 reflects the least severe condi-
tion, Cluster3 reflects the worst, and Cluster2 is in between, with 
substantial effect sizes across all comparisons (Table  2). Since 
PROMIS instruments are normed to the general U.S. population, 
we could inform that Cluster1 was on average 0.60 SD better than 
the norm in the clustering symptoms but 0.46 SD worse than the 
norm in the subset of PROMIS-based pain-specific measures. 

Cluster2 was 0.36 SD and 1.05 SD, and Cluster3 was 1.20 SD and 
1.54 SD, all worse than the norm in the clustering symptoms and 
pain-specific measures.

Although the pattern of severity also manifested in the number 
of self-reported body segments in pain, with Cluster3 indicative of 
potential widespread and/or overlapping chronic pain conditions, 
we found no significant associations between specific body regions 
(table S2 and fig. S1) and any of the clusters (Chi2 = 3.23, P = 0.99; 
Fig. 2S). Cluster1 was only descriptively associated with more pain 
in the front of the head (14.07%) compared to Cluster2 (9.61%) and 
Cluster3 (8.22%; Chi2 = 1.75, P = 0.41). Similarly, none of the 
demographic characteristics were significantly associated with any 
specific cluster (Table 1). We replicated the same pattern of results 
across clustering symptoms and pain-specific measures in the 
validation (table S3 and fig. S2) and the longitudinal datasets (table 
S4 and fig. S3), except for pain duration, for which we found no 
differences between the three clusters (P > 0.12). This supported the 
reliability and validity of the identified clusters. However, two 
critical questions arose that we addressed in the following two 
sections.

Fig. 1. Cluster development. (A) An illustration of a simulated CHOIR report used at the Stanford Pain Clinics. The CHOIR body map with marked regions in pain is on the 
left, and multiple normalized symptom scores are listed on the right. (B) The dendrogram reflecting results of the agglomerative hierarchical clustering algorithm as 
implemented on the training dataset (n = 11448) and using the nine clustering symptoms. The three-cluster solution is reflected by the different shades of blue per cluster. 
Cluster1 composed of 25.71% of the patients (n = 2943), Cluster2 of 50.68% (n = 5802), and Cluster3 of 23.61% (n = 2703). (C) The plot shows the gap statistic values for 
different k number of clusters, and a red dashed line indicates the optimal solution of k = 3 since it is the smallest value of k that is within one standard deviation of the 
value of k that maximizes the gap statistic. The error bars represent one standard error of the estimated gap statistic. (D) The plot shows the percent contribution to the 
overall separability between clusters of each of the nine clustering symptoms, in the order of most contributing (depression = 15.20%) to least (emotional support = 3.19%).
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Table 1. Participants’ demographic information as per dataset and across the three clusters. Number of patients is indicated, with % in parenthesis.  
* reflects the results of a Chi2 test (categories with less than a minimum of five patients per group were removed) comparing across clusters. Similar tests across 
datasets found no differences (P > 0.74). 

Total Cluster1 Cluster2 Cluster3 P*

Training dataset

N (%) 11,448 (69.22) 2943 (25.71) 5802 (50.68) 2703 (23.61)

Age (years) 0.95

18–29 1398 (12.21) 372 (12.64) 660 (11.38) 366 (13.54)

30–39 1966 (17.17) 510 (17.32) 954 (16.44) 502 (18.57)

40–49 2127 (18.58) 506 (17.19) 1029 (17.74) 592 (21.90)

50–59 2454 (21.44) 564 (19.16) 1264 (21.79) 626 (23.16)

60–69 1974 (17.22) 543 (18.45) 1048 (18.06) 380 (14.06)

≥70 1512 (13.21) 442 (15.02) 836 (14.41) 234 (8.66)

No response 20 (0.17) 6 (0.2) 11 (0.19) 3 (0.11)

Sex 0.95

Female 7340 (64.12) 1817 (61.74) 3700 (63.77) 1823 (67.44)

Male 3723 (32.52) 1025 (34.83) 1904 (32.82) 794 (29.37)

No response 385 (3.36) 101 (3.43) 198 (3.412) 86 (3.18)

Ethnicity 0.98

Hispanic/Latino 1162 (10.15) 304 (10.33) 515 (8.88) 343 (12.69)

Non-Hispanic/Non-Latino 8527 (74.48) 2230 (75.77) 4401 (75.85) 1896 (70.14)

Patient refused 349 (3.05) 94 (3.19) 180 (3.1) 75 (2.77)

Unknown 413 (3.61) 111 (3.77) 211 (3.64) 91 (3.37)

No response 997 (8.71) 204 (6.93) 495 (8.53) 298 (11.02)

Race 0.99

American Indian or 
Alaska Native 48 (0.42) 9 (0.31) 22 (0.38) 17 (0.63)

Asian 935 (8.17) 287 (9.75) 469 (8.08) 179 (6.62)

Asian, non-Hispanic 8 (0.07) 1 (0.03) 5 (0.09) 2 (0.07)

Black or African American 405 (3.54) 102 (3.47) 184 (3.17) 119 (4.4)

Black, non-Hispanic 8 (0.07) 3 (0.1) 2 (0.03) 3 (0.11)

Native American, Hispanic 1 (0.01) 0 (0) 0 (0) 1 (0.04)

Native American, 
non-Hispanic 1 (0.01) 0 (0) 1 (0.02) 0 (0)

Native Hawaiian or other 
Pacific Islander 65 (0.57) 14 (0.48) 35 (0.6) 16 (0.59)

Other 1921 (16.78) 487 (16.55) 929 (16.01) 505 (18.68)

Other, Hispanic 11 (0.1) 1 (0.03) 9 (0.16) 1 (0.04)

Other, non-Hispanic 8 (0.07) 2 (0.07) 5 (0.09) 1 (0.04)

Patient refused 326 (2.85) 84 (2.85) 170 (2.93) 72 (2.66)

Unknown 443 (3.87) 113 (3.84) 230 (3.96) 100 (3.7)

White 6148 (53.7) 1598 (54.3) 3186 (54.91) 1364 (50.46)

White, Hispanic 2 (0.02) 1 (0.03) 0 (0) 1 (0.04)

White, non-Hispanic 106 (0.93) 30 (1.02) 54 (0.93) 22 (0.81)

No response 1012 (8.84) 211 (7.17) 501 (8.63) 300 (11.1)

Marital status 0.65

Married 5969 (52.14) 1809 (61.47) 3031 (52.24) 1129 (41.77)

continued on next page



Gilam et al., Sci. Adv. 2021; 7 : eabj0320     8 September 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 19

Total Cluster1 Cluster2 Cluster3 P*

Separated 237 (2.07) 37 (1.26) 111 (1.91) 89 (3.29)

Widowed 437 (3.82) 99 (3.36) 246 (4.24) 92 (3.4)

Never married 2149 (18.77) 489 (16.61) 1065 (18.35) 595 (22.01)

Living together 671 (5.86) 157 (5.33) 345 (5.95) 169 (6.25)

Divorced 1218 (10.64) 229 (7.78) 623 (10.73) 366 (13.54)

No response 767 (6.7) 123 (4.18) 381 (6.57) 263 (9.73)

Education (years) 0.37

≤12 342 (2.99) 73 (2.48) 159 (2.74) 110 (4.07)

13–16 3346 (29.23) 742 (25.21) 1606 (27.68) 998 (36.92)

17–20 6033 (52.7) 1687 (57.32) 3135 (54.03) 1211 (44.80)

≥21 1025 (8.95) 327 (11.11) 554 (9.55) 144 (5.33)

No response 702 (6.13) 114 (3.87) 348 (6) 240 (8.88)

Validation dataset

N (%) 3817 (23.08) 931 (24.39) 2346 (61.46) 540 (14.15)

Age (years) 0.76

 18–29 490 (12.84) 119 (12.78) 299 (12.75) 72 (13.33)

 30–39 644 (16.87) 156 (16.76) 386 (16.45) 102 (18.89)

 40–49 713 (18.68) 144 (15.47) 439 (18.71) 130 (24.07)

 50–59 768 (20.12) 165 (17.72) 485 (20.67) 118 (21.85)

 60–69 682 (17.81) 198 (21.27) 414 (17.65) 70 (12.96)

 ≥70 510 (13.36) 147 (15.79) 316 (13.47) 47 (8.7)

 No response 10 (0.26) 2 (0.21) 7 (0.3) 1 (0.19)

Sex 0.87

 Female 2496 (65.39) 589 (63.27) 1564 (66.67) 343 (63.52)

 Male 1193 (31.25) 322 (34.59) 698 (29.75) 173 (32.04)

 No response 128 (3.35) 20 (2.15) 84 (3.58) 24 (4.44)

Ethnicity 0.87

Hispanic/Latino 386 (10.11) 94 (10.1) 221 (9.42) 71 (13.15)

Non-Hispanic/
Non-Latino 2797 (73.28) 688 (73.9) 1747 (74.47) 362 (67.04)

Patient refused 122 (3.2) 36 (3.87) 68 (2.9) 18 (3.33)

Unknown 151 (3.96) 47 (5.05) 87 (3.71) 17 (3.15)

No response 361 (9.46) 66 (7.09) 223 (9.51) 72 (13.33)

Race 0.99

American Indian or 
Alaska Native 21 (0.55) 5 (0.54) 12 (0.51) 4 (0.74)

Asian 323 (8.46) 90 (9.67) 189 (8.06) 44 (8.15)

Asian, non-Hispanic 2 (0.05) 0 (0) 1 (0.04) 1 (0.19)

Black or African 
American 124 (3.25) 32 (3.44) 71 (3.03) 21 (3.89)

Black, non-Hispanic 2 (0.05) 1 (0.11) 1 (0.04) 0 (0)

Native American, 
Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

Native American, 
non-Hispanic 1 (0.03) 1 (0.11) 0 (0) 0 (0)

continued on next page
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Total Cluster1 Cluster2 Cluster3 P*

Native Hawaiian or other 
Pacific Islander 15 (0.39) 4 (0.43) 8 (0.34) 3 (0.56)

Other 647 (16.95) 161 (17.29) 388 (16.54) 98 (18.15)

Other, Hispanic 5 (0.13) 2 (0.21) 3 (0.13) 0 (0)

Other, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

Patient refused 121 (3.17) 37 (3.97) 66 (2.81) 18 (3.33)

Unknown 134 (3.51) 42 (4.51) 77 (3.28) 15 (2.78)

White 2021 (52.95) 480 (51.56) 1283 (54.69) 258 (47.78)

White, Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

White, non-Hispanic 36 (0.94) 9 (0.97) 22 (0.94) 5 (0.93)

No response 365 (9.56) 67 (7.2) 225 (9.59) 73 (13.52)

Marital status 0.76

 Married 1991 (52.16) 529 (56.82) 1230 (52.43) 232 (42.96)

 Separated 99 (2.59) 15 (1.61) 59 (2.51) 25 (4.63)

 Widowed 157 (4.11) 49 (5.26) 89 (3.79) 19 (3.52)

 Never married 684 (17.92) 162 (17.40) 420 (17.90) 102 (18.89)

 Living together 243 (6.37) 55 (5.91) 152 (6.48) 36 (6.67)

 Divorced 396 (10.37) 81 (8.7) 250 (10.66) 65 (12.04)

 No response 247 (6.48) 40 (4.3) 146 (6.22) 61 (11.3)

Education (years): 0.21

 ≤12 108 (2.83) 25 (2.69) 53 (2.26) 30 (5.56)

 13–16 1140 (29.87) 241 (25.89) 700 (29.84) 199 (36.85)

 17–20 1995 (52.27) 529 (56.82) 1245 (53.07) 221 (40.93)

 ≥21 331 (8.67) 93 (9.99) 207 (8.82) 31 (5.74)

 No response 243 (6.37) 43 (4.62) 141 (6.01) 59 (10.93)

Longitudinal dataset (at baseline)

N (%) 1273 (7.70) 263 (20.66) 827 (64.96) 183 (14.38)

Age (years) 0.14

 18–29 169 (13.28) 34 (12.93) 111 (13.42) 24 (13.11)

 30–39 184 (14.45) 35 (13.31) 123 (14.87) 26 (14.21)

 40–49 263 (20.66) 42 (15.97) 172 (20.8) 49 (26.78)

 50–59 275 (21.6) 47 (17.87) 181 (21.89) 47 (25.68)

 60–69 229 (17.99) 56 (21.29) 144 (17.41) 29 (15.85)

 ≥70 151 (11.86) 49 (18.63) 95 (11.49) 7 (3.83)

 No response 2 (0.16) 0 (0) 1 (0.12) 1 (0.55)

Sex 0.80

 Female 865 (67.95) 172 (65.4) 560 (67.71) 133 (72.68)

 Male 367 (28.83) 84 (31.94) 239 (28.9) 44 (24.04)

 No response 41 (3.22) 7 (2.66) 28 (3.39) 6 (3.28)

Ethnicity 0.89

Hispanic/Latino 129 (10.13) 31 (11.79) 71 (8.59) 27 (14.75)

Non-Hispanic/
Non-Latino 998 (78.4) 207 (78.7) 652 (78.84) 139 (75.96)

Patient refused 43 (3.38) 7 (2.66) 30 (3.63) 6 (3.28)

continued on next page
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Can we generate idiosyncratic groups of patients using  
only pain intensity?
The clustering solution identified three clusters portraying a graded 
scale of severity across all clustering symptoms and all pain-specific 
measures. Pain intensity is a common measure for assessing one 
aspect of the severity of pain and thus can be used to examine 
whether one such variable can similarly obtain a solution that generates 
idiosyncratic groups of patients. Although AHCA is commonly 

applied on multiple measurements, it technically requires one variable 
at minimum, and thus, we applied AHCA on the training dataset 
using only pain intensity. The dendrogram reflecting the results of 
the AHCA is shown in Fig. 3A. The gap statistic indicated an opti-
mal number of one cluster (Fig. 3B). We nevertheless selected the 
nonoptimal three-cluster solution to compare it with the clustering 
symptoms-based solution directly. To visualize this comparison, 
we applied principal components analysis (PCA) (26, 27) on the 

Total Cluster1 Cluster2 Cluster3 P*

 Unknown 47 (3.69) 10 (3.8) 33 (3.99) 4 (2.19)

 No response 56 (4.4) 8 (3.04) 41 (4.96) 7 (3.83)

Race 0.95

American Indian or 
Alaska Native 10 (0.79) 3 (1.14) 6 (0.73) 1 (0.55)

Asian 90 (7.07) 20 (7.6) 56 (6.77) 14 (7.65)

Asian, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

Black or African 
American 31 (2.44) 7 (2.66) 15 (1.81) 9 (4.92)

Black, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

Native American, 
Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

Native American, 
non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

Native Hawaiian or other 
Pacific Islander 3 (0.24) 1 (0.38) 1 (0.12) 1 (0.55)

Other 239 (18.77) 58 (22.05) 136 (16.44) 45 (24.59)

Other, Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

Other, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)

Patient refused 35 (2.75) 7 (2.66) 22 (2.66) 6 (3.28)

Unknown 51 (4.01) 8 (3.04) 35 (4.23) 8 (4.37)

White 740 (58.13) 148 (56.27) 501 (60.58) 91 (49.73)

White, Hispanic 1 (0.08) 0 (0) 1 (0.12) 0 (0)

White, non-Hispanic 12 (0.94) 2 (0.760) 10 (1.21) 0 (0)

No response 61 (4.79) 9 (3.42) 44 (5.32) 8 (4.37)

Marital status 0.52

 Married 688 (54.05) 151 (57.41) 461 (55.74) 76 (41.53)

 Separated 19 (1.49) 2 (0.76) 12 (1.45) 5 (2.73)

 Widowed 42 (3.3) 14 (3.32) 22 (2.66) 6 (3.28)

 Never married 272 (21.37) 49 (18.63) 174 (21.04) 49 (26.78)

 Living together 80 (6.28) 18 (6.84) 49 (5.93) 13 (7.1)

 Divorced 157 (12.33) 27 (10.27) 100 (12.09) 30 (16.39)

 No response 15 (1.18) 2 (0.76) 9 (1.09) 4 (2.19)

Education (years) 0.06

 ≤12 21 (1.65) 4 (1.52) 12 (1.45) 5 (2.73)

 13–16 384 (30.16) 72 (27.37) 231 (27.93) 81 (44.26)

 17–20 747 (58.68) 159 (60.46) 502 (60.70) 86 (46.99)

 ≥21 109 (8.56) 23 (8.75) 77 (9.31) 9 (4.92)

 No response 12 (0.94) 5 (1.9) 5 (0.6) 2 (1.09)
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nine-dimensional clustering symptoms (see fig. S4A for scree plot 
and fig. S4B for clustering symptoms’ contribution to the first three 
principal components). To evaluate the separability between the 
clusters of the two solutions, we plotted the entire training dataset 

using the first three principal components and colored the data 
points based on the three clusters of the clustering symptoms solution 
(Fig. 3C) and of the pain intensity solution (Fig. 3D). The separability 
between clusters is clearly seen in the clustering symptoms solution, 

Fig. 2. Cluster characterization and diagnostic-like validation. A graded scale of severity is manifested across all clustering symptoms (A to I) and all pain-specific 
measures (J to R), such that Cluster1 reflects a low severity, Cluster2 reflects a medium severity, and Cluster3 reflects the worst severity. Raincloud plots combining jittered 
raw data, data distribution, and boxplots were generated using open source code (93). Complementary descriptive and inferential statistical information is provided in 
Table 2. (S) The plot shows the % endorsement of 11 body regions as distributed in each of the clusters. There was no significant association in the distribution of % 
endorsed body regions between the clusters (P = 0.99). NRS, Numerical Rating Scale; PCS, Pain Catastrophizing Scale.
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Fig. 3. Alternatives to the symptom-based clustering solution. (A) The resulting dendrogram reflecting results of the agglomerative hierarchical clustering algorithm 
(AHCA) as implemented on the training dataset (n = 11448) and using the pain intensity measure. The tree is not clustered since the optimal solution was of one cluster. 
(B) The plot shows the gap statistic values for different k number of clusters, and a red dashed line indicates the optimal solution of k = 1. The error bars represent 
one standard error of the estimated gap statistic. (C) and (D) Plots that show the distribution of all data points in the training dataset on the three primary principal com-
ponents (PCs) derived from the nine-dimensional clustering symptoms and colored according to either the three clusters generated from the AHCA of these symptoms 
(C) or according to the three clusters generated from the AHCA of pain intensity (D). The separability between clusters is clearly seen in the clustering symptoms’ solution, 
while a substantial overlap is seen in the pain intensity solution. (E) The plot shows the correlation between the first PC and the PROMIS global health (GH) mental sub-
scale in the training dataset (available for n = 10,835): r = −0.78, P < 0.001. (F) Congruence matrix between the clustering symptoms’ three-cluster solution, and the 
tertiles that were labeled according to the PROMIS GH mental subscale. The overall level of congruence was 62.26%.
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while a substantial overlap is seen in the pain intensity solution, 
indicating that using pain intensity alone cannot capture a simi-
lar solution.

To what degree does the clustering solution reflect a latent 
mental health–related construct?
As we initially expected, the negative affect- or mental health–related 
clustering symptoms were the most important factors driving the 
clustering process and contributing most to the first principal 
component (42.2% of the explained variance; fig. S4B). To estimate 
the degree by which the underlying data structure of the clustering 
symptoms reflect a mental health–related construct, we calculated 
the Pearson correlation coefficient between the first three principal 
components derived by the above mentioned PCA and the PROMIS 
Global Health Mental subscale. To note, this measure was available 
for n = 10,835 of the training dataset. The first principal component 
explained 55.42% of the variance in the data structure (fig. S4A) and 
had a correlation of r  =  −0.78 with the PROMIS Global Health 
Mental subscale (Fig. 3E). The correlation with the second and third 
principal components, which explained 12.28 and 8.83% of the 
variance in the data structure (fig. S4), were r = 0.11 and r = −0.02, 
respectively. As expected, this reconfirms mental health as a key 
construct in the data’s underlying structure but not the only.

To further illustrate this point, we split the range of possible 
PROMIS Global Health Mental scores into tertiles and labeled them 
in order of severity (1, 2, and 3) to match the clustering symptoms’ 
cluster solution labeling. We then quantified the level of congruence 
between these two sets of labels by counting how many patients 
were assigned by each of the solutions to the same cluster label and 
how many were mismatched between the clusters (Fig. 3F). The 
level of congruence was 76.73, 50.44, and 71.77% for Cluster1, 
Cluster2, and Cluster3, respectively, and with an overall 62.26% 
congruence. Together, it is clear that mental health is a primary 
component in the data's underlying structure. Still, the proposed 
clustering solution reflects more than a latent mental health–related 
construct, particularly at the intermediate Cluster2.

Predictive validation and cluster dynamics over time
After controlling for the time between the two assessments (3 to 
12 months), we were able to demonstrate substantial differences 
between clusters as identified at baseline in all clustering symptoms 
(Table 3 and Fig. 4, A to I) and pain-specific measures at follow-up 
(Table 3 and Fig. 4, J to Q). Cluster1 continued to reflect the least 
severe condition, Cluster3 the worst, and Cluster2 in between, again 
with substantial effect sizes across all comparisons (Table 3). These 
results validate the prognostic-like nature of the clusters and sug-
gest that the graded scale of severity remains consistent at follow-up 
at the group level. Nevertheless, cluster identification at follow-up 
demonstrates that while most patients (n = 879, 69.05%) remained 
within their same cluster between the two time points, there were 
movements across clusters (Fig. 5A): 180 patients (14.14%) had an 
improvement in their condition and moved from Cluster3 to 
Cluster2 (n = 69, 5.42%) or Cluster1 (n = 6, 0.47%) and from 
Cluster2 to Cluster1 (n = 105, 8.25%); and 214 patients (16.81%) 
had a worsening in their condition and moved from Cluster1 to 
Cluster2 (n = 115, 9.03%) or Cluster3 (n = 4, 0.31%) and from 
Cluster2 to Cluster3 (n = 95, 7.46%). We compared the total movement 
of patients across clusters between time points (n = 394, 30.95%) 
to a bootstrapped distribution of patients moving across clusters 

within potential measurement error [mean (M) = 5.81% ± 0.54 SD; 
Fig. 5B], which indicated a significant amount of movement 
(t(df = 999) = 1477.18, P < 0.0001; Fig. 5C). This suggests that the 
changes across clusters are meaningful, potentially indicating an 
interaction between treatment effects and regression to the mean 
(33). Thus, cluster assignment is not a static condition; rather, various 
factors might affect the long-term dynamics across clusters, offering 
a window of opportunity for personalized interventions.

To provide an estimate of what entails a change in cluster assign-
ment, we calculated the average of absolute change across the nine 
clustering symptoms’ scores between the two time points, as well as 
the average number of symptoms that had an absolute change 
beyond the estimated measurement error. We compared these values 
between the group of n = 394 patients that moved across clusters 
and the n = 879 patients that remained in the same cluster. The 
patients moving across clusters between time points had a larger 
absolute change in symptoms’ scores (7.59  ±  3.65) and a larger 
number of symptoms that changed beyond the measurement error 
(6.00 ± 1.79) compared to those patients remaining in the same 
cluster [5.18 ± 2.15, t(1271) = 14.72, P < 0.0001; and 4.96 ± 1.74, 
t(1271) = 9.78, P < 0.0001, respectively].

DISCUSSION
In our study, we offer a novel biopsychosocial-inspired approach to 
classify patients with chronic pain, resulting in the identification of 
three robust idiosyncratic groups of patients and generating 
putative markers that can classify current and predict future severity 
of chronic pain in a graded manner, regardless of their formal diag-
nosis or their underlying etiology. We applied a data-driven clustering 
algorithm on multidimensional self-reported symptom assessments 
that are agnostic to pain. These assessments were collected through 
CHOIR, Stanford’s registry-based learning health care system (34), 
and belonging to more than 16,000 real-world patients seeking 
treatment at a tertiary academic pain clinic. The assessments can 
be completed using an electronic device from almost any place, in 
about 15 min, and with hardly any need for assistance from staff. 
These findings can be instrumental in supporting treatment selection 
and pain management in a personalized health care platform, espe-
cially in the current forward-triage approach to health care in which 
a clinician might not be able to physically examine a patient (35). 
Moreover, findings inspire further research into the biological and 
behavioral mechanisms that characterize the identified clusters.

The three identified groups reflect a graded scale of severity. 
They are therefore labeled Cluster1, Cluster2, and Cluster3, with 
higher numbers indicative of a more severe condition, as shown in 
all assessments, including those used for clustering and those 
specific for pain, except for pain duration since onset of chronic 
pain. The strongest drivers separating between clusters are the 
negative affect–related factors. No apparent demographic factors 
significantly differ between clusters. The overall group characteristics 
initially found on a subset of more than 11,000 patients reliably 
reproduced in two additional subsets consisting of about 5000 more 
patients. Moreover, one of these subsets comprising 1273 patients 
included follow-up assessments, the severity of which were predicted 
on the basis of the baseline cluster assignment. Examining the 
dynamics across clusters between baseline and follow-up assessments 
indicated that cluster assignment is not a static condition, suggesting 
that various factors might affect improvement or worsening of the 
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pain condition. Thus, beyond the diagnostic- and prognostic-like 
nature of these symptom-based putative markers, future clinical 
and research efforts should examine whether and to what extent 
they will indicate response to various treatments (23, 24). This will 
be of importance to further determine the extent by which changes 
in cluster assignment reflect “real” change rather than potential 
measurement errors or other statistical phenomena.

A primary concern of chronic pain health care is identifying safe 
and effective treatments tailored to the patient’s particular needs. 
Evidence-based approaches have been called to address this challenge 
by generating classification systems that focus on the fine-grained 
multidimensional and mechanistic substrates of chronic pain 
conditions (36, 37). However, translating these systems into clinically 
interpretable and applicable tools is challenging, especially if 
these systems require costly and burdensome medical tests (38). 
Consequently, there have been growing efforts to generate empirical 

classifications of patients with chronic pain based on relatively simple 
assessments that may advance our understanding of the underlying 
substrates of chronic pain and potentially inform and support clinical 
decision-making (13–22). These efforts differ in sample sizes (from 
approximately a hundred to thousands), type of chronic pain groups 
(heterogeneous, specific diagnoses, or even pain-free), type of 
measures (subjective and/or objective), type of analytic approach 
(e.g., supervised versus unsupervised algorithms), and the number 
of resulting clusters (mostly in the range of two to four groups), 
among other. While a detailed review of the various classifications 
approaches goes beyond the scope of the current work, two such 
solutions are noteworthy.

One of the first efforts to empirically classify patients with chronic 
pain (22) identified three clusters based on the multidimensional 
pain inventory (MPI) (39). The MPI assesses psychosocial and 
behavioral factors related to the experience of chronic pain, such as 

Fig. 4. Predictive validation of the clusters. All raincloud plots for the clustering symptoms (A to I) and for the pain-specific measures (J to Q) reflect severity of assessment 
at follow-up (longitudinal dataset, n = 1273), based on cluster identification at baseline. Complementary descriptive and inferential statistical information is provided in 
Table 3. The graded scale of severity is manifested also here, such that those labeled as Cluster1 at baseline continue to have at the group level the lowest level of severity 
across all measures, and the same for Cluster2 and Cluster3 being the medium and worst severity, respectively.
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pain severity and interference, affective distress, social support, and 
behavioral activities. The cluster labeled as dysfunctional had relatively 
high levels of pain and emotional distress, low levels of perceived 
life control and behavioral activation, and intermediate levels on 
various social related factors. The interpersonally distressed cluster 
had intermediate levels on most factors but was low on social support– 
related factors. The minimizer/adaptive copers cluster had low levels 
of pain and emotional distress, high levels of perceived life control 
and behavioral activation, and high social support. The subgroups 
initially developed using patients with heterogeneous chronic pain, 
later reproduced in other chronic pain diagnostic groups, such as low 
back pain, headache, and patients with temporomandibular disorder 
(TMD) (40). Mixed effects were found for the potential association 
between MPI-based classification and treatment outcomes (41–44).

A more recent effort (14) used numerous clinical characteristics, 
psychosocial questionnaires, and measures of autonomic function 
and multimodal pain sensory testing in patients with TMD and 
TMD-free controls from several locations in the United States to 

identify three groups based on best possible characterization of 
chronic TMD. An adaptive cluster consisting mostly of the controls 
had better autonomic function, the lowest sensitivity to pain, and 
the lowest levels of various psychosocial characteristics and symptoms. 
A global symptoms cluster, half of which were TMD cases, had high 
levels of sensitivity to pain and of psychosocial characteristics and 
symptoms. Follow-up analysis indicated that TMD-free controls 
from this group had greater risk of developing first-onset TMD. An 
additional pain-sensitive cluster, a quarter of which were TMD 
cases, had intermediate levels of psychosocial characteristics and 
symptoms, coupled with heightened sensitivity to experimental 
pain. An algorithm based on a much smaller subset of the initial 
measurements, including muscle pain sensitivity, somatization, anxiety, 
and depression, reproduced and generalized the clusters in addi-
tional cohorts from different locations, including patients with 
chronic overlapping pain conditions and clinical patients most 
commonly diagnosed with TMD, fibromyalgia, trigeminal neuralgia, 
and headache (16).

Fig. 5. Cluster dynamics over time. (A) Sankey plot indicating the transition of patients across clusters over time in the longitudinal dataset (n = 1273). Width of lines 
reflect the extent of movement between time points. One hundred and eighty patients (14.14%) had an improvement in their condition, 214 patients (16.81%) had a 
worsening in their condition, and 879 (69.05%) remained in the same cluster, between baseline assessment and follow-up. (B) Plot of the smoothed kernel density estimate, 
or relative likelihood, of observing a % change in the bootstrapped distribution of patients moving across clusters within a randomized range of ±3-point measurement 
error. The red dashed line marks the average set at M = 5.81% ± 0.54SD. The smoothed curve indicates the exact likelihood of observing an exact percent change (i.e., the 
x-axis value). The bars behind the density curve reflect the same information, averaged at 0.2 sized bins. (C) Bar plot comparing the average percent change of patients 
moving across clusters from the bootstrap distribution (SE = 0.017, too small to be seen), with the actual 30.95% found over time in the longitudinal dataset.
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In most clinical settings, as in research, chronic pain is pre-
dominantly diagnosed by the relevant anatomical location of pain 
(7, 8). The symptom-based classification system proposed here, 
similarly to the clustering efforts just described, was inspired by the 
biopsychosocial approach (9–12). We aimed to expand the common 
practice by integrating evidence-based and patient-centric information 
that go beyond the potential underlying objective location and 
manifestation of pathological disease and incorporate the subjective 
and personal experience and expression of the illness. However, 
unlike previous clustering efforts, we do so by focusing on domain- 
general patient-reported symptoms that are agnostic to pain and 
thus commonly considered secondary in classifying patients with 
chronic pain rather than a potential starting point. Unlike the 
dominant diagnostic system, we find no associations between 
specific locations of experienced pain and identified cluster. Never-
theless, the number of body regions in pain increased with severity, 
indicating that patients with widespread and/or overlapping chronic 
pain conditions suffer more than those with a more localized pain 
condition. In line with previous clustering approaches and other 
research (14, 45), findings thus evidence a diminished reliance on 
specific anatomical locations of experienced pain when assessing 
and classifying the severity of impairment in primary pain conditions 
and potentially when considering treatment avenues. Together, 
although there are similarities and differences between the current 
and previous clustering approaches, it is clear that additional re-
search is required to further corroborate the symptom-based 
classification system proposed here. Moreover, to maximize utility, 
future efforts should aim to integrate between data-driven clustering 
approaches as our own and those described above to provide the 
idiosyncratic complexity of pain within the currently used diagnostic 
systems.

As expected, negative affect–related symptoms emerged as key 
factors driving the clustering process. Researchers have previously 
demonstrated similar negative affect–related metrics to be central 
in clustering patients with chronic pain (13, 14). As we further 
confirmed, a global measure of mental health was a key construct in 
the data's underlying structure. This reverberates with the crucial 
role of mental health in chronic pain (10, 31) and as a potential 
underlying pathological mechanism differing between clusters. 
Moreover, there is currently an ongoing paradigm shift in psychology 
and psychiatry, calling for the classification of psychopathology 
as a hierarchy of continuous dimensions rather than describing it 
through discrete diagnostic categories (46). On top of the hierarchy 
is a global factor termed the “p factor,” generally ranging from low 
to high psychopathological severity and cutting through all psycho-
pathological disorders to account for their nonspecific and overlapping 
manifestation of symptoms (47, 48). The resemblance to chronic 
pain is astounding. The empirical findings presented here suggest that 
pain as a field of study and treatment should consider establishing a 
similar hierarchy of continuous global transdiagnostic dimensions 
to improve the ability to address the challenges of chronic pain. 
Moreover, this echoes our contemporary perspective on the need 
for more synergistic interactions between the research and clinical 
fields of pain and mental health, specifically regarding the centrality 
of affective components to these fields (31).

Our findings confirm existing notions of a general graded 
scale of severity of chronic pain illness (45, 49, 50). However, our 
approach extends previous efforts in terms of the combination of 
scale, scope, computational approach, and especially in that we use 

multidimensional domain-general symptoms that are agnostic to 
pain. This is advantageous for two main reasons. First, it may 
highlight potentially modifiable targets for intervention. As we 
anticipated, negative affect–related factors, namely depression, anxiety, 
and anger, were key drivers in cluster assignment at the group level. 
Fortunately, there is a flourishing of treatment strategies aimed to 
reduce negative affect–related symptomatology (51–56). Moreover, 
findings indicate that the distribution of symptoms severity 
and of patients across clusters is, to a certain extent, blended (e.g., 
Figs. 2, A to R, and 3C). This suggests that a health care clinician 
may consider the particular pattern of symptoms at the individual 
patient level regarding the assigned cluster and use this informa-
tion to guide and support clinical decision-making contextually. 
For example, we may envision a patient assigned to the lower 
severity Cluster1 but has relatively high levels of sleep dysfunc-
tion that a clinician could address with specific sleep-related 
treatments (57).

A second advantage of the domain-general symptoms approach 
is that it may be implemented and potentially generalizable to other 
chronic illnesses requiring symptom management beyond the 
specific pathophysiology of their disease, like cancer, immune 
disorders, and cardiovascular diseases among many others. Notably, 
the graded classification of severity resonates with other illnesses 
that are characterized by a staged progression of disease, such as 
cancer (58), heart (59) and kidney diseases (60), diabetes (61), and 
more. Here, however, we did not use objective and etiological-based 
metrics, and future integration of genetic, metabolic, inflammatory, 
and/or anatomical and functional neuroimaging metrics can sub-
stantially improve our understanding of the biological mechanisms 
underlying the identified symptom-based clusters and potentially 
lead to improved (bio)marker properties (23, 24).

The U.S. National Pain Strategy has drawn attention to a 
subgroup of patients with chronic pain—those with persistent high- 
impact chronic pain. These patients suffer from the most severe and 
debilitating illness, substantially restricting and interfering with 
daily life activities, and requiring increased health care expenditure 
(3, 62, 63). The prevalence of high-impact chronic pain is estimated 
to be between 5 and 15% of the adult U.S. population (10 to 30 million 
people) (3, 5, 63). Compared to lower but still clinically significant 
chronic pain, high-impact chronic pain was associated with un-
favorable health outcomes, limitations in daily activity, negative 
coping strategies, elevated distress, increased health care costs, and 
higher usage and dosage of opioid medication (50, 64). With the 
potential collateral personal, societal, and financial impact of 
long-term opioid medication (65), it is particularly crucial to better 
identify and understand people suffering from and at increased risk 
of high-impact chronic pain. Within our proposed classification 
system, Cluster3 may be reflective of such a group of patients: An 
overall most severe condition characterizes it, manifested at the 
group level by highest levels of pain interference, widespread and/or 
overlapping chronic pain conditions, low levels of physical function, 
fatigue, depression, and basically in every measure that we assessed. 
Early identification of these patients is essential for the provision of 
more comprehensive and costly pain assessments (e.g., psychological, 
medical, etc.) that better inform treatment approaches (e.g., physical 
or psychosocial therapy, medical interventions, etc.). Future research 
efforts may contrast current conceptualizations of high-impact 
chronic pain with the characteristics of Cluster3 and consider to 
what extent it supports this early identification.
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There are notable limitations to our study. While our cohort is 
large, supporting generalizability of the sample and stability of the 
discovered clusters, it is still restricted to the San Francisco Bay 
Area and the outlining Northern California region and potentially 
also to patients who can afford specialized medical treatment in a 
tertiary academic clinic. Future efforts will need to generalize our 
findings to other locations with different demographic, sociocultural, 
and economic characteristics. In this regard, there are known 
demographic disparities related to pain health care (66, 67) that 
were not captured by the identified clusters. This may be attributed 
to the particular characteristics of the cohort (table S3), for example, 
being primarily White (53.87%) and with above college level of 
education (61.92%). However, there are some descriptive trends 
worth noting. Across datasets (table S3), Cluster3 was generally 
characterized by younger age, lower education level, more females, 
more patients identifying as Hispanic or Latino, less of them identi-
fying as White, and less reporting being married. To note, the 
recent classification solution described above (14, 16) similarly 
indicated more females, but in contrast found older age, both to 
be associated with the non-adaptive clusters. The range of ages 
differed between studies, with about 50% of the current sample 
older than 50 while the cohorts used by the previous clustering 
effort were mostly below 44. Although it is crucial to better under-
stand the nature of such associations, it is essential to highlight that 
we can only address most of these factors through a necessary 
systematic change in health care.

In addition, in terms of cohort characteristics, we had no reliable 
data on formal diagnostic codes within our cohort. Although 
findings indicate no association between the identified clusters and 
anatomical pain location, which is commonly used to support 
formal definitions of chronic pain conditions, future efforts should 
examine the relationship between formal diagnoses of disease state 
and cluster membership. Notably, previous CHOIR studies were 
able to obtain and indicate a multitude of formal diagnoses (28, 29)—
including neuropathic, thoracolumbar, orofacial, visceral, and 
various musculoskeletal pain conditions, as well as fibromyalgia and 
complex regional pain syndrome, among many others—and these 
can be assumed to be part of the current cohort. Thus, our findings 
seem to be generalizable at least to varying types of chronic pain 
conditions.

The symptoms used for clustering are based on NIH’s PROMIS 
system, which has potential limitations, since although the symptoms 
were validated for their psychometric properties (30, 68–73), they are 
still based on subjective self-reports and thus prone to potential biases 
and demand characteristics. Other studies using various clustering 
approaches have incorporated more objective measurements, with 
a better characterization of their underlying mechanistic substrates. 
Most have used various multimodal pain sensory testing that map 
on to various nociceptive pathways (14, 15, 17, 18, 20, 21). While 
incorporating objective measures with better understanding of 
their underlying pathophysiology is a clear next step for this research, 
using the PROMIS system offers substantial advantages. PROMIS-
based T scores are normed to the general U.S. population and thus 
easily comparative across cohorts. PROMIS is also an inexpensive 
and easily administered system, using short forms or computerized 
adaptive testing (CAT) to reduce time and patient burdens, and is 
already in wide usage in many settings, even beyond chronic pain, 
thus allowing others to take a similar approach as ours or to engage 
with our freely available cluster classifier (https://git.io/Jn8m1) for 

additional utilization in clinical and research settings. Moreover, 
previous findings show associations between various PROMIS measures 
and potential biomarkers in both pain and nonpain clinical con-
texts (74–76). Last, the clusters differ in pain-specific measure that 
are non-PROMIS based, such as pain intensity and pain catastroph-
izing, and this solidifies the validity and generalizability beyond 
PROMIS-based measures.

In conclusion, our symptom-based approach and findings offer 
significant diagnostic- and prognostic-like utility for a cost-effective, 
graded severity classification system of patients with chronic pain, 
potentially generalizable to other chronic illnesses. Our study’s 
exploratory nature requires further research to reconfirm and 
generalize the identified clusters in different chronic pain cohorts, 
as well as experimental and mechanistic studies to uncover their 
etiological basis. Nevertheless, this system promises to support clinical 
decision-making, affecting the day-to-day functioning of patients 
with chronic pain, and encourages investigations into new treatment 
opportunities oriented toward a precision- and evidence-based 
approach to relieve the burdens of people suffering from chronic 
illness and improve their quality of life. It thus reflects a synergy 
between theory-driven scientific research, clinical care, and techno-
logical advancement that aims to facilitate personalized health care 
by closing on the bedside-to-bench-to-bedside loop.

MATERIALS AND METHODS
General data acquisition procedures and dataset definition
Data were collected using Stanford University’s CHOIR (http://
choir.stanford.edu), a registry-based, learning health care system 
that administers an electronic survey assessing self-reported demo-
graphic information, pain characteristics, and multiple domains of 
health status in real-world clinical settings (Fig. 1A) (34). Patients 
presenting for consultation at Stanford Pain Management Center 
locations throughout the San Francisco Bay Area and broader 
Northern California region, USA, with the main site located in 
Redwood City, complete the survey as part of their routine clinical 
care. While intended for completion at home using personal 
computers or hand-held devices, patients may complete the survey 
before their appointment at clinic check-in using a tablet computer. 
Survey completion is encouraged, yet optional, and is based on 
patients’ willingness and ability to collaborate. Patients may therefore 
choose not to respond to certain items or assessments. These procedures 
were approved by the Stanford University School of Medicine Insti-
tutional Review Board (IRB). Informed consent was waived by the 
IRB, as CHOIR data were collected for clinical care and quality 
improvement purposes.

Data analyzed were from a retrospective review of all collected 
surveys since CHOIR’s inception in October 2013 through August 2019. 
Our initial data extraction included 24,389 records, from which we 
removed records based on the following criteria: noncompleted or 
test records (6002), missing data in any of the nine measures used 
for clustering (as detailed below; 1651), duplicated records (136), and 
age below 18 years (62). From the resulting 16,538 surveys belonging 
to 16,538 different patients, we extracted a longitudinal dataset of 
1273 patients with a follow-up survey between 3 and 12 months later 
and again with a minimal requirement of having complete data for 
the nine assessments used for clustering at both time points. We chose 
this time frame since 3 months is considered the minimal threshold 
for diagnosing primary chronic pain (7). The upper threshold of 

https://git.io/Jn8m1
http://choir.stanford.edu
http://choir.stanford.edu
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12 months allowed to keep a substantially large proportion of the 
dataset for cluster discovery validation. The resulting 15,265 patients 
were randomly split on the basis of a 75%:25% allocation into a 
training dataset of 11,448 patients used for cluster discovery and an 
additional validation dataset of 3817 patients.

Measures
Demographic characteristics
Demographic characteristics included age, sex, ethnicity, race, marital 
status, and years of education.

Clustering symptoms
The nine symptoms assessing health-related functionality and used 
as the basis for the clustering procedures were from the NIH’s 
PROMIS (30, 68–70, 72, 73). We divided these nine symptoms into 
three domains: (i) the physical domain (fatigue, sleep disturbance, 
and sleep impairment), (ii) the mental or negative affect domain 
(depression, anxiety, and anger), and (iii) the social domain (social 
isolation, emotional support, and satisfaction with social roles and 
activities). Response items are contextualized to the frequency of 
the experienced symptom in the past 7 days (e.g., “in the past seven 
days how often did you feel tired?” and “in the past seven days I felt 
worthless”), and responses were marked on a 1 to 5 scale (1 = never, 
5 = always). Each measured symptom was completed using CAT, 
based on item response theory–derived metrics. CAT reduces the 
time needed to complete each measured symptom because patients 
respond only to a subset of items from the relevant PROMIS item 
bank. This subset of items is selected by the CAT algorithm to have 
the most information to precisely characterize the symptom for the 
patient, with a minimum of 4 (for adults) and a maximum of 
12 items, although typically not more than eight items, taking a minute 
or two per measured symptom (30, 71). The full range of total items 
responded by patients for the nine clustering symptoms was therefore 
between 36 and 108 items. Typically, completing all nine symptom 
measurements should take about 15 min (77, 78).

Ultimately, a standardized T score for each PROMIS symptom is 
generated for each patient. A score of 50 reflects the mean of the 
U.S. general population, with an SD of 10. Higher T scores reflect 
more of the measures’ symptom. We further extracted data of a 
PROMIS-based global health measure, specifically the Global Health 
Mental subscale that consisted of four items assessing general mental 
health, quality of life, satisfaction with social activities, and emo-
tional problems (79). While for most measures such as fatigue or 
depression, higher T scores indicated a worse condition, for emo-
tional support, satisfaction with social roles, global health mental, 
and physical function (see below), higher T scores reflected a better 
condition. Further details regarding measure development and 
validation are available at www.healthmeasures.net.

Pain-specific measures
Pain-specific measures were used independently of the clustering 
process to validate the diagnostic-like nature of the data-driven 
generated clusters in terms of pain-related constructs. A composite 
score of pain intensity was calculated by averaging three self-reported 
pain intensity measures. These measures used a common and 
validated (80) 11-point numeric rating scale of 0 to 10 (0 = no pain, 
10 = pain as bad as you can imagine) for worst and average pain in 
the last 7 days and current pain. The number of body segments in 
which chronic pain is experienced was self-reported by patients, 

who were asked to mark locations of pain on a reliable and valid 
CHOIR body map scheme that included 36 anterior and 38 posterior 
symmetrical body segments for a maximum total of 74 segments 
(Fig. 1A) (81). This measure was used to reflect the extent of pain 
throughout the body. A group of physicians recoded these 74 body 
segments into 11 body regions (table S1 and fig. S1) subsequently 
used to examine specific locations in which patients experienced 
pain. There are 6 body segments in the male and female versions of 
the CHOIR body map that are labeled with different codes. Patients 
who do not report their gender are given the female version of the 
body map by default. These differences were re-coded to match for 
the correct body region across all participants. Pain duration was 
calculated as the number of months from onset of chronic pain that 
was self-reported by patients.

Additional measures assessed using PROMIS instrumentation in-
cluded pain interference with daily life activities, pain behavior, and 
physical function (30, 70). In September 2016 and moving forward, 
physical function was assessed using two separate measures in CHOIR, 
reflecting physical function of the upper extremity and lower mobility 
(82). Across the entire dataset, most patients had the two separate 
measures (61.32%). We analyzed each of the three physical function 
measures separately to be able to differentiate between them.

The last pain-specific measure was pain catastrophizing, reflect-
ing maladaptive cognitions such as rumination, magnification, 
and helplessness, in response to actual or anticipated pain. Pain 
catastrophizing has been associated with poor outcomes, maintenance, 
and worsening of chronic pain illness (83–85). We used the Pain 
Catastrophizing Scale that previously demonstrated sound psycho-
metric properties (86–88) to measure the frequency with which a 
patient engages in catastrophic thought patterns and consists of 13 
self-reported items on a 0 to 4 scale (0 = not at all, 10 = all the time).

Statistical analysis
Programming and analyses were conducted using a combination 
of R version 4.0.0 (89), RStudio version 1.2.5042 (90), and IBM 
SPSS version 26. Relevant open source R codes are available at 
https://git.io/Jn8m1.

Cluster discovery
Hierarchical clustering is a well-established unsupervised machine 
learning technique that aims to discover groups or clusters of obser-
vations within a dataset without needing to a priori determine the 
specific characteristics of each cluster (25–27). Observations within 
the same cluster are expected to have similar characteristics, while 
different clusters are expected to have dissimilar characteristics. A 
cluster-tree diagram or dendrogram is a mathematical and pictorial 
representation of a cluster solution.

We implemented an AHCA on the training dataset and using the 
nine clustering symptoms, to assign each patient to a cluster. AHCA 
implements an iterative process in which the two most similar ob-
servations (i.e., patients or groups of patients) are fused to form a 
superordinate cluster until all observations belong to one single cluster. 
Two parameters important for this process are a distance metric that 
determines how similar observations are to each other and a linkage 
method to fuse similar observations. The agglomerative coefficient 
can then assess how tightly packed each cluster is within a cluster 
solution. We used the Euclidian distance metric combined with the 
Ward linkage method as it optimized the agglomerative coefficient 
compared to four other linkage methods (table S5).

http://www.healthmeasures.net
https://git.io/Jn8m1
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We subsequently used the gap statistic to determine the optimal 
number of clusters, k (91). The gap statistic compares the within-cluster 
sum of squares of a certain k-clusters solution to the expected within- 
cluster sum of squares under a null distribution with no clusters. An 
ideal solution will have a small within-cluster sum of squares and 
therefore a large gap statistic. We calculated the gap statistic for 
k between 1 and 10. The smallest value of k that is within 1 SD of the 
value of k that maximizes the gap statistic should be chosen as the 
optimal number of clusters.

We next aimed to determine the relative importance of each cluster-
ing symptom to the clustering process, i.e., to the separability between 
clusters. We computed the cluster centroid (25, 27), which is the 
average value of each clustering symptom for all of the observations 
in that cluster, and then calculated the total Euclidian distance be-
tween all cluster centroids. The average amount each clustering symp-
tom contributed to the distance between each clusters’ centroid, 
divided by the total sum of all clustering symptoms’ contribution to 
the total Euclidean distance between all cluster centroids, provides 
a percent contribution to the overall separability between clusters.

Cluster characterization, reliability, and validity
Univariate analysis of variance (ANOVA) and subsequent t tests were 
used to examine differences in clustering symptoms and in pain- 
specific measures between the identified clusters, with Bonferroni 
correction applied to account for multiple comparisons. Chi2 tests 
were used to examine the differential distribution of demographic 
factors and of body regions between the clusters and determine 
whether specific body regions were associated with any of the iden-
tified clusters. This sequence of tests was conducted initially on the 
training dataset to assess the clusters’ diagnostic-like potential and 
subsequently on the validation and the baseline of the longitudinal 
datasets to assess the reliability of cluster assignment and validate the 
cluster’s characteristics in other sets of patients. A nearest centroid 
classifier (25, 27) was generated to assign or label a cluster to a “new” 
patient, based on the shortest Euclidian distance between the values of 
the clustering symptoms of that patient and each clusters’ centroids.

Predictive validation and cluster dynamics over time
Univariate analyses as described above were used to examine differ-
ences in clustering symptoms and in pain-specific measures be-
tween clusters as assigned at baseline, using data from the follow-up. 
To control for time-related effects, we added the number of days 
between the two assessments as covariate. This provided prognostic- 
like validation of the clusters.

Next, the nearest centroid classifier was implemented on the 
follow-up dataset to assess patient movement across clusters be-
tween the baseline and follow-up time points. Also, we used a boot-
strap procedure (26, 27) to assess whether patients’ movement 
across clusters over time was due to potential error in measurement 
of the clustering symptoms or potentially to the clusters’ ability to 
portray real improved or worsening of their condition. Since the 
PROMIS CAT engine uses a stopping criterion such that the 
standard error of the T score drops below a specified level of 3.0 
T score metric points (92), we randomly jittered the original T score 
for each patient and for each of the clustering symptoms at baseline, 
within that error threshold, i.e., ± 3.0 T score points. The nearest 
centroid classifier was implemented on each patient’s simulated data 
to assign a cluster. We then assessed movement across clusters between 
the simulated dataset and the follow-up dataset and calculated the 

number and subsequently the percent of patients moving across 
clusters. This procedure was repeated 1000 times to generate a 
bootstrapped distribution of the percent of patients moving across 
clusters within measurement error. This distribution allowed us to 
calculate the probability of the actual percent of patients moving 
across clusters between the baseline and follow-up time points 
being attributed to measurement error.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj0320

View/request a protocol for this paper from Bio-protocol.
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