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Rare genetic variability in human drug target genes 
modulates drug response and can guide 
precision medicine
Yitian Zhou1, Gabriel Herras Arribas1, Ainoleena Turku1,2, Tuuli Jürgenson3, Souren Mkrtchian1, 
Kristi Krebs3,4, Yi Wang5, Barbora Svobodova6, Lili Milani3, Gunnar Schulte1, Jan Korabecny6, 
Stefano Gastaldello1, Volker M. Lauschke1,7*

Interindividual variability in drug response constitutes a major concern in pharmacotherapy. While polymorphisms 
in genes involved in drug disposition have been extensively studied, drug target variability remains underappre-
ciated. By mapping the genomic variability of all human drug target genes onto high-resolution crystal structures 
of drug target complexes, we identified 1094 variants localized within 6 Å of drug-binding pockets and directly 
affecting their geometry, topology, or physicochemical properties. We experimentally show that binding site 
variants affect pharmacodynamics with marked drug- and variant-specific differences. In addition, we demonstrate 
that a common BCHE variant confers resistance to tacrine and rivastigmine, which can be overcome by the use of 
derivatives based on squaric acid scaffolds or tryptophan conjugation. These findings underscore the importance 
of genetic drug target variability and demonstrate that integration of genomic data and structural information 
can inform personalized drug selection and genetically guided drug development to overcome resistance.

INTRODUCTION
The response to medications differs drastically between individuals 
with many patients not experiencing the intended treatment out-
comes due to the manifestation of adverse drug reactions (ADRs) or 
insufficient treatment response. Lack of response constitutes the 
most common reason for project terminations in drug develop-
ment, with more than half of all candidate drugs that enter clinical 
trials failing because of efficacy issues (1, 2). In addition, ethnogeo-
graphic or interindividual variability in drug response is also fre-
quently observed for marketed drugs (3, 4). Overall, it is estimated 
that 10 to 45% of patients do not respond appropriately to pharma-
cological treatment (5), and the fraction of nonresponders can be 
even higher for certain diseases, such as major depressive disorder 
where more than half of all patients do not respond to first-line an-
tidepressant therapy (6).

Genetic polymorphisms in genes involved in drug disposition, 
such as drug-metabolizing enzymes and drug transporters, have 
long been described as biomarkers to predict therapeutic efficacy or 
ADR risks (7, 8). Well-established examples include DPYD geno-
typing to guide fluorouracil treatment (9), CYP2C19 genotype–
guided antiplatelet therapy (10), and CYP2D6 profiling to derive 
therapeutic recommendations for tamoxifen (11). In contrast, how 
polymorphisms in genes encoding drug targets affect drug response 
is less studied, at least in part, because of their extensive molecular 
diversity (12, 13). While the frequencies of loss-of-function varia-
tion in human drug targets have been recently mapped (14), the 

extent to which drug target variability affects drug efficacy has not 
been evaluated.

For a given drug to be effective, the parent molecule or one or 
more of its metabolites must bind to the target protein and modu-
late its activity. Genetic variations in drug target genes can affect 
expression levels or functionality of the gene product, thus altering 
the stoichiometry of drug molecules to functional target proteins at 
a given dose. Furthermore, variants that affect amino acids in the 
drug-binding pocket can directly influence drug-target associations 
by altering pocket geometry, topology, or physiochemical inter-
actions. Recent seminal work showed that naturally occurring mis-
sense variants in drug-binding sites within genes encoding members 
of the G protein–coupled receptor (GPCR) family of drug targets 
constitute important determinants of drug response whose consid-
eration could increase prescription precision and reduce socioeco-
nomic costs by up to 500 million British pounds annually (15). 
However, how drug target variability in genes other than GPCRs 
might modulate drug response has not yet been investigated.

Here, we systematically profiled the genetic variability of all 
human protein drug targets based on whole-exome and whole-
genome sequencing data from 138,632 unrelated individuals across 
seven ethnogeographic groups. In total, we identified 479,860 natural-
ly occurring exonic variants, of which 82,884 were predicted to af-
fect gene function using a set of 17 partly orthogonal computational 
algorithms. By leveraging available high-resolution crystal struc-
tures, we identified 1094 variations that affected amino acids within 
6 Å of the binding drug molecule. To evaluate the relevance of these 
findings, we experimentally validated the effects of variants on the 
response to drugs across diverse classes, including angiotensin-
converting enzyme (ACE) inhibitors (ACEis), cholinesterase inhibitors, 
and microtubule polymerization blockers. Binding site variability 
significantly affected the activity of ACEis with >10-fold differences 
in response between tested ACE variants. Similarly, tacrine strongly 
inhibited reference sequence cholinesterase, whereas the common 
D98G binding site variant (minor allele frequency = 1.2%) was resistant 
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to tacrine. By using a library of tacrine-squaramide derivatives, we 
identified compounds with strong inhibitory effects on both reference 
and mutant enzyme, thus overcoming drug resistance. Combined, 
these data suggest that drug target variability provides an important 
determinant of interindividual variability in drug response and 
that integration of genomic and structural information can provide 
promising means to guide personalized drug selection to optimize 
drug response.

RESULTS
Overview of the genetic variability profile in human 
drug targets
To characterize human drug target variability, we first obtained 
all drug targets (n = 893) for 1578 U.S. Food and Drug Administra-
tion (FDA)–approved drugs (16). We excluded all nonhuman (e.g., 
directly targeting pathogens; n = 129) and nonprotein targets (e.g., 

targeting DNA or chelating metal ions; n = 10) as well as all target 
variants that only arise because of somatic mutations (n = 60), 
resulting in a total of 606 target proteins targeted by 1155 drugs that 
give rise to a total of unique 3346 drug-target pairs (Fig. 1A and 
table S1). The majority of these drugs target the nervous system 
(n = 242; 21%), alimentary tract and metabolic system (n = 178; 
15%), and cardiovascular system (n = 171; 15%), whereas only few 
anti-infectives (n = 4; 0.3%) and antiparasitic drugs (n = 3; 0.3%) 
had human host cell protein targets (Fig. 1B). Most human drug 
targets were enzymes (n = 204; 34%), ion channels (n = 131; 22%), 
and membrane receptors (n  =  113; 19%). Notably, 45.7% of all 
drugs are associated with different target-encoding genes (Fig. 1C). 
To corroborate the accuracy of these annotations, we matched the 
target annotations by Santos et al. (16) against the Therapeutic Target 
Database (17). Notably, we find good overlap between both resources 
with 86.2% of drugs being annotated with the same target in both 
databases, albeit sometimes different isoforms (table S2). However, 
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Fig. 1. The genetic landscape of human drug targets. (A) After exclusion of drugs with nonprotein or nonhuman targets or drugs targeting only specific somatic 
mutations, we obtained 606 genes encoding the target proteins of 1155 FDA-approved drugs, resulting in a total of 3346 unique drug-target pairs. (B) The analyzed drugs 
were distributed across anatomical therapeutic chemical (ATC) classifications. The most common targets were enzymes and ion channels followed by membrane receptors 
and structural components. (C) Column plot showing the number of target encoding genes per drug. (D) Across 138,632 individuals, we identified a total of 798,842 
variants of which 479,860 were exonic. Using stringent computational assessments of pathogenicity (see Materials and Methods), 82,884 variants were identified as 
putatively deleterious. (E) The majority of exonic variants in drug target genes are rare with minor allele frequency (MAF) <1%. (F) Variant numbers differed >100-fold 
between drug targets, primarily because of differences in gene length (R2 = 0.87). Confidence bands (95%) are shown in yellow. The gene density distributions for gene 
length and variant number are shown across the different protein classes as histograms on top and on the right of the scatter plot, respectively.
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for some drugs, particularly those targeting the central nervous sys-
tem, the exact mechanism of action is not firmly established.

Next, we analyzed the genetic variability in all 606 human drug 
target genes. Using sequencing data from 138,632 individuals, we 
identified a total of 798,842 variants, of which 479,860 were exonic 
(Fig. 1D). Computational predictions further indicated that 82,884 
(24.3%) exonic variants were likely to have impact on gene functions. 
The vast majority of these variants were rare (98.1%) or very rare 
(95.9%) with minor allele frequencies <1 and 0.1%, respectively 
(Fig. 1E). Furthermore, more than half of all exonic variants (n = 
246,768 variants; 51.4%) were singletons. Target genes that encode 
structural proteins harbored the highest number of exonic variants 
(on average, 820 missense variants and 70 nonsense variants per 
target), whereas genes that encode CD antigens were the least vari-
able drug targets (on average, 159 missense variants and 11 non-
sense variants per target; fig. S1). Few proteins were devoid of 
missense variants, including SRD5A2 (targeted by dutasteride and 
finasteride), GUCY1B2 (various guanylate cyclase modulators), and 
GNRHR2 (danazol); no nonsense variants were found in NDUFA1 
(metformin), PRPS1 (nelarabine), KCNA4 (dalfampridine and guani-
dine), CACNG8 (bepridil), and CD52 (alemtuzumab).

The majority of drug target genes harbored more than 100 vari-
ants with the highest number of variants found in the ryanodine 
receptor family (RYR1, RYR2, and RYR3; n > 2700 variants each; 
Fig. 1F). The calcium channels RyR1 and RyR3 (encoded by RYR1 
and RYR3) are targeted by the muscle relaxant dantrolene, whereas 
RyR2 (RYR2) is targeted by the vasodilator hydralazine. In contrast, 
only five variants were found in SRD5A2 and GNRHR2, which en-
code the targets of the antiandrogens dutasteride and finasteride 
and the antiestrogen danazol, respectively.

While the number of variants correlated overall well with gene 
length [coefficient of determination (R2) = 0.87], 27 targets differed 
more than twofold from the average variability (Fig. 1F). Even with-
in closely related targets, the extent of genetic variability could dif-
fer extensively. For instance, 444 and 473 variants were identified in 
the NADH (reduced form of nicotinamide adenine dinucleotide) 
dehydrogenase complex components NDUFV3 [1.4 variants per 
kilo–base pair (kbp)] and NDUFA13 (1.1 variants/kbp), whereas 
NDUFA1 only harbored 27 variants (0.1 variants/kbp).

Systematic analysis of drug-binding site variability
We hypothesized that variations localized directly within the drug-
binding pockets might be most likely to affect drug action by affect-
ing pocket geometry or topology or by altering the physiochemical 
interactions between drug and target, which might affect the thermo-
dynamic stability of the protein-ligand complex. To estimate the 
impact of genetically encoded drug-binding site variability, we 
mapped all variants onto the corresponding three-dimensional pro-
tein structures of the respective drug target. To this end, we first 
extracted all drug targets for which high-resolution crystal struc-
tures of the drug bound to its human target were available or could 
be modeled with high confidence (see Materials and Methods for 
details), thus assuring exact drug- and target-specific binding site 
information (table S3).

In total, such high-quality structural information of targets com-
plexed with approved drugs was available for 638 drug-target pairs 
(486 drugs and 110 targets; Fig. 2A). Across these targets, 1094 nat-
urally occurring genetic variations resulted in amino acid exchanges 
in close proximity (≤6 Å) of the bound drug (table S4). Alanine to 

threonine (A > T, 2.5%) or valine (A > V, 2.5%) as well as arginine 
to cysteine (R > C, 2.7%) or histidine (R > H, 2.7%) were the most 
common substitution types (fig. S2). In contrast, the inverse amino 
acid exchanges were less common with the most notable differences 
being observed for cysteine to arginine, which was >10-fold less 
abundant (C > R, 0.2%). Overall, most variants were identified in 
enzyme-binding sites with an aggregated allele frequency of 3.6% 
(n = 582), whereas the variability in the binding pockets of CD anti-
gens (n = 15) and epigenetic regulators (n = 3) was very low (aggre-
gated allele frequency < 0.1%; Fig. 2B). While ion channels were the 
second most common drug target class, the total number (n = 34) 
and the aggregated frequency (<0.1%) of variants in the binding sites 
of drugs targeting in ion channels were very low. Most binding site 
variants affected targets of antineoplastic and immunomodulating 
agents (aggregated allele frequency = 5.6%), whereas only few vari-
ants were found in the binding pockets of proteins targeted by anti-
parasitic drugs or hormonal modulators (aggregated allele frequency 
< 0.1%; Fig. 2C). Across all genes variability in binding sites was sub-
stantially lower than outside of binding pockets (P < 0.0001, paired 
t test), suggesting that drug-binding sites are enriched in functionally 
important domains (Fig. 2D). Furthermore, variability was slightly 
but significantly lower in the binding pocket of small molecules com-
pared to the epitopes recognized by therapeutic antibodies (fig. S3). 
In total, the carrier frequency of all 1094 binding site variants was 
17.5%, suggesting that approximately one in six individuals carries at 
least one missense variant in the binding sites, potentially affecting 
the binding of at least one FDA-approved medication (Fig. 2E).

The most frequent binding site variants were R241W in ITGAL 
(rs1064524), D98G in BCHE (rs1799807), and T164I in ADRB2 
(rs1800888) within the binding pockets of efalizumab, tacrine, and 
albuterol, respectively (Fig. 2F). To evaluate whether these variants 
might manifest in phenotypes, we conducted a phenome-wide asso-
ciation study (PheWAS) analysis using genetic data linked with lon-
gitudinal electronic medical records from 51,138 individuals of the 
Estonian Biobank [Fig.  2G and (18)]. Notably, we found that 
rs1064524 in ITGAL [minor allele frequency (MAF)Biobank = 4.3%] 
associated with phenome-wide significance (Bonferroni correction) 
with pleural plaques ( = 1.9; P = 7.5 × 10−7) and diseases of the 
thymus ( = 1.5; P = 4.5 × 10−5). These results suggest that rs1064524 
localizes to a functionally important domain and modulates protein 
function. By contrast, the other variants were too rare in the Estonian 
population to allow for reliable PheWAS. Hence, this association 
provides proof of concept that the integration of structural and genetic 
data can flag functionally relevant variations, likely due to substan-
tial overlap of drug-binding pockets with active sites or structurally 
important protein domains.

Ethnogeographic differences in drug-binding site variability
Next, we interrogated the genetic variability in drug targets strati-
fied by ethnogeographic groups, as interethnic differences can con-
tribute considerably to differences in pharmacological response. By 
analyzing drug-binding site variability across seven major human 
populations, we found that drug-binding site variation differed 
approximately threefold across groups (Fig. 3A). Variability was 
highest in individuals of African ancestry where 1 in 4 individuals 
harbored at least one binding pocket variant and lowest in East 
Asian population with one variant per 14 individuals.

Among the most abundant variants, large ethnogeographic dif-
ferences were observed. While rs1064524 in ITGAL and rs1799807 in 
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BCHE were relatively common in all populations studied except East 
Asians, rs115253190 in TUBB1 and rs138139116 in TUBB6 were 
almost specific to African populations and Ashkenazim, respectively 
(Fig. 3B). Overall, the highest number of homozygote-binding site 
variant carriers was found in the Finnish population (Fig. 3C). Here, 
39 per 10,000 individuals were homozygous for binding pocket 
variants in ITGAL and BCHE. In contrast, the rates of homozygotes 
in Ashkenazi Jews, Latinos, and East Asians were much lower with 
8, 6, and 2 per 10,000 individuals, respectively (Fig. 3C). These 
results demonstrate that binding site variability signatures are dis-
tinctly different across populations and could contribute to ethno-
geographic differences in drug response.

Binding site variants affect drug pharmacodynamics
Heterologous expression of reference and variant genes coupled to 
functional assays using appropriate end points is considered as the 
gold standard to evaluate the functional impact of pharmacogenetic 
variants (19, 20). To elucidate the functional effect of binding site 
variants, we experimentally evaluated the effect of binding site variants 

in targets from diverse therapeutic areas (cardiology, oncology, and 
neurology). Specifically, we tested five ACE variants in the binding 
pocket for ACEis, which most guidelines recommend as the first-
line treatment for the management of hypertension, seven tubulin 
variants (TUBB1) in the binding site of the polymerization inhibitor 
eribulin, and seven variants in the cholinesterase (BCHE)–binding 
site for the anti–Alzheimer’s disease (AD) medications tacrine and 
rivastigmine.

Using a recently developed live cell assay based on aggregation-
induced emission in which ACE catalyzes the enzymatic cleavage of 
the nonfluorescent peptide probe tetraphenylethene (TPE)–Ser-Asp-
Lys-Pro (SDKP) into fluorescent TPE (21), we first evaluated the 
baseline activity of ACE and its variants and found no significant 
differences (Fig. 4A). Subsequently, we evaluated the inhibitory ef-
fects of the commonly used ACEis—captopril, enalapril, lisinopril, 
quinapril, and fosinopril. Notably, we observed drastic drug- and 
variant-specific differences (Fig. 4, B to F). The largest variability in 
drug response was found in fosinopril, which inhibited only 19 ± 4% 
SEM of Q288R, 69 ± 1% of the reference enzyme, and 97 ± 3% of the 
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H520N variant. Similarly, large differences were observed for lisinopril 
(inhibition between 78 ± 1% of Y527C and 11 ± 9% of H520R) 
and quinapril (inhibition between 81 ± 6% of Y527C and 17 ± 2% 
of Q288R).

Y527C (average inhibition, 71 ± 4%) and the reference enzyme 
(average inhibition, 61 ± 9%) were overall most sensitive to ACEi 
inhibition, whereas Q288R was most resistant (average inhibition, 
32 ± 8%). Captopril was the most potent inhibitor of the reference 
enzyme and of H520R, Y527C, and Y530C variants, inhibiting 
72 ± 2% (reference enzyme), 82 ± 3%, 73 ± 2%, and 66 ± 1% of ACE 
activity, respectively [median inhibitory concentration (IC50) = 4.2 
to 8.6 M, HillSlope: −0.5 to −0.4], whereas fosinopril (97 ± 3% in-
hibition) and quinapril (81 ± 6% inhibition) were most effective for 
H520N (IC50 = 2.4 M, HillSlope = −1.1) and Y527C (IC50 = 6.5 M, 
HillSlope = −0.7), respectively (Fig. 4G). Enalapril constituted the 
least effective ACEi, inhibiting only 26 to 60% of ACE activity 
across reference and variant ACEs (IC50 > 50 M; Fig. 4G). Docking 
analyses showed that for captopril as the most potent ACEi, Y527C 
and Y530C, which did not significantly affect captopril inhibition 
(PHillSlope and PIC50 > 0.2), had only minor impacts on ligand inter-
action stability and shape similarity (Fig. 4H). In contrast, docking 
indicated larger effects on binding stability for Q288R and H520N 
that significantly reduced sensitivity to captopril (PHillSlope and 
PIC50 < 0.05).

In addition, we experimentally tested the sensitivity of seven 
variants in TUBB1, encoding tubulin 1, a common target for chemo-
therapeutic drugs that act by disrupting mitotic spindle dynamics 
(22) on the cytotoxicity of the microtubule-destabilizing halichon-
drin eribulin. While eribulin at 1 nM concentration already reduced 

viability in cells expressing reference tubulin or C12Y by 92 ± 0.6 
and 89 ± 0.5%, respectively, drug effects were significantly reduced 
in cells expressing the tubulin 1 variants Y208C (14 ± 1%), S176P 
(21 ± 3%), R241W (40 ± 5%), L311F (48 ± 2%), G223R (55 ± 3%), 
and C211Y (58 ± 4%), suggesting partial resistance to eribulin ac-
tion (Fig. 4I).

Last, we tested the inhibitory effect of tacrine on seven variants 
in its BCHE-binding pocket. Notably, six of these variants abrogat-
ed enzymatic activity and were thus not tested for their effect on 
tacrine pharmacodynamics (Fig. 4J). The remaining variant D98G 
reduced BCHE baseline activity by 51 ± 41% and conferred strong 
tacrine resistance (tacrine IC50 for D98G >15 M compared to 
<1 M for the reference enzyme; Fig. 4K). Combined, these data 
reveal drastic differences in drug sensitivity between naturally oc-
curring variants across therapeutic areas and target classes and 
demonstrate that consideration of genetic drug target variability in 
drug selection can optimize personalized pharmacodynamics.

Genetically guided selection of pharmacological alternatives 
can overcome drug resistance in vitro
Next, we investigated whether drug resistance could be overcome 
using structurally related derivates to pave the way for genetically 
guided drug development for otherwise resistant drug targets. To 
this end, we focused on BCHED98G because of its high frequency 
(MAF = 1.2%). First, we tested the inhibitory effect of the two ap-
proved nonselective cholinesterase inhibitors, tacrine and rivastig-
mine, and found that while both drugs inhibited reference BCHE by 
87 and 68%, respectively, their inhibitory effect was drastically re-
duced for BCHED98G (52% for tacrine and 12% for rivastigmine; 

AFR
EUR

FIN SA AJ
AMR EA

0.000001

0.00001

0.0001

0.001

0.01

0.1

A
g

g
re

g
at

ed
 fr

eq
u

en
cy

rs1064524

rs1799807

rs5273

rs115253190

rs138139116

rs1800888

ITGAL

BCHE

PTGS2

TUBB1

TUBB6

ADRB2

ITGAL

BCHE

ITGAL

TUBB6

AFR
EUR

FIN SA EA
AMR AJ

0.1

A
llele

freq
u

en
cy

FIN AFR EUR SA AJ AMR EA

n = 39 n = 38
n = 33

n = 29

n = 8

PTGS2

TUBB1

ITGAL

BCHE

ADRB2

PTGS2

ITGAL

CA2

PDE4B

ITGAL

CA6

BCHE

PTGS2

PTGS1MS4A1

n = 6
n = 2

B

C

A

0

20

40

H
o

m
o

zy
g

o
te

 c
o

u
n

t
p

er
 1

0,
00

0 
in

d
iv

id
u

al
s

0.001
0.01

1/4 1/5 1/5 1/91/71/6 1/14
Carrier numbers

Fig. 3. Ethnogeographic variability in human drug-binding sites. (A) The aggregated frequencies of binding site variants is shown for every drug target across seven 
human populations (AFR, African; EUR, European; FIN, Finnish; SA, South Asian; AJ, Ashkenazi Jews; AMR, Latino; and EA, East Asian). The number of binding site variant 
carriers is shown for each population at the bottom of the plot. (B) Interethnic differences in population-specific frequencies are shown for all variants that are common 
(allele frequency > 1%) in at least one population. Note the considerable differences in population frequencies for most variants. (C) The number of homozygous-binding 
site variant carriers per 10,000 individuals is shown across ethnogeographic groups. Pie charts indicate the genes most commonly affected in the respective population.



Zhou et al., Sci. Adv. 2021; 7 : eabi6856     1 September 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 11

Fig. 5A). We thus tested a panel of 20 tacrine, 6-chlorotacrine, or 
7-methoxytacrine derivates using squaramide as a structural scaf-
fold [table S5 and (23)]. Notably, three compounds (K1514, K1524, 
and K1526) that share a similar homodimer structure with methylene 
linker lengths between five and eight carbons inhibited both the ref-
erence and D98G variant enzyme with equal potency (Fig. 5A). Similarly, 
K1035, a chlorotacrine-tryptophan heterodimer previously shown 

to inhibit BCHE at low nanomolar concentrations (24), strongly in-
hibited both reference and D98G variant. Notably, the promising 
tacrine derivatives are predicted to be central nervous system avail-
able by parallel artificial membrane permeation assays (25) and have 
shown strong potential to be centrally active (24).

To analyze the molecular details of these observations, we con-
ducted structural analyses using K1035 and tacrine for which 
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experimentally determined crystal structures with the reference en-
zyme were available. Docking studies of tacrine to reference and 
D98G BCHE revealed substantial steric flexibility, resulting in a 
180° reorientation of the drug molecule in the pocket of the D98G 
variant (Fig. 5B). In contrast, the configuration of K1035 was not 
majorly altered between reference and variant, and its shape simi-
larity to the cocrystallized ligand pose remained largely unaffected 
by the D98G variant (Fig. 5C). These results demonstrate that struc-
tural derivation using squaramide motifs or other scaffolds can over-
come variant-mediated drug resistance, thus opening previously 
unidentified avenues for genetically guided drug development spe-
cifically targeted at resistant variants.

DISCUSSION
While genetic variability in genes involved in drug disposition is 
included in the labels of >130 drugs, drug target variations are only 
included in the labels of warfarin (targeting VKORC1), cystic fibro-
sis transmembrane conductance regulator–targeting medications, 
such as ivacaftor and lumacaftor, and drugs targeting specific so-
matic mutations in oncology. These differences might be explained, 
at least in part, because of the larger heterogeneity of drug targets 
compared to genes involved in drug transport and metabolism, which 
complicate the experimental interrogation of pharmacodynamic 
variants. Few studies have systematically evaluated the genetic vari-
ability in drug targets and found that the genetic variability in drug-
related genes is extensive with a multitude of variants predicted to 

result in functional consequences (26–29). However, systematic 
investigations using structural mapping approaches of population-
scale genomic data across approved medications and their targets 
have not been performed. We here present a comprehensive map of 
naturally occurring drug-binding site variability of all human drug 
targets with available experimentally derived high-resolution crys-
tal structures based on genomic information from 138,632 individ-
uals, covering 42% of all approved drugs.

We find that approximately one in six individuals carries at least 
one variant within a drug-binding pocket. However, as not all tar-
gets had structural binding information, the true total frequency of 
binding site variant carriers can be expected to be even higher. To 
evaluate the functional consequences of genetic variations, a plethora 
of computational algorithms that base their predictions on a multitude 
of features, including sequence conservation, structural information, 
and functional genomic data have been developed (30, 31). While 
these tools are considered reasonably accurate in estimating variant 
pathogenicity, i.e., variant effects on endogenous functions, they are 
not equipped to predict variant effects on drug action. Here, we 
showed that although the binding sites of drugs and endogenous 
substrates commonly overlap, computational algorithms showed 
only minor overrepresentations in the fraction of putatively delete-
rious binding site variants compared to variants outside of binding 
pockets for most genes (fig. S4). Furthermore, while variant effect 
predictors provided overall reliable predictions for the assessment 
of variant pathogenicity with the best algorithm showing 98% sen-
sitivity and 92% specificity, predictive accuracy drops <76% for 
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variants that were experimentally shown to alter drug pharmacody-
namics (fig. S5 and tables S6 and S7). In contrast, PheWAS analysis 
of a common binding site variant in ITGAL (rs1064524), encoding 
integrin  L, revealed strong associations with pleural plaques, dense 
hyalinized collagen fibers formed in parietal pleura, and diseases of 
the thymus. ITGAL encodes the lymphocyte antigen CD11A, an in-
tegrin that has been shown to be necessary for thymus development 
(32) and transmigration of leukocytes across the mesothelium lining 
the pleura (33), thus providing a mechanistic fundament for the ge-
netic association. While sufficiently powered PheWASs could not 
be performed for other binding site variants because of their lower 
frequencies, these findings provide proof of concept that the identi-
fication of binding site variability can also pinpoint variations im-
portant for endogenous functions.

Our experimental results showed that with one exception (C12Y 
in TUBB1), the tested binding site variants either abrogated endog-
enous functions or affected drug pharmacodynamics (18 of 19; 95%), 
thus demonstrating the overall relevance of drug-binding site vari-
ability. For ACE-binding site variants, we observe >40-fold differ-
ences in IC50 between marketed ACEis. For instance, ACEH520N was 
inhibited by fosinopril with an IC50 of 2.4 M, whereas this variant 
was highly resistant to all other ACEis (IC50 > 82.4 M; Fig. 4G). 
Similarly, efficacy of quinapril was sixfold higher in cells expressing 
ACEY527C compared to cells expressing the reference enzyme. These 
results strongly suggest that drug target variability might explain 
part of the interindividual variability in the management of hyper-
tension and incentivize the adoption of genotype-informed drug 
selection. We want to emphasize that we tested drug effects in het-
erologous overexpression systems, resulting in in vitro IC50 values 
(average IC50 around 40 M) that are approximately 10-fold higher 
than the therapeutic exposure levels in vivo (clinical cmax values of 
the different ACEis = 0.2 to 6 M). While these models allow for the 
comparative analysis of pharmacogenomic effects of different vari-
ants in vitro, results are not intended for direct quantitative transla-
tion into the in vivo setting.

The vast majority of binding site variants in drug targets are ex-
tremely rare. An exception is BCHED98G, which is relatively common, 
particularly in Europeans (MAF = 1.8%) and Ashkenazi Jews (MAF = 
1.7%). This variant was first described as the major determinant of 
prolonged apnea in response to muscle relaxants (34). Here, we exper-
imentally show that this variant also confers resistance to the AD 
medications tacrine and rivastigmine. Thus, developing compounds 
that can improve the pharmacological effects for D98G variant car-
riers might be an important advancement to improve therapeutic 
outcomes. Here, we demonstrate that four tacrine derivatives featured 
improved inhibitory effect on BCHED98G. Furthermore, these com-
pounds have previously been demonstrated to also strongly inhibit 
acetylcholinesterase (ACHE) (23). While ACHE constitutes the primary 
cholinesterase in the cerebral cortex, BCHE activity increases in the 
hippocampus and temporal cortex with progressing AD and BCHE 
inhibition correlates with improved cognition (35). Given the distinct 
expression patterns of the two genes in different brain regions of pa-
tients with AD, strong inhibition of both cholinesterases constitutes 
an important goal for AD management (36, 37). These findings 
suggest that K1035, K1514, K1524, and K1526 might constitute promising 
tacrine alternatives for further preclinical development, particularly for 
D98G carriers (>3% of the European population), and demonstrate 
that drug derivation can provide appealing strategies to optimize drug 
efficacy for individuals with genetic variable binding sites.

The presented data demonstrate that genetic variability affecting 
amino acids in drug-binding pockets can have pronounced effects 
on drug efficacy, but the clinical validation of these findings re-
mains challenging because of the low frequency of individual bind-
ing site variants. The variants rs56040400 and rs373359894  in C5 
that both affect arginine-885 are predicted by our analysis to affect 
the binding of the complement inhibitor eculizumab, which aligns 
with trial data from 345 Japanese patients with paroxysmal noctur-
nal hemoglobinuria, in which all 11 nonresponders carried a vari-
ant in p.Arg885 (38). Similarly, our data suggested that carriers of the 
ADRB2 variant rs1800888 exhibit altered response to 2-adrenergic 
receptor agonists, which is corroborated by the finding that carriers 
of this variant exhibit a fivefold lower response to isoproterenol (39). 
Furthermore, previous studies showed a substantial enrichment of 
rare genetic variants in drug targets in nonresponders to antiseizure 
medications (40, 41). Furthermore, germline rare variant burden in 
multidrug resistance transporters was negatively correlated with 
outcomes in patients with breast cancer undergoing chemotherapy 
(42). Jointly, these and our data incentivize further mechanistic studies, 
as well as the design of prospective trials that evaluate the added 
value and cost-effectiveness of genotype-informed drug selection, 
ideally across indications, drugs, and health care systems. Before 
these data are available, we suggest that information about binding 
pocket variability could already flag individuals at increased risk of 
nonresponse for increased surveillance, particularly in therapeutic 
areas where timely response is critical, such as oncology.

In summary, this study comprehensively profiled human drug 
target variability on an unprecedented scale and highlights the im-
portance of drug target variability for personalized medicine. Our 
results demonstrate that integration of population-scale genomic 
data and structural target information can flag variants with import-
ant effects on drug pharmacodynamics and inform personalized 
prescribing and targeted drug development for carriers of variants 
resistant to conventional treatment.

MATERIALS AND METHODS
Data sources
Genetic variants of all drug target proteins and their frequencies were 
derived from whole-genome and whole-exome sequencing data of 
138,632 individuals provided by the Genome Aggregation Database 
from seven ethnogeographic groups (European, African, Latinos, East 
Asian, South Asian, Ashkenazi Jews, and Finnish) (43). Experimental-
ly determined high-resolution crystal structures of target proteins 
crystallized with the respective drug were obtained from the Protein 
Data Bank (PDB) (44). The putative functional consequences of ge-
netic variants in drug targets were assessed using 17 partly orthogonal 
computational algorithms (SIFT, PolyPhen-2, LRT, MutationTaster, 
MutationAssessor, FATHMM, PROVEAN, MetaSVM, MetaLR, 
M-CAP, REVEL, CADD, FATHMM-MKL, VEST3, DANN, Eigen, and 
GERP++). Variants were classified as deleterious if >80% of algorithms 
predicted functional impacts. In addition, all frameshifts, start-lost, 
and stop-gain variants as well as all variations affecting canonical 
splice sites were considered as deleterious.

Drug target–binding site identification
Drug targets were identified on the basis of recent comprehensive 
maps of the human druggable genome (16). In total, 606 human 
drug target proteins were identified for which the respective drug 
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did not target a specific somatic mutation. The evaluation of vari-
ants within drug-binding sites relies on the accurate identification 
of binding pockets. Thus, we only considered those targets for our 
evaluations of which (i) the structure of the human protein com-
plexed with the respective drug was available, (ii) the structure of a 
homologous animal protein complexed with the respective drug 
was available, (iii) the structure of a paralogous human protein 
complexed with the respective drug was available, (iv) the structure 
of the human protein complexed with a drug with the same back-
bone chemical structure was available, or (v) the structure of a pa-
ralogous human protein complexed with a drug with the same 
backbone chemical structure was available. For those targets for 
which only homologous or paralogous protein structures were 
available, structural agreement was evaluated using Phyre2 (45). 
Model accuracy was considered sufficient if confidence was >90% 
and sequence identity was ≥30%. Binding pockets were defined as 
all amino acids within 6 Å of the respective drug molecule using 
PyMOL (version 2.1.1, Schrödinger LLC).

PheWAS using the Estonian Biobank
A PheWAS was conducted for the most common drug-binding site 
variant, rs1064524 in ITGAL. Less abundant variants had to be ex-
cluded because of the low number of carriers and, accordingly, low 
statistical power in the Estonian Biobank. International Classification 
of Diseases (ICD)-10 codes were obtained from the electronic health 
records of the participants with the number of unrelated individuals 
ranging from 18,601 to 51,138, depending on the phenotype. PheWAS 
codes were first grouped into three-character identifiers, and only 
PheWAS codes C00-N99 (excluding D78, F70-F89, H, and J00-J22) 
were selected for further analyses. PheWAS codes with less than five 
cases in total were excluded, resulting in a total of 725 PheWAS codes. 
PheWAS analysis was performed using the R package PheWAS (46) 
using logistic regression models with gender, birth year, and the first 
five principle components as covariates. Bonferroni correction was 
used to account for multiple testing with a P value significance 
threshold of 0.05/725 ≈6.9 × 10−5 (where 725 is the number of PheWAS 
codes analyzed).

Molecular docking studies
Cocrystallized structure of captopril with ACE [PDB identification 
(ID): 1UZF; (47)], tacrine with BCHE [4BDS; (48)], and its derivate 
K1035 with BCHE [6I0C; (24)] were obtained from the Research 
Collaboratory for Structural Bioinformatics PDB database. To prepare 
these structures for the molecular docking, we used the Schrödinger 
Maestro molecular modeling platform (release, January 2019, 
Schrödinger, LLC, New York, NY) and PyMOL software. The protein-
ligand complexes were first refined in Maestro using Protein Prepa-
ration Wizard, and the ligand-binding sites were optimized with 
Prime using a 7-Å threshold. After these refinement steps, the ligands 
were removed, and selected point mutations were introduced to 
each protein structure with the Mutagenesis Wizard in PyMOL.

The cocrystallized ligands were docked back to the correspond-
ing wild-type and mutated protein structures to a box located and 
sized on the basis of the location and size of the ligand in the origi-
nal (optimized) complex using Schrödinger’s Glide software. Standard 
precision (SP) parameters were modified by enhancing the planarity 
of the conjugated P groups. The postdocking minimization was 
conducted for 20 best ligand poses, and the final output was set to 
10 best poses per each ligand-protein pair. As binding of captopril 

to ACE (PDB ID: 1UZF) involves a metal coordination, an additional 
location restraint for the coordinating thiol group was added to 
the docking grid to enhance the enrichment of the biologically 
meaningful docking poses. The g score of each pose was compared 
to the best-scoring wild-type pose of the corresponding drug-
receptor complex, and the dGlide score was calculated as Glide 
g scorebest-scoring wild-type pose – Glide g scorestudied pose. For shape and 
location analysis, we used ShaEP software (49) using “onlyshape” and 
“noOptimization” parameters; the docking poses of each ligand 
were compared to the shape and binding location of the cocrystallized 
ligand at the corresponding crystal structure. All docking poses are 
provided as data file S1 in mol2 format.

Experimental evaluation of variants in ACE, BCHE, and TUBB1
Site-directed mutagenesis
Reference ACE, BCHE, and TUBB open reading frames were in-
serted into eukaryotic c-Myc–tagged plasmids, and drug target 
variants were generated using the QuikChange II Site-Directed Muta-
genesis Kit (200524, Agilent Technologies AH Diagnostic). The se-
quences of the primers used to generate the variant proteins are 
listed in table S8. Following mutagenesis, variant constructs were 
sequenced to confirm the correct nucleotide mutations.
Functional assays
Human embryonic kidney 293 cells were grown in a humidified at-
mosphere at 37°C and 5% CO2 in in Dulbecco’s modified Eagle’s 
medium (DMEM) without phenol red supplemented with 10% heat-
inactivated fetal bovine serum and penicillin and streptomycin 
(100 IU/ml). Cells were transiently transfected with the respective 
plasmids using Viromer RED (Lipocalyx, Germany). Expression 
levels of protein variants were analyzed by Western blots using an-
tibodies against c-Myc (9E10, Santa Cruz Biotechnology).

ACE activity was measured as previously reported (21). Cells 
were seeded in a 96-well plate and transfected with the correspond-
ing ACE reference and variant plasmids. After 24 hours, the medi-
um was replaced with fresh medium containing ACEi (captopril, 
enalapril, lisinopril, quinapril, and fosinopril) at final concentra-
tions of 1, 10, and 100 M as indicated. Notably, because enalapril, 
quinapril, and fosinopril are prodrugs, we used their respective ac-
tive metabolites (enalaprilat, quinaprilat, and fosinoprilat) instead 
of the parent compounds for exposure. After 4 hours of exposure, 
the medium was replaced with the peptide probe TPE-SDKP (50 M) 
that emits fluorescence upon ACE-dependent cleavage in tris buffer 
and incubated for 2 hours at 37°C. Subsequently, ZnCl2 was added 
to a final concentration of 3 mM and incubated for another 60 min 
after which the results were measured.

BCHE functionality was quantified using Ellman’s assay. Trans-
fected cells were seeded in 96-well format, and after 24 hours, the 
medium was replaced with fresh DMEM without phenol red. After 
48 hours, 50 l of medium containing the secreted cholinesterase 
proteins was transferred into a new 96-well plate and was incubated 
with 50 l of cholinesterase inhibitors (tacrine, rivastigmine, or 
tacrine-squaramide derivatives) at a final concentration of 1.5 M 
for 30 min. Ellman solution (300 l) was added to each well, and 
absorbance was measured at 412 nm using a SpectraMax M2 micro-
plate reader from 1 to 5 min.

To evaluate the effect of tubulin variants, cells were seeded for 
transfection with the corresponding TUBB1 reference and variant 
plasmids. After 24 hours, the medium was replaced with fresh DMEM 
without phenol red containing eribulin at a final concentration of 1, 
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10, or 100 nM. After 72 hours of exposure, adenosine 5′-triphosphate 
levels were measured using the CellTiter-Glo kit (Promega) to 
quantify cell viability.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi6856
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